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INTEGRAL INEQUALITIES OF LEVINSON’S

TYPE IN TIME SCALE SETTINGS

JOSIPA BARIĆ ∗ , JOSIP PEČARIĆ AND DAJANA RADIŠIĆ

(Communicated by M. Praljak)

Abstract. A new class of functions, K c
1 (I) , has been recently introduced by Baloch, Pečarić and

Praljak. The authors proved that K c
1 (I) is the largest class of functions for which Levinson’s

inequality holds under Mercer’s assumptions. We obtain Levinson’s type inequalities in time
scale settings by using the class K c

1 (I) and some known results regarding integral inequalites
for convex (concave) functions on time scale sets.

1. Introduction

1.1. On Levinson’s inequality

The well known Levinson’s inequality, ([16]), is given in the next theorem.

THEOREM 1. Let f : (0,2c)→R satisfy f ′′′ � 0 and let pi , xi , yi , i = 1,2, . . . ,n,
be such that pi > 0 , ∑n

i=1 pi = 1 , 0 � xi � c, and

x1 + y1 = x2 + y2 = · · · = xn + yn = 2c. (1)

Then,
n

∑
i=1

pi f (xi)− f (x) �
n

∑
i=1

pi f (yi)− f (y), (2)

where x = ∑n
i=1 pixi and y = ∑n

i=1 piyi are the weighted arithmetic means.

In the same year, 1964, Popoviciu ([20]), generalised Levinson’s inequality by
showing that for (2) to hold it is enough that f is 3-convex function.

In 1973, P. S. Bullen gave in [10] an alternative proof using mathematical in-
duction. By rescaling axes, he proved that if f : [a,b] → R is 3-convex and pi,xi,yi ,
i = 1,2, . . . ,n , are such that pi > 0, ∑n

i=1 pi = 1, a � xi,yi � b , xi + yi = c and

max{x1, . . . ,xn} � min{y1, . . . ,yn}, (3)
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then (2) holds.
Recently, in 2010, Mercer ([18]) improved Levinson’s inequality showing that for

f : [a,b]→ R which satisfies f ′′′ � 0 and pi,xi,yi , i = 1,2, . . . ,n , are such that pi > 0,
∑n

i=1 pi = 1, a � xi,yi � b and max{x1, . . . ,xn}� min{y1, . . . ,yn} , inequality (2) holds
when the condition (1) is replaced by the following weaker condition

n

∑
i=1

pi(xi − x)2 =
n

∑
i=1

pi(yi− y)2. (4)

In 2012 Witkowski ([21]) weakened Mercer’s assumption (4) replacing equality
by inequality in certain direction and, also, proved that it is enough to assume for func-
tion f to be 3 - convex.

In this paper, we will obtain Levinson’s type inequality on time scale by using a
new class of functions, K c

1 (I) , that has been recently introduced by Baloch, Pečarić
and Praljak in [4]. The authors proved that K c

1 (I) is the largest class of functions for
which Levinson’s inequality hold under Mercer’s assumptions and it is described in the
following definition.

DEFINITION 1. Let f : I → R and c ∈ I0, where I0 is the interior of the interval
I . We say that f ∈ K c

1 (I) , (resp. f ∈ K c
2 (I)) , if there exists a constant α such that

the function F(x) = f (x)− α
2 x2 is concave (resp. convex) on (−∞,c]∩ I and convex

(resp. concave) on I∩ [c,∞) .

Now, for the function f which belongs to class K c
1 (I) we say that it is 3-convex

at point c . So, the class K c
1 (I) generalizes 3-convex functions in the following sense:

a function is 3-convex on I if and only if it is 3-convex at every c ∈ I0 .
As a simple consequence of the probabilistic version of the Levinson’s inequal-

ity, Pečarić, Praljak and Witkowski, proved in [19], the following corollary where they
showed that, in discrete Levinson’s inequality, the number of the points of two se-
quences and associated weights do not need to be same.

