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Abstract. Bennett [1] gave a generalization of Schur’s theorem in order to study various moment-
preserving transformations. Recently, Su [5] confirmed a monotonicity conjecture of Bennett
which is related to the generalized Schur’s theorem and Haber’s inequality. In this paper we
present a short proof of this result which is based on a combinatorial identity. Moreover, we show
that the function in Bennett’s conjecture is not only monotonically decreasing but completely
monotonic. Furthermore, we give its explicit representation as a Laplace integral which implies
the complete monotonicity. Finally, we prove a multivariate version of the above-mentioned
combinatorial identity.

1. Introduction and main result

Bennett [1] gave a generalization of Schur’s theorem and utilized its special cases
to study various moment-preserving transformations. See [2, p. 164] for the original
form of Schur’s theorem and [1] for the application of the generalized Schur’s theorem
to the study of moment sequences. Note that various moment sequences arise naturally
in many branches of mathematics and have been extensively studied. The reader is
referred to [4, 7] for the broad background of moment sequences and [3, 6] for the
latest work on some moment sequences.

Let n be a fixed nonnegative integer and x,y be fixed nonnegative real numbers.
In this paper we study the univariate function

Fn (a) ≡ Fn (x,y;a) =
(

n+2a−1
n

)−1 n

∑
k=0

(
k+a−1

k

)
xk
(

n− k+a−1
n− k

)
yn−k, (1)

which is well-defined if −2a /∈ {0,1, . . . ,n−1} .
While considering one special case of the generalized Schur’s theorem, Bennett

proposed the following conjecture [1, p. 31].

CONJECTURE 1. For any n ∈ N and x,y > 0 , the univariate function Fn (a) is
monotonically decreasing on (0,+∞) .
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Very recently, X.-T. Su [5, Theorem 1] affirmed Bennett’s conjecture in positive
by showing the following result.

THEOREM 2. (Su (2018)) For a > 0 , the function Fn (a) strictly decreases if n �
2 , x �= y and x,y > 0 . Otherwise, Fn (a) is a constant function.

The purpose of this article is to provide a short proof of Theorem 2 generalizing
it to the larger interval (−1/2,+∞) . Moreover, we prove that the function Fn (a) is
completely monotonic, for a > −1/2. Recall that a function f is called completely
monotonic on an interval (a,b) if it satisfies (−1)k f (k) (x) � 0, for all x ∈ (a,b) and
k = 0,1,2, . . . . Obviously, a completely monotonic function is monotonically decreas-
ing. Bennett’s conjecture 1 is a consequence of our result. In this view, we deliver a
new short proof of Theorem 2. Furthermore, we present a representation of Fn (a) as a
Laplace integral.

We derive the following main result.

THEOREM 3. Let x,y > 0 . For any n ∈ N , the function Fn (a) given by Eq. (1)
is completely monotonic on the interval (−1/2,+∞) . Moreover, if n � 2 and x �= y,

(−1)k F (k)
n (a) > 0 (k = 0,1,2, . . .) . (2)

REMARK 1. In particular, Eq. (2) implies, that if n � 2, x,y > 0 and x �= y , the
function Fn (a) is strictly decreasing, for a > −1/2.

In what follows Pk (k = 0,1,2, . . .) denote the Legendre polynomials satisfying
the orthogonality condition

∫ +1
−1 Pk (z)P� (z) dz = 0 if k �= � . Recall the Rodrigues

formula

Pk (z) =
1

2kk!

(
d
dz

)k (
z2 −1

)k
. (3)

The next result represents Fn (a) as a Laplace integral.

THEOREM 4. For n � 2 and x,y ∈ R , the function Fn (a) has, for a > −1/2 , the
representation

Fn (a) =
(

x+ y
2

)n

+
∫ ∞

0
e−(2a+1)t fn (t)dt (4)

as a Laplace integral, where

fn (t) =
n

∑
k=2

(
n
k

)(
x− y

2

)k

yn−ke−(k−2)tP′
k−1

(
et) . (5)

If x,y � 0 the function fn satisfies fn (t) � 0 , for t � 0 .

REMARK 2. Theorem 3 is a direct corollary of Theorem 4. This will be demon-
strated below.
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REMARK 3. According to Eqs. (4) and (5) it holds

(
x+ y

2

)n

= lim
a→+∞

Fn (a)

(cf. Eq. (6) ).

REMARK 4. We can rewrite Eq. (4) as a Laplace–Stieljes integral

Fn (a) =
(

x+ y
2

)n

+
∫ ∞

0
e−(2a+1)t dαn (t)

with αn (0) = 0 und αn (t) =
( x+y

2

)n +
∫ t
0 fn (u)du , for t > 0.

