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A HARDY–TYPE INEQUALITY WITH AHARONOV–BOHM

MAGNETIC FIELD ON THE POINCARÉ DISK

LI ZHU

(Communicated by M. Praljak)

Abstract. A version of Aharonov-Bohm magnetic field on the Poincar é disk is introduced, then
a Hardy-type inequality with Aharonov-Bohm magnetic field is proved.

1. Introduction

The classical Hardy inequality in R
N says that for all f ∈C∞

0 (RN) and N � 3,

∫
RN

|∇ f |2dx � (N−2)2

4

∫
RN

f 2

|x|2 dx. (1.1)

After the seminal work of Carron [4], inequality (1.1) has been generalized to Rieman-
nian manifolds intensively by several authors [2],[3], [7], [11], [12], [13], [18]. Hardy’s
inequalities were also pursued for some subelliptic operators (see, e.g., [5], [6], [8], [9],
[10], [16],) in particular, for the sub-Laplacian on the Heisenberg group and Grushin
operators. But if N = 2, the Hardy inequality (1.1) becomes trivial. However Laptev
and Weidl [15] have noticed that for the Aharonov-Bohm magnetic forms in two di-
mensional Euclidean space, the Hardy inequality still holds. In fact, let βa be the
Aharonov-Bohm magnetic field

βa = β
(
− y

x2 + y2 ,
x

x2 + y2

)
, β ∈ R

then for all u ∈C∞
0 (R2\{0}) ,

∫
R2

|(∇+ iβa)u|2dx � min
k∈Z

|k+ β |2
∫

R2

|u|2
|x|2 dx. (1.2)

Recently Aermark and Laptev introduced a version of the Aharonov-Bohm magnetic
field for a Grushin subelliptic operator and they proved an improved Hardy inequality
in [1].
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Motivated by the above works, following the perturbed Aharonov-Bohm Hamilto-
nian on the hyperbolic plane H [14], we introduce a suitable notion of the Aharonov-
Bohm magnetic field A for the Poincaré disk B and obtain a Hardy-type inequality
associated with A in this note.

Let H be the upper plane {z = x+ iy,y > 0} equipped with the metric

ds2 =
dx2 +dy2

y2

and the Poincaré disk B be the unit disk B = {x = (x1,x2) : x2
1 + x2

2 < 1} in R
2 with

metric

ds2 = 4
dx2

1 +dx2
2

(1− (x2
1 + x2

2))2
. (1.3)

Here and in what follows we use the notation r =
√

x2
1 + x2

2 . The Riemannian measure
dVB on the Poincaré disk B is

dVB =
4

(1− r2)2 dx, (1.4)

where dx is the usual Lebesgue measure on Euclidean plane. We also have∫
B

|∇Bu|2dVB =
∫

B
|∇u|2dx, (1.5)

∇B =
(

1− r2

2

)
∇, (1.6)

where ∇ =
( ∂

∂x1
,

∂
∂x2

)
is the usual gradient in Euclidean plane [17]. |∇Bu|2 =

〈∇Bu,∇Bu〉 where 〈·, ·〉 denotes the inner product induced by the metric (1.3).
For x = (x1,x2) ∈ B\{0} , the Aharonov-Bohm magnetic field A on the Poincaré

disk B is defined as:

A =
(
− 1− r2

2r
sinθ ,

1− r2

2r
cosθ

)
(1.7)

where x1 = rcosθ ,x2 = r sinθ , θ ∈ [0,2π),r ∈ (0,1) . For any x = (x1,x2) ∈ B\{0} ,
the hyperbolic distance ρ = ρ(x,0) between x and the origin is

ρ = ρ(x,0) = log
(1+ r

1− r

)
(1.8)

where r =
√

x2
1 + x2

2 .
Our main result in this paper is the following Hardy-type inequality with the

Aharonov-Bohm magnetic field A on the Poincaré disk B .