COROLLARY 1. If xi ∈ I ∩ (−∞,c] , y j ∈ I ∩ [c,∞) , pi > 0 and q j > 0 , for i =
1, . . . ,n, j = 1, . . . ,m, are such that ∑n

i=1 pi = ∑m
j=1 q j = 1 and

n

∑
i=1

pi(xi − x)2 =
m

∑
j=1

q j(y j − y)2,

where x = ∑n
i=1 pixi and y = ∑m

j=1 q jy j , then the inequality

n

∑
i=1

pi f (xi)− f (x) �
m

∑
j=1

q j f (y j)− f (y) (5)

holds for every f ∈ K c
1 (I) .
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1.2. On time scale calculus

The theory of time scales was introduced by Stefan Hilger in his PhD thesis [12]
in 1988 as a unification of the theory of difference equations with that of differential
equations, unifying integral and differential calculus with the calculus of finite differ-
ences, extending to cases “in between” and offering a formalism for studying hybrid
discrete-continuous dynamic systems. It has applications in any field that requires si-
multaneous modelling of discrete and continuous time. Now, we briefly introduce the
time scales calculus and refer to [2, 13, 14] and the books [9, 15] for further details.

By a time scale T we mean any closed subset of R . The two most popular exam-
ples of time scales are the real numbers R and the integers Z . Since the time scale T

may or may not be connected, we need the concept of jump operators.
For t ∈ T , we define the forward jump operator σ : T → T by

σ(t) = inf{s ∈ T : s > t}
and the backward jump operator by

ρ(t) = sup{s ∈ T : s < t}.

In this definition, the convention is inf /0 = sup T (i.e., σ(t) = t if T has a maximum
t ) and sup /0 = inf T (i.e., ρ(t) = t if T has a minimum t ). If σ(t) > t , then we say
that t is right-scattered, and if ρ(t) < t , then we say that t is left-scattered. Points
that are right-scattered and left-scattered at the same time are called isolated. Also, if
σ(t) = t , then t is said to be right-dense, and if ρ(t) = t , then t is said to be left-dense.
Points that are simultaneously right-dense and left-dense are called dense. The mapping
μ : T → [0,∞) defined by

μ(t) = σ(t)− t

is called the graininess function. If T has a left-scattered maximum M , then we define
T

κ = T \ {M} ; otherwise T
κ = T . If f : T → R is a function, then we define the

function f σ : T → R by

f σ (t) = f (σ(t)) for all t ∈ T.

In the following considerations, T will denote a time scale, IT = I ∩T will denote a
time scale interval (for any open or closed interval I in R), and [0,∞)T will be used
for the time scale interval [0,∞)∩T .

DEFINITION 2. Assume f : T → R is a function and let t ∈ T
κ . Then we define

f Δ(t) to be the number (provided it exists) with the property that given any ε > 0, there
is a neighborhood U of t such that∣∣∣ f (σ(t))− f (s)− f Δ(t)(σ(t)− s)

∣∣∣� ε |σ(t)− s| for all s ∈U.

We call f Δ(t) the delta derivative of f at t . We say that f is delta differentiable on
T

κ provided f Δ(t) exists for all t ∈ T
κ .
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For all t ∈ T
κ , we have the following properties:

(i) If f is delta differentiable at t , then f is continuous at t .

(ii) If f is continuous at t and t is right-scattered, then f is delta differentiable at t
with f Δ(t) = f (σ(t))− f (t)

μ(t) .

(iii) If t is right-dense, then f is delta differentiable at t iff the limit lim
s→t

f (t)− f (s)
t−s

exists as a finite number. In this case, f Δ(t) = lim
s→t

f (t)− f (s)
t−s .

(iv) If f is delta differentiable at t , then f (σ(t)) = f (t)+ μ(t) f Δ(t) .

DEFINITION 3. A function f : T → R is called rd-continuous if it is continuous
at all right-dense points in T and its left-sided limits are finite at all left-dense points
in T . We denote by Crd the set of all rd-continuous functions. We say that f is rd-
continuously delta differentiable (and write f ∈ C1

rd ) if f Δ(t) exists for all t ∈ T
κ and

f Δ ∈ Crd .

DEFINITION 4. A function F : T→R is called a delta antiderivative of f : T→R

if FΔ(t) = f (t) for all t ∈ T
κ . Then we define the delta integral by

∫ t

a
f (s)Δs = F(t)−F(a).