REMARK 5. Since P′
k (1) =

(k+1
2

)
, we have

fn (0) =
(

n
2

)(
x− y

2

)2(x+ y
2

)n−2

.

Furthermore, we have the limit

lim
t→+∞

fn (t) =
n
2

(x− y)yn−1
(

2F1

(
1
2
,1−n;1;1− x

y

)
− 2F1

(
1
2
,1−n;2;1− x

y

))

in terms of hypergeometric functions 2F1 . This follows by

Pk (w) = 2−k
(

2k
k

)
wk +O

(
wk−1

)
(w → +∞) .

We list some initial instances:

f2 (t) =
(

x− y
2

)2

,

f3 (t) = 3

(
x− y

2

)2 x+ y
2

� 0, if x+ y � 0,

f4 (t) = 6

(
x− y

2

)2(x+ y
2

)2

+
3
2

(
1− e−2t)(x− y

2

)4

� 0,

f5 (t) = 10

(
x− y

2

)2(x+ y
2

)3

+
15
2

(
x− y

2

)4 x+ y
2

(
1− e−2t)� 0, if x+ y � 0.
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2. Auxiliary results and proofs

First of all we gather some elementary properties of completely monotonic func-
tions. Let I ⊆ R be an arbitrary interval.

(1) If f1, . . . , fm are completely monotonic functions on I , so any linear combination
c1 f1 + · · ·+ cm fm , for c1, . . . ,cm � 0.

(2) If f1, . . . , fm are completelymonotonic functions on I , so is their product f1 · · · fm .
This follows by the Leibniz rule for differentiability of several functions.

(3) Finally, we recall the following criterion (see [7, Theorem 12A, Sect. 12, Chap-
ter 4]):

LEMMA 1. A necessary and sufficient condition that f should be completely mono-
tonic on [0,+∞) is that

f (x) =
∫ ∞

0
e−xtdα (t) ,

where α is bounded and non-decreasing and the integral converges for 0 � x < +∞ .

The first step in the proof of Theorem 3 is a certain representation of Fn (a) . Here
and in the following zk denotes the rising factorial defined by zk = z(z+1) · · ·(z+ k−1),
for k ∈ N , and z0 = 1. Furthermore, we use the falling factorial defined by zk =
z(z−1)· · · (z− k+1), for k ∈ N , and z0 = 1.

LEMMA 2. For n∈ N and x,y ∈ R , the function Fn (a) can be written in the form

Fn (a) =
n

∑
k=0

(
n
k

)
(x− y)k yn−k ak

(2a)k
.

REMARK 6. A direct consequence is the limit

lim
a→+∞

Fn (a) =
n

∑
k=0

(
n
k

)
(x− y)k yn−k 1

2k =
(

x+ y
2

)n

. (6)

Proof of Lemma 2. Applying the binomial formula to xk = ((x− y)+ y)k , we ob-
tain(

n+2a−1
n

)
Fn (a) =

n

∑
k=0

(
k+a−1

k

)(
n− k+a−1

n− k

)
yn−k

k

∑
j=0

(
k
j

)
(x− y) j yk− j

=
n

∑
j=0

(x− y) j yn− j
n

∑
k= j

(
k
j

)(
k+a−1

k

)(
n− k+a−1

n− k

)
.

Using (
k+a−1

k

)(
n− k+a−1

n− k

)
= (−1)n

(−a
k

)( −a
n− k

)
,
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we see that the inner sum is equal to

(−1)n
n− j

∑
k=0

(
k+ j

j

)( −a
k+ j

)( −a
n− j− k

)

= (−1)n
(−a

j

)n− j

∑
k=0

(−a− j
k

)( −a
n− j− k

)

= (−1)n
(−a

j

)(−2a− j
n− j

)
,

where the latter equality follows by Vandermonde convolution. Using
(n+2a−1

n

)
=

(−1)n
(−2a

n

)
we conclude that

Fn (a) =
n

∑
j=0

(x− y) j yn− j
(−a

j

)(−2a− j
n− j

)(−2a
n

)−1

=
n

∑
j=0

(
n
j

)
(x− y) j yn− j (−a) j

(−2a) j

This implies the desired formula. �

Proof of Theorem 3. Firstly, we prove that the functions gk (a) := ak

(2a)k
(k ∈ N)

are completely monotonic, for a > −1/2. Writing

gk (a) =
k−1

∏
�=0

a+ �

2a+ �
= 2−k

k−1

∏
�=0

(
1+

�

2a+ �

)

we see that gk (a) is a product of finitely many completely monotonic functions(
1+ �

