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FOURIER COSINE–LAPLACE GENERALIZED

CONVOLUTION INEQUALITIES AND APPLICATIONS

NGUYEN XUAN THAO AND LE XUAN HUY

(Communicated by I. Perić)

Abstract. We introduce several weighted Lp(R+) -norm inequalities and integral transform re-
lated to the generalized convolution with a weight function for the Fourier cosine and Laplace
transforms. Some applications of these inequalities to estimate the solutions of some partial
differential equations are considered. We also obtained solutions of a class of the Toeplitz plus
Hankel integro-differential equations in closed form.

1. Introduction

For the Fourier convolution (see [4])

(
f ∗

F
k
)
(x) =

∫ ∞

−∞
f (y)k(x− y)dy, x ∈ R,

Young’s theorem (see [2])
∣∣∣∣
∫ ∞

−∞

(
f ∗

F
k
)
(x).h(x)dx

∣∣∣∣ � ‖ f‖Lp(R) ‖k‖Lq(R) ‖h‖Lr(R) , (1)

here f ∈ Lp(R) , k ∈ Lq(R) , h ∈ Lr(R) , 1/p+ 1/q+ 1/r = 2, is fundamental. An
important corollary of this theorem is the so-called Young’s inequality for the Fourier
convolution

∥∥∥ f ∗
F
k
∥∥∥

Lr(R)
� ‖ f‖Lp(R) ‖k‖Lq(R) ,

1
p

+
1
q

= 1+
1
r
. (2)

Note, however, that for the typical case f ,k ∈ L2(R) , the inequalities (1) and (2) do not
hold. In [8], Saitoh introduced a weighted Lp(R, |ρ j|) ( j = 1,2, p > 1) inequality for
the Fourier convolution∥∥∥∥(

(F1ρ1)∗
F
(F2ρ2)

)(
ρ1 ∗

F
ρ2

) 1
p−1

∥∥∥∥
Lp(R)

� ||F1||Lp(R+,|ρ1|)||F2||Lp(R,|ρ2|),
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where Fj ∈ Lp(R, |ρ j|) . The reverse weighted Lp -norm inequality for the Fourier con-
volution has also been studied in [9].

For the Laplace convolution (see [4])

(
f ∗

L
k
)
(x) =

∫ x

0
f (y)k(x− y)dy, x ∈ R+.

In [6], the authors have built the Saitoh’s type inequality for this convolution

∥∥∥∥(
(F1ρ1)∗

L
(F2ρ2)

)(
ρ1 ∗

L
ρ2

) 1
p−1

∥∥∥∥
Lp(R+)

� ||F1||Lp(R+,|ρ1|)||F2||Lp(R+,|ρ2|),

where Fj ∈ Lp(R+, |ρ j|) ( j = 1,2, p > 1) . The reverse weighted Lp -norm inequality
for the Laplace convolution has also been studied and applications to inverse heat source
problems (see [10]).

In this paper we are interested in the Fourier cosine-Laplace generalized convolu-
tion. It is the generalized convolution with a weight function γ(y) = e−μy(μ > 0) of
two functions f and g for the Fourier cosine and Laplace transforms (see [7])

(
f

γ∗ k
)
(x) =

1
π

∫
R2

+

θ (x,u,v) f (u)k(v)dudv, x > 0, (3)

where

θ (x,u,v) =
v+ μ

(v+ μ)2 +(x−u)2 +
v+ μ

(v+ μ)2 +(x+u)2 . (4)

For f and k in L1(R+) , the following factorization property holds

Fc
(
f

γ∗ k
)
(y) = e−μy(Fc f

)
(y)

(
L k

)
(y), ∀y > 0, (5)

here, let Fc,L denote the Fourier cosine and the Laplace transforms

(
Fc f

)
(y) =

√
2
π

∫ ∞

0
f (x)cosxydx,

(
L k

)
(y) =

∫ ∞

0
k(x)e−xydx, y > 0.

We obtain several inequalities related to the Fourier cosine-Laplace generalized convo-
lution (3) and apply them to estimate the solutions of some partial differential equations.
However, we are interested in integral transform related to this convolution and apply
solve a class of the Toeplitz plus Hankel integro-differential equations.
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2. Fourier cosine-Laplace generalized convolution inequalities

In this section, we will study the Fourier cosine-Laplace generalized convolution
(3) and related inequalities.