The importance of rd-continuous function is revealed by the following result.

THEOREM 2. Every rd-continuous function has a delta antiderivative.

Now we give some properties of the delta integral.

THEOREM 3. If a,b,c ∈ T , α ∈ R and f ,g ∈ Crd , then

(i)
b∫
a

( f (t)+g(t))Δt =
b∫
a

f (t)Δt +
b∫
a

g(t)Δt ;

(ii)
b∫
a

α f (t)Δt = α
b∫
a

f (t)Δt ;

(iii)
b∫
a

f (t)Δt = −
a∫
b

f (t)Δt ;

(iv)
b∫
a

f (t)Δt =
c∫
a

f (t)Δt +
b∫
c

f (t)Δt ;

(v)
a∫
a

f (t)Δt = 0 ;
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(vi) if f (t) � 0 for all t , then
b∫
a

f (t)Δt � 0 .

Jensen’s inequality is of great interest in the theory of differential and difference
equations as well as other areas of mathematics.

The Jensen inequality on time scales via the Δ-integral has been recently obtained
in [2] by Agarwal, Bohner and Peterson.

THEOREM 4. Let a,b ∈ T , a < b and suppose I ⊂ R is an interval. If F : I → R

is convex (resp., concave) and f ∈ Crd ([a,b], I) , then

F

(∫ b
a f (t)Δt
b−a

)
�
∫ b
a F( f (t))Δt

b−a
(6)

(resp., the reversed inequality is valid). Moreover, if F is strictly convex or strictly
concave, then equality in (6) holds if and only if f is constant.

2. New results

2.1. Levinson’s inequality on time scale

Following the method of Pečarić, Praljak and Witkowski, [19], in the next theo-
rem we establish Levinson’s type inequality in the settings of time scale calculus. For
simplicity, in what follows, we use following notation

D[a,b]( f ) =
1

b−a

⎛
⎜⎝

b∫
a

( f (t))2 Δt− 1
b−a

⎛
⎝ b∫

a

f (t)Δt

⎞
⎠

2
⎞
⎟⎠ .

THEOREM 5. Let a,b,d,e ∈ T , a < b, d < e and suppose I ⊂ R is an interval.
Let f ∈ Crd ([a,b], I) , g ∈ Crd ([d,e], I) and suppose there exists c ∈ I0 such that

sup
x∈[a,b]

f (x) � c � inf
x∈[d,e]

g(x). (7)

If
D[a,b]( f ) = D[d,e](g) (8)

then the inequality

Φ
(∫ e

d g(t)Δt
e−d

)
− 1

e−d

e∫
d

Φ(g(t))Δt � Φ

(∫ b
a f (t)Δt
b−a

)
− 1

b−a

b∫
a

Φ( f (t))Δt, (9)

holds for every function Φ ∈ K c
1 (I) . If the function Φ is contained in K c

2 (I) then the
sign of inequality (9) is reversed.
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Proof. Following the definition 1 and using the function Φ ∈ K c
1 (I) , c ∈ I0 , we

now define the function F(x) = Φ(x)− α
2 x2 , where α is a constant such that the func-

tion F is concave on (−∞,c]∩ I and convex on I ∩ [c,∞) . Since F is concave on
(−∞,c]∩ I , from theorem 4, we get

F

(∫ b
a f (t)Δt
b−a

)
�
∫ b
a F( f (t))Δt

b−a
. (10)

Replacing F(x) by Φ(x)− α
2 x2 , it follows

Φ

(∫ b
a f (t)Δt
b−a

)
− α

2

(∫ b
a f (t)Δt
b−a

)2

−
∫ b
a

(
Φ( f (t))− α

2 ( f (t))2
)

b−a
� 0

Φ

(∫ b
a f (t)Δt
b−a

)
− α

2(b−a)2

⎛
⎝ b∫

a

f (t)Δt

⎞
⎠

2

− 1
b−a

b∫
a

Φ( f (t))Δt +
α

2(b−a)

b∫
a

( f (t))2 Δt � 0

Φ

(∫ b
a f (t)Δt
b−a

)
− 1

b−a

b∫
a

Φ( f (t))Δt

+
α

2(b−a)

⎛
⎜⎝

b∫
a

( f (t))2 Δt− 1
b−a

⎛
⎝ b∫

a

f (t)Δt

⎞
⎠

2
⎞
⎟⎠� 0. (11)

Since F is convex on I∩ [c,∞) from theorem 4, we have

F

(∫ e
d g(t)Δt
e−d

)
�
∫ e
d F(g(t))Δt

e−d
.