THEOREM 1.1. For any α ∈ R and any u ∈C∞
0 (B\{0})

∫
B

∣∣(∇B + iαA )u
∣∣2dVB � min

k∈Z

|k+ α|2
∫

B

|u|2
ρ2 dVB. (1.9)

The proof of Theorem 1.1 will be given in the next section.
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2. Proof of Theorem 1.1

With (1.4), (1.8), the Riemannian measure dVB can be written as

dVB =
4rdrdθ
(1− r2)2 = sinhρdρdθ . (2.1)

Because of (1.7), (1.8) and (2.1), we have for any u ∈C∞
0 (B\{0})

∫
B

∣∣(∇B + iαA )u
∣∣2dVB =

∫ 2π

0

∫ +∞

0

(∣∣∣ ∂u
∂ρ

∣∣∣2 +
1

sinh2 ρ

∣∣∣ ∂u
∂θ

+ iαu
∣∣∣2

)
sinhρdρdθ

=I+ II,
(2.2)

where

I =
∫ 2π

0

∫ +∞

0

∣∣∣ ∂u
∂ρ

∣∣∣2 sinhρdρdθ , (2.3)

II =
∫ 2π

0

∫ +∞

0

1
sinhρ

∣∣∣ ∂u
∂θ

+ iαu
∣∣∣2dρdθ . (2.4)

The following Lemma 2.1 and Lemma 2.2 hold for I and II . Lemma 2.1 is called Leray
inequality (see, e.g., [17]) in the literature. However for the sake of completeness we
give the proof of it here.

LEMMA 2.1. For any u ∈C∞
0 (B\{0}) ,

I � 1
4

∫
B

|u|2
log2 (

tanh(ρ/2)
) · 1

sinh2 ρ
dVB (2.5)

where dVB = sinhρdρdθ .

Proof. Using ρ = log
(1+ r

1− r

)
, by abuse of notation we write u(ρ ,θ ) = u(r,θ ) .

Thus

I =
∫ 2π

0

∫ 1

0

∣∣∣∂u
∂ r

∣∣∣2rdrdθ .

Let u = v(− logr)−1/2 ,

∣∣∣∂u
∂ r

∣∣∣2 =
∣∣∣∂v
∂ r

∣∣∣2(− logr)+
1
4

|v|2
r2 logr

− 1
2r

(
∂v
∂ r

v +
∂ v
∂ r

v

)
. (2.6)

Multiplying r on both sides of (2.6) and integrating on (0,1) , we obtain

∫ 1

0

∣∣∣∂u
∂ r

∣∣∣2rdr =
∫ 1

0

∣∣∣∂v
∂ r

∣∣∣2(− logr)rdr+
1
4

∫ 1

0

|v|2
r logr

dr

− 1
2

∫ 1

0

(
∂v
∂ r

v +
∂ v
∂ r

v

)
dr.

(2.7)
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Since u ∈C∞
0 (B\{0}) , v still has compact support in B\{0} and v(0,θ ) = v(1,θ ) = 0

for every θ ∈ [0,2π) . Thus

∫ 1

0

(
∂v
∂ r

v +
∂ v
∂ r

v

)
dr =

∫ 1

0
d(vv) = (vv)

∣∣1
0 = 0.

Hence (2.7) becomes

∫ 1

0

∣∣∣∂u
∂ r

∣∣∣2rdr =
∫ 1

0

∣∣∣∂v
∂ r

∣∣∣2(− logr)rdr+
1
4

∫ 1

0

|u|2
r log2 r

dr

�1
4

∫ 1

0

|u|2
r2 log2 r

rdr.

(2.8)

Integrating (2.8) on [0,2π) with θ and using ρ = log
(1+ r

1− r

)
again, we obtain (2.5) �

LEMMA 2.2. For any u ∈C∞
0 (B\{0}) and any α ∈ R ,

II � min
k∈Z

|k+ α|2
∫

B

|u|2
sinh2 ρ

dVB. (2.9)

Proof. Let us expand u by Fourier series

u(ρ ,θ ) =
∞

∑
k=−∞

uk(ρ)
eikθ
√

2π
,

and hence

∂θ u(ρ ,θ ) =
∞

∑
k=−∞

ikuk(ρ)
eikθ
√

2π
.