2a+�

)
/2, � = 0, . . . ,k−1. By Property (2), the function gk is completely mono-

tonic. Because of the symmetry Fn (x,y;a) = Fn (y,x;a) in the parameters we can as-

sume that x � y � 0 such that
( x−y

2

)k
yn−k � 0, for 0 � k � n . By Property (1), the

proof is completed. �

Proof of Theorem 4. We define

F̂n (a) := Fn (a)− lim
a→+∞

Fn (a) =
n

∑
k=2

(
n
k

)
(x− y)k yn−k

(
ak

(2a)k
− 1

2k

)
. (7)

In particular, F̂n (a) = 0, for n = 0 and n = 1. Using partial fraction decomposition

ak

(2a)k
− 1

2k =
k−1

∑
j=0

ck, j

2a+ j

Eq. (7) yields

F̂n (a) =
n

∑
k=2

(
n
k

)
(x− y)k yn−k

k−1

∑
j=0

ck, j

2a+ j
.
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The coefficients ck, j are given by

ck, j = (−1) j (− j/2)k

j!(k−1− j)!
.

Obviously, ck,2i = 0, if 0 � 2i � k−1, and

ck,2i+1 = − (−i−1/2)k

(2i+1)!(k−2−2i)!

if 0 � 2i � k−2. Inserting

(
−i− 1

2

)k

= (−1)i+1
(

i+
1
2

)(
i− 1

2

)
· · · 1

2
· 1
2
· 3
2
· · ·
(

k− i− 3
2

)

=
(−1)i+1

2k (2i+1)(2i−1)· · ·1 ·1 ·3 · · ·(2k−2i−3)

=
(−1)i+1

2k · (2i+1)!
2ii!

· (2k−2i−2)!
2k−i−1 (k− i−1)!

we obtain

ck,2i+1 =
(−1)i

22k−1 (k−1)!

(
k−1

i

)
(2k−2i−2)k .

Noting that (2k−2i−2)k = 0, for k−1 � 2i � 2k−2, we have

F̂n (a) =
n

∑
k=2

(
n
k

)
(x− y)k yn−k 1

22k−1 (k−1)!

k−1

∑
i=0

(−1)i
(

k−1
i

)
(2k−2i−2)k

2a+2i+1
.

Taking advantage of (2a+2i+1)−1 =
∫ ∞
0 e−(2a+2i+1)t dt we obtain

F̂n (a) =
∫ ∞

0
e−(2a+1)t fn (t)dt

with

fn (t) =
n

∑
k=2

(
n
k

)
(x− y)k yn−k 1

22k−1 (k−1)!

k−1

∑
i=0

(−1)i
(

k−1
i

)
(2k−2i−2)k e−2it .

Putting w := et the inner sum is equal to

k−1

∑
i=0

(−1)i
(

k−1
i

)
(2k−2i−2)k w−2i

= w−k+2
(

d
dw

)k k−1

∑
i=0

(−1)i
(

k−1
i

)
w2k−2i−2 = w−k+2

(
d

dw

)k (
w2 −1

)k−1

= 2k−1 (k−1)!w−k+2P′
k−1 (w) ,
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where the latter equality follows by the Rodrigues formula (3) . This leads to the desired
formula (5) . The explicit form

Pk (w) = 2−k
k

∑
j=0

(
k
j

)2

(w−1)k− j (w+1) j

of the Legendre polynomials implies that P′
k−1 (et) � 0, for t � 0.

Now suppose that x,y � 0. For proving the non-negativity of fn on [0,+∞) we can
assume that x � y � 0. The symmetry Fn (x,y;a) = Fn (y,x;a) in the parameters and the
identity theorem for Laplace transform implies that fn is invariant on the interchange
of x and y . By Eq. (5) , we conclude that fn (t) � 0, for t � 0. �

Proof of Remark 2. Since fn (t) � 0, for t � 0, it follows by Lemma 1 that F̂n is
completely monotonic on [0,+∞) . Eq. (4) shows that

F̂ (k)
n (a) = (−1)k

∫ ∞

0
e−(2a+1)t (2t)k fn (t)dt (k = 0,1,2, . . .) .

If n � 2 and x �= y , the function fn (t) is strictly positive, for t > 0. Therefore,

(−1)k F̂ (k)
n (a) > 0. Noting that Fn (a) = F̂n (a)+

( x+y
2

)n
and F (k)

n (a) = F̂ (k)
n (a) , for

k = 0,1,2, . . . , completes the proof of Remark 2. �

3. A multidimensional version

In this section we give a multidimensional version of Lemma 2 which is interesting
in itself.