Replacing F(x) by Φ(x)− α
2 x2 , it follows

Φ
(∫ e

d g(t)Δt
e−d

)
− α

2

(∫ e
d g(t)Δt
e−d

)2

−
∫ e
d

(
Φ(g(t))− α

2 (g(t))2
)

e−d
� 0

Φ
(∫ e

d g(t)Δt
e−d

)
− α

2(e−d)2

⎛
⎝ e∫

d

g(t)Δt

⎞
⎠

2

− 1
e−d

e∫
d

Φ(g(t))Δt +
α

2(e−d)

e∫
d

(g(t))2 Δt � 0

Φ
(∫ e

d g(t)Δt
e−d

)
− 1

e−d

e∫
d

Φ(g(t))Δt
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+
α

2(e−d)

⎛
⎜⎝

e∫
d

(g(t))2 Δt− 1
e−d

⎛
⎝ e∫

d

g(t)Δt

⎞
⎠

2
⎞
⎟⎠� 0. (12)

Rearranging (11), we get

− α
2(b−a)

⎛
⎜⎝

b∫
a

( f (t))2 Δt− 1
b−a

⎛
⎝ b∫

a

f (t)Δt

⎞
⎠

2
⎞
⎟⎠

�Φ

(∫ b
a f (t)Δt
b−a

)
− 1

b−a

b∫
a

Φ( f (t))Δt. (13)

Rearranging (12), we have

α
2(e−d)

⎛
⎜⎝

e∫
d

(g(t))2 Δt− 1
e−d

⎛
⎝ e∫

d

g(t)Δt

⎞
⎠

2
⎞
⎟⎠

�−Φ
(∫ e

d g(t)Δt
e−d

)
+

1
e−d

e∫
d

Φ(g(t))Δt. (14)

Adding up inequalities (13) and (14) and taking into account condition (8), we get
inequality (9) which complites the proof. �

REMARK 1. It is obvious from the previus proof that the inequality (9) holds if
the condition (8) is replaced by the weaker condition

α
(
D[d,e](g)−D[a,b]( f )

)
� 0. (15)

Furthermore, the condition (15) can be weakened to

D[d,e](g)−D[a,b]( f ) � 0,

if, additionally, Φ is convex, since Φ′′−(c) � α � Φ′′
+(c) . Also, if Φ is concave, the

condition (15) can be weakened to D[d,e](g)−D[a,b]( f ) � 0.

In [22] authors gave the following version of theorem 4.

THEOREM 6. Let a,b ∈ T , a < b and suppose I ⊂ R is an interval. Assume
h ∈ Crd ([a,b],R) is nonnegative function satisfying

∫ b
a h(t)Δt > 0 . If F : I → R is

convex (resp., concave) and f ∈ Crd ([a,b], I) , then

F

(∫ b
a h(t) f (t)Δt∫ b

a h(t)Δt

)
�
∫ b
a h(t)F( f (t))Δt∫ b

a h(t)Δt
(16)

(resp., the reversed inequality is valid).
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Using this result we generalize theorem 5. Let us denote

D [a,b](h, f ) =

b∫
a

h(t)( f (t))2 Δt

∫ b
a h(t)Δt

−

⎛
⎜⎜⎜⎝

b∫
a

h(t) f (t)Δt

∫ b
a h(t)Δt

⎞
⎟⎟⎟⎠

2

.