THEOREM 1. Suppose that f ∈ L2(R+) and k ∈ L1(R+) . Then, the generalized

convolution f
γ∗ k ∈ L2(R+) satisfy the Parseval’s type identity

(
f

γ∗ k
)
(x) = Fc

(
e−μy(Fc f

)(
L k

))
(x), ∀x > 0, (6)

and factorization identity (5).

Proof. From (4), we have

|θ (x,u,v)| � 2
v+ μ

� 2
μ

, (7)

and ∫ ∞

0
|θ (x,u,v)|du =

∫ x

−∞

v+ μ
(v+ μ)2 + t2

dt +
∫ ∞

x

v+ μ
(v+ μ)2 + t2

dt

=
∫ ∞

−∞

v+ μ
(v+ μ)2 + t2

dt = π . (8)

From (7), (8) and using the Hölder theorem, we have

∣∣∣( f
γ∗ k

)
(x)

∣∣∣ � 1
π

[∫
R2

+

| f (u)|2∣∣θ (x,u,v)
∣∣|k(v)|dudv

]1/2[∫
R2

+

|k(v)|∣∣θ (x,u,v)
∣∣dudv

]1/2

� 1
π

[∫
R

2
+

| f (u)|2|k(v)| 2
μ

dudv
]1/2[∫ ∞

0
|k(v)|πdv

]1/2

=
( 2

πμ

)1/2‖ f‖L2(R+)‖k‖L1(R+) < ∞.

Therefore convolution (3) exist and is continuous.

By using
∫ ∞

0
e−vx cosxydx =

v
v2 + y2 (v > 0) (formula (2.13.5), p. 91, [5]) and

the Fubini theorem, we obtain that

(
f

γ∗ k
)
(x) =

1
π

∫
R2

+

[∫ ∞

0
e−(v+μ)y(cos(x−u)y+ cos(x+u)y

)
dy

]
f (u)k(v)dudv

=
2
π

∫
R2

+

[∫ ∞

0
e−(v+μ)y(cosyx.cosyu)dy

]
f (u)k(v)dudv

=
2
π

∫
R2

+

[∫ ∞

0
f (u)cosyudu

∫ ∞

0
k(v)e−vydv

]
cosxydy

=

√
2
π

∫ ∞

0
e−μy(Fc f

)
(y)

(
L k

)
(y)cosxydy = Fc

(
e−μy(Fc f

)(
L k

))
(x).
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On the other hand, from f ∈ L2(R+) we get Fc f ∈ L2(R+) , and since k ∈ L1(R+) we
get

∣∣(L k
)
(y)

∣∣ �
∫ ∞
0 |e−vyk(v)|dv �

∫ ∞
0 |k(v)|dv < ∞(y > 0) , that is, L k is bounded.

Therefore e−μy
(
Fc f

)(
L k

) ∈ L2(R+) and Fc

(
e−μy

(
Fc f

)(
L k

)) ∈ L2(R+) . Thus, the

convolution f
γ∗ k ∈ L2(R+ , and the Parseval’s type identity (6) holds. �

THEOREM 2. (Young’s type theorem) Let p,q,r > 1 such that 1/p+1/q+1/r=
2 , and f ∈ Lp(R+) , k ∈ Lq(R+,(x+ μ)q−1) (μ > 0) , h ∈ Lr(R+) , then

∣∣∣∣
∫ ∞

0

(
f

γ∗ k
)
(x)h(x)dx

∣∣∣∣ � μ
1−q
q ‖ f‖Lp(R+) ‖k‖Lq(R+,(x+μ)q−1) ‖h‖Lr(R+) .

Proof. From (4), we have

∫ ∞

0

∣∣θ (x,u,v)
∣∣dv

v+ μ
� 2

∫ ∞

0

dv
(v+ μ)2 � 2

∫ ∞

0

dv
v2 + μ2 =

π
μ

. (9)

Let p1,q1,r1 be the conjugate exponentials of p,q,r , respectively, it means

1
p

+
1
p1

= 1,
1
q

+
1
q1

= 1,
1
r

+
1
r1

= 1.