Let r ∈ N . For x = (x1, . . . ,xr) ∈ R
r , put |x| = x1 + · · ·+ xr . We define

Fn (x;a) =
(

n+ |a|−1
n

)−1

∑
|k|=n

(
k1 +a1−1

k1

)
· · ·
(

kr +ar −1
kr

)
xk1
1 · · ·xkr

r ,

where the sum runs over all k ∈ Z
r
�0 such that k1 + · · ·+kr = n . For x,y ∈R

r we write
x � y if xi � yi , for all i ∈ {1, . . . ,r} . Finally, for k ∈ Z

r
�0 with |k| � n , the quantity(n

k

)
= n!

k1!···kr!(n−|k|)! denotes the multinomial coefficient.

THEOREM 5. Let r ∈ N . For n = 0,1,2, . . . and x,a ∈R
r ,

Fn (x;a) = ∑
|j|=n

(
n
j

)(r−1

∏
ν=1

(xν − xr) jν

)
x jr
r

∏r−1
ν=1 a jν

ν

|a|n− jr
,

provided that |a| /∈ {0,1, . . . ,n−1}.
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REMARK 7. For r = 2 and reals a1,a2 such that a1 + a2 /∈ {0,1, . . . ,n−1} , we
have

(
n+a1 +a2−1

n

)−1 n

∑
k=0

(
k+a1−1

k

)(
n− k+a2−1

n− k

)
xkyn−k

=
n

∑
j=0

(
n
j

)
(x− y) j yn− j a j

1

(a1 +a2)
j
,

which is a generalization of Lemma 2.

In the special case a1 = · · · = ar =: a , we define

Fn,r (a) =
(

n+ ra−1
n

)−1

∑
|k|=n

(
k1 +a−1

k1

)
· · ·
(

kr +a−1
kr

)
xk1
1 · · ·xkr

r .

It is a consequence of Theorem 5 that

Fn,r (a) = ∑
|j|=n

(
n
j

)(r−1

∏
ν=1

(xν − xr)
jν

)
x jr
r

∏r−1
ν=1 a jν

(ra)n− jr
.

Proof of Theorem 5. We have

(
n+ |a|−1

n

)
Fn (x;a)

= (−1)n ∑
|k|=n

[
r

∏
ν=1

(−aν
kν

)
xkν

ν

]

= (−1)n ∑
|k|=n

r−1

∏
ν=1

[(−aν

kν

) kν

∑
jν=0

(
kν

jν

)
(xν − xr)

kν− jν x jν
r

](−ar

kr

)
xkr
r .

Taking advantage of the identity
(−aν

kν

)(kν
jν

)
=
(−aν

jν

)(−aν− jν
kν− jν

)
we obtain

(
n+ |a|−1

n

)
Fn (x;a)

= (−1)n ∑
|k|=n

r−1

∏
ν=1

[
kν

∑
jν=0

(−aν
jν

)(−aν − jν
kν − jν

)
(xν − xr) jν xkν− jν

r

](−ar

kr

)
xkr
r

= (−1)n ∑
|j|�n,
jr=0

∑
|k|=n,
k�j

[
r−1

∏
ν=1

(−aν
jν

)(−aν − jν
kν − jν

)
(xν − xr) jν xkν− jν

r

](−ar

kr

)
xkr
r .
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Since jr = 0 we have(
n+ |a|−1

n

)
Fn (x;a)

= (−1)n ∑
|j|�n,
jr=0

[
r−1

∏
ν=1

(−aν
jν

)
(xν − xr)

jν

]
xn−|j|
r ∑

|k|=n−|j|

[
r−1

∏
ν=1

(−aν − jν
kν

)](−ar

kr

)
.

The Vandermonde formula tells us that the inner sum is equal to
(−|a|−| j|

n−|j|
)
. Further-

more, we have

(−1)n
(−|a|− | j|

n−|j|
)(

n+ |a|−1
n

)−1

=
(−|a|− |j|

n−|j|
)(−|a|

n

)−1

=
n!

(n−|j|)! ·
1

|a|n−|j| .

Therefore,

Fn (x;a) = ∑
|j|�n,
jr=0

[
r−1

∏
ν=1

(−aν
jν

)
(xν − xr) jν

]
xn−|j|
r

n!
(n−|j|)! ·

1

|a|n−|j|

= ∑
|j|=n

(
n
j

)[r−1

∏
ν=1

(xν − xr) jν

]
x jr
r

∏r−1
ν=1 a jν

ν

|a|n− jr

which completes the proof of Theorem 5. �
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