THEOREM 7. Let a,b,d,e ∈ T , a < b, d < e and suppose I ⊂ R is an interval.
Assume h1 ∈ Crd ([a,b],R) and h2 ∈ Crd ([d,e],R) are nonegative functions such that∫ b
a h1(t)Δt > 0 ,

∫ e
d h2(t)Δt > 0 . Let f ∈ Crd ([a,b], I) , g ∈ Crd ([d,e], I) and suppose

there exists c ∈ I0 such that

sup
x∈[a,b]

f (x) � c � inf
x∈[d,e]

g(x). (17)

If
D [a,b](h1, f ) = D [d,e](h2,g) (18)

then the inequality

Φ
(∫ e

d h2(t)g(t)Δt∫ e
d h2(t)Δt

)
−

e∫
d

h2(t)Φ(g(t))Δt
∫ e
d h2(t)Δt

� Φ

(∫ b
a h1(t) f (t)Δt∫ b

a h1(t)Δt

)
−

b∫
a

h1(t)Φ( f (t))Δt

∫ b
a h1(t)Δt

(19)
holds for every function Φ ∈ K c

1 (I) . If the function Φ is contained in K c
2 (I) then the

sign of inequality (19) is reversed.

We omit the proof since it is similar to the proof of theorem 5.

2.2. Multidimensional case

In what follows we obtain multidimensional time scale versions of some inequali-
ties of Levinson’s type.

Multiple Riemann integration and multiple Lebesgue integration on time scale was
introduced in [7] and [8], respectively.

Using the fact that the time scale integral is a positive linear functional, authors M.
Anwar, R. Bibi, M. Bohner and J. Pečarić proved in [3] the generalization of inequality
(16) in the terms of multiple Lebesgue delta integral.

THEOREM 8. Assume F ∈C(I,R) is convex (resp., concave), where I ⊂ R is an
interval. For time scales T1, . . . ,Tn , suppose E⊂([a1,b1)∩T1)×·· ·×([an,bn)∩Tn)⊂
R

n and f is Δ-integrable on E such that f (E ) = I . Moreover, let h : E → R be non-
negative, Δ-integrable such that

∫
E

h(t)Δt > 0 . Then

F

⎛
⎝
∫
E

h(t) f (t)Δt
∫
E

h(t)Δt

⎞
⎠�

∫
E

h(t)F( f (t))Δt
∫
E

h(t)Δt
.
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Analogusly as in theorem 5 and theorem 7, we can easily obtain following multiple
version of Levinson’s type inequality in the settings of time scale calculus. We omit the
proof since it is similar to the proof of theorem 5.

Throughout this section and following sections let

Ei ⊂ ([ai1,bi1)∩Ti1)×·· ·× ([ain,bin)∩Tin) ⊂ R
n,

be Lebesgue Δ-measurable sets for any index i ∈ N and let Ti1, . . . ,Tin be time scales,
with ai j,bi j ∈ T j , ai j < bi j , 1 � j � n .

THEOREM 9. Let I ⊂ R be an interval and hi : Ei → R , i = 1,2 , be nonnegative,
Δ-integrable such that

∫
Ei

hi(t)Δt > 0 . Let f : E1 → I and g : E2 → I be Δ-integrable

functions on Ei , respectively, and suppose there exists c ∈ I0 such that

sup
T∈E1

f (T ) � c � inf
T∈E2

g(T ). (20)

If

DE1(h1, f ) = DE2(h2,g) (21)

then the inequality

Φ

(∫
E2

h2(t)g(t)Δt∫
E2

h2(t)Δt

)
−

∫
E2

h2(t)Φ(g(t))Δt

∫
E2

h2(t)Δt
� Φ

(∫
E1

h1(t) f (t)Δt∫
E1

h1(t)Δt

)
−

∫
E1

h1(t)Φ( f (t))Δt

∫ b
a h1(t)Δt

,

(22)
holds for every function Φ ∈ K c

1 (I) .

2.3. Converse inequalities

Following converse of delta integral Jensen’s inequality for convex functions is
obtained in [3].