Thus

II =
∫ 2π

0

∫ +∞

0

1
sinhρ

∣∣∣ ∞

∑
k=−∞

(ik+ iα)uk(ρ)
eikθ
√

2π

∣∣∣2dρdθ

�min
k∈Z

|k+ α|2
∫ 2π

0

∫ +∞

0

|u|2
sinh2 ρ

sinhρdρdθ

=min
k∈Z

|k+ α|2
∫

B

|u|2
sinh2 ρ

dVB. �

From Lemma 2.1 and Lemma 2.2, we have

I+ II �
∫

B

(
1
4

|u|2
sinh2 ρ · log2 (

tanh(ρ/2)
) +min

k∈Z

|k+ α|2 |u|2
sinh2 ρ

)
dVB,
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i.e.,
∫

B

∣∣(∇B+iαA )u
∣∣2dVB �

∫
B

(
1
4

1

sinh2 ρ · log2 (
tanh(ρ/2)

)+min
k∈Z

|k+α|2 1

sinh2 ρ

)
|u|2dVB.

(2.10)

Furthermore since min
k∈Z

|k+ α|2 � 1
4

for all α ∈ R , Theorem 1.1 can be reduced to the

following theorem.

THEOREM 2.3. For any all ρ ∈ (0,+∞) ,

1

sinh2 ρ · log2 (
tanh(ρ/2)

) +
1

sinh2 ρ
� 1

ρ2 , (2.11)

or
ρ2 � sinh2 ρ · log2 (

tanh(ρ/2)
)−ρ2 · log2 (

tanh(ρ/2)
)
. (2.12)

Proof. In order to prove (2.12), we consider the case ρ ∈ (0,1] and ρ ∈ [1,+∞) .
In fact it suffices to prove Lemma 2.4 and Lemma 2.5 below. �

LEMMA 2.4. For any ρ ∈ [1,+∞) , we have

ρ2 � sinh2 ρ · log2 (
tanh(ρ/2)

)
. (2.13)

Proof. For any ρ ∈ [1,+∞) , we have log
(
tanh(ρ/2)

)
< 0. (2.13) is equivalent

to
ρ > −sinhρ · log

(
tanh(ρ/2)

)
. (2.14)

For all ρ ∈ [1,+∞) , let

f (ρ) = ρ + sinhρ · log
(
tanh(ρ/2)

)
.

Because e f (1) = e(tanh(1/2))sinh1 , in order to show f (1) > 0 we need to prove that

e(tanh(1/2))sinh1 > 0, i.e., e2 >
(

e+1
e−1

)e−e−1
. Since e ≈ 2.718, e− e−1 < 2.4, it is

enough to show e2 >
(

e+1
e−1

)2.4
or e5 >

(
e+1
e−1

)6
. But

(
e+1
e−1

)6
<

(
3.8
1.7

)6
< 2.246 < 2.75 <

e5 . Therefore f (1) > 0.
It is sufficient to prove that f ′(ρ) � 0 for all ρ ∈ [1,+∞) . A simple calculation

shows

f ′(ρ) = 2+
1
2

1+ tanh2(ρ/2)
1− tanh2(ρ/2)

log
(
tanh2(ρ/2)

)
, (2.15)

Let x = tanh2(ρ/2) in (2.15). For x ∈ [tanh2(1/2),1) , we set

g(x) = 4+
1+ x
1− x

logx. (2.16)

Then

g(x) � 4+
2

1− x
logx. (2.17)
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Let

h(x) = 4+
2

1− x
logx. x ∈ [tanh2(1/2),1)

It is easy to see that

h′(x) =
2

x(1− x)2 [(1− x)+ x logx].

and
[(1− x)+ x logx]′ = logx < 0, ∀x ∈ [tanh2(1/2),1).

Using L’hospital’s rule, we also obtain

h′(1) = lim
x→1

2
x(1− x)2 [(1− x)+ x logx] = 1.

Thus h′(x) is a decreasing function on [tanh2(1/2),1) and the minimal value of h′(x)
is 1 . Hence

h(x) > 0, ∀x ∈ [tanh2(1/2),1).