THEOREM 10. Assume F ∈C(I,R) is convex (resp., concave), where I = [m,M]⊂
R , with m < M. For time scales T1, . . . ,Tn , suppose E ⊂ ([a1,b1)∩T1)× ·· · ×
([an,bn)∩Tn) ⊂ R

n and f is Δ-integrable on E such that f (E ) = I . Moreover, let
h : E → R be nonnegative, Δ-integrable such that

∫
E

h(t)Δt > 0 . Then

∫
E

h(t)F( f (t))Δt
∫
E

h(t)Δt
�

M−
∫
E

h(t) f (t)Δt∫
E

h(t)Δt

M−m
F(m)+

∫
E

h(t) f (t)Δt∫
E

h(t)Δt −m

M−m
F(M), (23)

(resp., the reversed inequality is valid).
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Now, we state new converses of Levinson’s type inequality on time scale.
In order to simplify the notation, we denote:

f =

∫
E1

h1(t) f (t)Δt∫
E1

h1(t)Δt
and g =

∫
E2

h2(t)g(t)Δt∫
E2

h2(t)Δt
.

THEOREM 11. Let hi : Ei → R , i = 1,2 , be nonnegative, Δ-integrable such that∫
Ei

hi(t)Δt > 0 . Let f : E1 → [m,M] ⊂ I and g : E2 → [n,N] ⊂ I , m < M, n < N , be

Δ-integrable functions on Ei , respectively, and suppose there exists c ∈ I0 such that

sup
T∈E1

f (T ) � c � inf
T∈E2

g(T ). (24)

If

M− f
M−m

m2 +
f −m
M−m

M2 −
∫
E1

h1(t) f 2(t)Δt∫
E1

h1(t)Δt
=

N−g
N−n

n2 +
g−n
N−n

N2 −
∫
E2

h2(t)g2(t)Δt∫
E2

h2(t)Δt
(25)

then inequality

M− f
M−m

Φ(m)+
f −m
M−m

Φ(M)−
∫
E1

h1(t)Φ( f (t))Δt∫
E1

h1(t)Δt
(26)

�N−g
N−n

Φ(n)+
g−n
N−n

Φ(N)−
∫
E2

h2(t)Φ(g(t))Δt∫
E2

h2(t)Δt

holds for every function Φ ∈ K c
1 (I) .

Proof. Let us define the function F(x) = Φ(x)− α
2 x2 , where α is a constant from

definition 1. Since F is concave on [m,M]∩ I , from theorem 10, we have
∫
E1

h1(t)F( f (t))Δt∫
E1

h1(t)Δt

� M− f
M−m

F(m)+
f −m
M−m

F(M)

∫
E1

h1(t)
(
Φ( f (t))− α

2 f 2(t)
)

Δt∫
E1

h1(t)Δt

� M− f
M−m

(
Φ(m)− α

2
m2
)

+
f −m
M−m

(
Φ(M)− α

2
M2
) ∫

E1
h1(t)Φ( f (t))Δt∫

E1
h1(t)Δt

− α
2

∫
E1

h1(t) f 2(t)Δt∫
E1

h1(t)Δt

� M− f
M−m

Φ(m)− α
2

m2 · M− f
M−m

+
f −m
M−m

Φ(M)− α
2

M2 · f −m
M−m

M− f
M−m

Φ(m)

+
f −m
M−m

Φ(M)−
∫
E1

h1(t)Φ( f (t))Δt∫
E1

h1(t)Δt
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�α
2
·
(

M− f
M−m

m2 +
f −m
M−m

M2 −
∫
E1

h1(t) f 2(t)Δt∫
E1

h1(t)Δt

)
. (27)

Since the function F is convex on I∩ [n,N] , from theorem 10, it follows

∫
E2

h2(t)F(g(t))Δt∫
E2

h2(t)Δt

�N−g
N−n

F(n)+
g−n
N−n

F(N)

∫
E2

h2(t)
(
Φ(g(t))− α

2 g2(t)
)

Δt∫
E2

h2(t)Δt

�N−g
N−n

(
Φ(n)− α

2
n2
)

+
g−n
N−n

(
Φ(N)− α

2
N2
) ∫

E2
h2(t)Φ(g(t))Δt∫

E2
h2(t)Δt

− α
2

∫
E2

h2(t)g2(t)Δt∫
E2

h2(t)Δt

�N−g
N−n

Φ(n)− α
2

n2 · N−g
N−n

+
g−n
N−n

Φ(N)− α
2

N2 · g−n
N−n

· α
2

×
(

N−g
N−n

n2 +
g−n
N−n

N2 −
∫
E2

h2(t)g2(t)Δt∫
E2

h2(t)Δt

)

�N−g
N−n

Φ(n)+
g−n
N−n

Φ(N)−
∫
E2

h2(t)Φ(g(t))Δt∫
E2

h2(t)Δt
. (28)

Adding up inequalities (27) and (28) and taking into account condition (25), we
get inequality (26) which completes the proof. �

Using inequality (26) and converse of Jessen’s inequality on time scale proved in
[5, theorem 2.1], in the next theorem, we obtain another converse of Levinson’s type
inequality on time scale.

THEOREM 12. Let hi : Ei → R , i = 1,2 , be nonnegative, Δ-integrable such that∫
Ei

hi(t)Δt > 0 . Let f : E1 → [m,M] ⊂ I and g : E2 → [n,N] ⊂ I , m < M, n < N , be

Δ-integrable functions on Ei , respectively, and suppose there exists c ∈ I0 such that

sup
T∈E1

f (T ) � c � inf
T∈E2

g(T ). (29)

If

(M−m)2 +2

∫
E2

h2(t)g2(t)Δt∫
E2

h2(t)Δt
= 2

∫
E1

h1(t) f 2(t)Δt∫
E1

h1(t)Δt
+(N−n)2 (30)

then inequality

1
4

(M−m)
(
Φ′

−(M)−Φ′
+(m)

)−
∫
E1

h1(t)Φ( f (t))Δt∫
E1

h1(t)Δt
(31)
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�1
4

(N−n)
(
Φ′

−(N)−Φ′
+(n)

)−
∫
E2

h2(t)Φ(g(t))Δt∫
E2

h2(t)Δt

holds for every function Φ ∈ K c
1 (I) , where Φ′−(M) = lim

x→M−
Φ(x)−Φ(M)

x−M is a left hand

derivative of Φ at M , and Φ′
+(m) = lim

x→m+

Φ(x)−φ(m)
x−m is a right hand derivative of Φ at

m, x ∈ I .

Proof. Let us define the function F(x) = Φ(x)− α
2 x2 , where α is a constant from

definition 1. Since F is concave on [m,M]∩ I , from [5, theorem 2.1], we get

∫
E1

h1(t)F( f (t))Δt∫
E1

h1(t)Δt
�
(
M− f

)(
f −m

) · F ′−(M)−F ′
+(m)

M−m
.

∫
E1

h1(t)
(
Φ( f (t))− α

2 f 2(t)
)

Δt∫
E1

h1(t)Δt

�
(
M− f

)(
f −m

) ·
(
Φ′−(M)−αM

)− (Φ′
+(m)−αm

)
M−m

∫
E1

h1(t)Φ( f (t))Δt∫
E1

h1(t)Δt

− α
2

∫
E1

h1(t) f 2(t)Δt∫
E1

h1(t)Δt

�1
4

(M−m)
(
Φ′

−(M)−Φ′
+(m)−α(M−m)

)
. (32)

Since F is convex on I∩ [n,N] , from [5, theorem 2.1] we obtain

∫
E2

h2(t)F(g(t))Δt∫
E1

h1(t)Δt

�(N−g) (g−n) · F ′−(N)−F ′
+(n)

N−n

∫
E2

h2(t)
(
Φ(g(t))− α

2 g2(t)
)

Δt∫
E2

h2(t)Δt

�(N−g) (g−n) ·
(
Φ′−(N)−αN

)− (Φ′
+(n)−αn

)
N−n

∫
E2

h2(t)Φ(g(t))Δt∫
E2

h2(t)Δt

− α
2

∫
E2

h2(t)g2(t)Δt∫
E2

h2(t)Δt

�1
4

(N−n)
(
Φ′

−(N)−Φ′
+(n)−α(N−n)

)
. (33)

Adding up inequalities (32) and (33) and taking into account condition (30), we
get inequality (31) which completes the proof. �
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2.4. Jensen-Mercer’s type inequality

In 2003, A. McD. Mercer in [17] gave a variant of Jensen’s inequality, called
the Jensen–Mercer’s inequality. Later, W. S. Cheung et al. generalized the Jensen–
Mercer’s inequality for isotonic linear functionals, called Jensen–Mercer’s inequality
(see [11]). Further in [1], S. Abramovich et al. gave the refinement of the Jensen–
Mercer’s inequality for superquadratic functions. In the following theorem we state
Jensen-Mercer’s inequality on time scale proved in [6].