From (2.17), we know that

g(x) � h(x) > 0, ∀x ∈ [tanh2(1/2),1),

i.e.,
f ′(ρ) � 0, ∀ρ ∈ [1,+∞). (2.18)

From (2.18) and f (1) > 0, we can conclude that (2.14) holds for all ρ ∈ [1,+∞). �

LEMMA 2.5. For any ρ ∈ (0,1] , we have

ρ2 � sinh2 ρ · log2 (
tanh(ρ/2)

)−ρ2 · log2 (
tanh(ρ/2)

)
. (2.19)

Proof. For any ρ ∈ (0,1) , ρ − log
(
tanh(ρ/2)

) ·
√

sinh2 ρ −ρ2 � 0. Thus (2.19)
is equivalent to

ρ + log
(
tanh(ρ/2)

) ·
√

sinh2 ρ −ρ2 � 0.

or

1+ log
(
tanh(ρ/2)

) ·
√

sinh2 ρ −ρ2

ρ
� 0. (2.20)

The minimum of t log t on (0,1) is −1
e

. Thus for all ρ ∈ (0,1] ,

1+ log
(
tanh(ρ/2)

) ·
√

sinh2 ρ −ρ2

ρ
=1+ tanh(ρ/2) · log

(
tanh(ρ/2)

)
√

sinh2 ρ −ρ2

ρ tanh(ρ/2)

�1− 1
e

√
sinh2 ρ −ρ2

ρ tanh(ρ/2)
.
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In order to prove (2.20), it is sufficient to show that for all ρ ∈ (0,1] ,

e2ρ2 · tanh2(ρ/2)− sinh2 ρ + ρ2 � 0. (2.21)

The proof of (2.21) will be completed by Lemma 2.6 and Lemma 2.7 below. �

LEMMA 2.6. For all ρ ∈ (0,1] ,

e2ρ2 · tanh2(ρ/2) � ρ2 sinh2 ρ . (2.22)

Proof. (2.22) is equivalent to

cosh(ρ/2) �
√

e
2
, ∀ρ ∈ (0,1]. (2.23)

Because
(
cosh(ρ/2)

)′ =
1
2

sinh(ρ/2) � 0, cosh(ρ/2) is increasing on (0,1] . It is

easy to see that 1 +
√

2 < e , i.e., 1 + e−1 <
√

2 or
1
2
(e1/2 + e−1/2) <

√
e
2

. Thus

cosh(1/2) �
√

e
2

and (2.23) is proved. �

LEMMA 2.7. For all ρ ∈ (0,1] ,

ρ2 sinh2 ρ − sinh2 ρ + ρ2 � 0. (2.24)

Proof. (2.24) is equivalent to

ρ · coshρ − sinhρ � 0, ∀ρ ∈ (0,1]. (2.25)

Let h(ρ) = ρ ·coshρ −sinhρ , ρ ∈ (0,1] . h′(ρ) = ρ sinhρ � 0 and h(ρ) is an increas-
ing function on (0,1] . We also have h(0) = 0. Hence h(ρ) � 0 on (0,1] , i.e., (2.25)
holds. �

Now Lemma 2.5 or (2.21) comes from (2.22) and (2.24). Combining Lemma 2.4
and Lemma 2.5, we complete the proof of Theorem 2.3.
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299–305.

[16] P. NIU, Y. CHEN, AND Y. HAN, Some Hardy-type inequalities for the generalized Baouendi-Grushin
operators, Glasg. Math. J. 46, 3 (2004), 515–527.

[17] K. SANDEEP, C. TINTAREV, A subset of Caffarelli-Kohn-Nirenberg inequalities in the hyperbolic
space H

N , Ann. Mat. Pura Appl. 196, 6 (2017), 2005–2021.
[18] Q. YANG, D. SU, Y. KONG, Hardy inequalities on Riemannian manifolds with negative curvature,

Commun. Contemp. Math. 16, (2014), 1350043, 24 pp.

(Received October 13, 2018) Li Zhu
School of Sciences

Wuhan Institute of Technology
Xiongchu Road, Wuhan, 430073

People’s Republic of China
e-mail: zhulitokyo@yahoo.com; guanshanzhuli@163.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