THEOREM 13. Suppose f is a Δ-integrable function on E such that f (E ) ⊆
[m,M] and h : E → R is nonnegative and Δ-integrable such that

∫
E h(t)Δt > 0 . Let

F ∈C([m,M],R) . If F is convex, then

F

(
m+M−

∫
E h(t) f (t)Δt∫

E h(t)Δt

)
�
∫
E h(t)F(m+M− f )Δt∫

E h(t)Δt

�
M−

∫
E h(t) f (t)Δt∫

E h(t)Δt

M−m
F(M)+

∫
E h(t) f (t)Δt∫

E h(t)Δt −m

M−m
F(m)

� F(m)+F(M)−
∫
E h(t)F( f (t))Δt∫

E h(t)Δt
.

Moreover, if F is concave, then the above inequalities hold in reverse order.

Here we obtain Levinson’s type generalization of Jensen-Mercer’s inequality on
time scale.

THEOREM 14. Let hi : Ei → R , i = 1,2 , be nonnegative, Δ-integrable such that∫
Ei

hi(t)Δt > 0 . Let f : E1 → [m,M] ⊂ I and g : E2 → [n,N] ⊂ I , m < M, n < N , be

Δ-integrable functions on Ei , respectively, and suppose there exists c ∈ I0 such that

sup
T∈E1

f (T ) � c � inf
T∈E2

g(T ). (34)

If

m+M− f −(m2 +M2)+
∫
E1

h1(t) f 2(t)Δt∫
E1

h1(t)Δt
= n+N−g−(n2 +N2)+

∫
E2

h2(t)g2(t)Δt∫
E2

h2(t)Δt
(35)

then inequality

Φ(m)+ Φ(M)−Φ
(
m+M− f

)−
∫
E1

h1(t)Φ( f (t))Δt∫
E1

h1(t)Δt
(36)

�Φ(n)+ Φ(N)−Φ(n+N−g)−
∫
E2

h2(t)Φ(g(t))Δt∫
E2

h2(t)Δt
(37)

holds for every function Φ ∈ K c
1 (I) .
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Proof. If we define the function F as follows: F(x) = Φ(x)− α
2 x2 , where α is

a constant from definition 1, then, since F is concave on [m,M]∩ I , from theorem 13,
we get

Φ
(
m+M− f

)− α
2

(
m+M− f

)2
�Φ(m)− α

2
m2 + Φ(M)− α

2
M2 −

∫
E1

h1(t)
(
Φ( f (t))− α

2 f 2(t)
)

Δt∫
E1

h1(t)Δt
Φ
(
m+M− f

)

−Φ(m)−Φ(M)+

∫
E1

h1(t)Φ( f (t))Δt∫
E1

h1(t)Δt

�α
2

(
m+M− f

)2 − α
2

(
m2 +M2)+ α

2

∫
E1

h1(t) f 2(t)Δt∫
E1

h1(t)Δt
. (38)

Since F is convex on I∩ [n,N] , from theorem 13, we obtain

Φ(n+N−g)− α
2

(n+N−g)2

�Φ(n)− α
2

n2 + Φ(N)− α
2

N2 −
∫
E2

h2(t)
(
Φ(g(t))− α

2 g2(t)
)

Δt∫
E2

h2(t)Δt
Φ(n+N−g)

−Φ(n)−Φ(N)+

∫
E2

h2(t)Φ(g(t))Δt∫
E2

h2(t)Δt

�α
2

(n+N−g)2− α
2

(
n2 +N2)+ α

2

∫
E2

h2(t)g2(t)Δt∫
E2

h2(t)Δt
. (39)

Adding up inequalities (38) and (39) and taking into account condition (35), we
get inequality (36) which completes the proof. �
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