Then it is obviously that 1/p1 +1/q1 +1/r1 = 1. Put

U(x,u,v) = |k(v)|
q
p1 |v+ μ |

q−1
p1 |h(x)| r

p1 |θ (x,u,v)| 1
p1 ,

V (x,u,v) = | f (u)|
p

q1 |h(x)| r
q1

∣∣∣θ (x,u,v)
v+ μ

∣∣∣
1
q1 ,

W (x,u,v) = | f (u)|
p
r1 |k(v)|

q
r1 |v+ μ |

q−1
r1 |θ (x,u,v)| 1

r1 .

We have

(
UVW

)
(x,u,v) = | f (u)||k(v)||h(x)| |θ (x,u,v)| . (10)

On the other hand, by using (8) we have

‖U‖p1
Lp1(R3

+)
=

∫
R

3
+

|k(v)|q|v+ μ |q−1|h(x)|r |θ (x,u,v)|dudvdx (11)

� π
∫ ∞

0
|k(v)|q|v+ μ |q−1dv

∫ ∞

0
|h(x)|rdx

= π‖k‖q
Lq(R+,(x+μ)q−1)‖h‖r

Lr(R+),

‖W‖r1
Lr1 (R3

+)
=

∫
R

3
+

| f (u)|p|k(v)|q|v+ μ |q−1 |θ (x,u,v)|dudvdx (12)

� π‖ f‖p
Lp(R+)‖k‖q

Lq(R+,(x+μ)q−1).
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By using (9), we have

‖V‖q1
Lq1 (R3

+)
=

∫
R

3
+

| f (u)|p|h(x)|r
∣∣∣θ (x,u,v)

v+ μ

∣∣∣dudvdx � π
μ
‖ f‖p

Lp(R+
‖h‖r

Lr(R+). (13)

From (11), (12) and (13), we have

‖U‖Lp1(R3
+)‖V‖Lq1 (R3

+)‖W‖Lr1 (R3
+) � πμ− 1

q1 ‖ f‖Lp(R+)‖k‖Lq(R+,(x+μ)q−1)‖h‖Lr(R+).

(14)

From (10) and (14), by the three-function from of Hölder inequality we have

∣∣∣∣
∫ ∞

0

(
f

γ∗ k
)
(x)h(x)dx

∣∣∣∣ � 1
π

∫
R

3
+

| f (u)||k(v)|h(x)| |θ (x,u,v)|dudvdx

=
1
π

∫
R

3
+

U(x,u,v)V (x,u,v)W (x,u,v)dudvdx

� 1
π
‖U‖Lp1(R3

+)‖V‖Lq1 (R3
+)‖W‖Lr1 (R3

+)

� μ− 1
q1 ‖ f‖Lp(R+)‖k‖Lq(R+,(x+μ)q−1)‖h‖Lr(R+)

= μ
1−q
q ‖ f‖Lp(R+)‖k‖Lq(R+,(x+μ)q−1)‖h‖Lr(R+). �

THEOREM 3. (Saitoh’s type theorem) For two positive functions ρ j ( j = 1,2) ,
the following Lp(R+)-weighted inequality for the Fourier cosine-Laplace generalized
convolution holds for any Fj ∈ Lp(R+,ρ j) (p > 1)

∥∥∥∥(
(F1ρ1)

γ∗ (F2ρ2)
)(

ρ1
γ∗ρ2

) 1
p−1

∥∥∥∥
Lp(R+)

� ||F1||Lp(R+,ρ1)||F2||Lp(R+,ρ2). (15)

Proof. By raising the left-hand side of (15) to power p we obtain

∥∥∥∥(
(F1ρ1)

γ∗ (F2ρ2)
)(

ρ1
γ∗ρ2

) 1
p−1

∥∥∥∥
p

Lp(R+)
(16)

=
1
π

∫ ∞

0

{∣∣∣
∫

R2
+

θ (x,u,v)(F1ρ1)(u)(F2ρ2)(v)dudv
∣∣∣p

×
∣∣∣
∫

R2
+

θ (x,u,v)ρ1(u)ρ2(v)dudv
∣∣∣1−p}

dx.
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On the other hand, ussing Hölder inequality for q is the exponential conjugate to p , we
have ∣∣∣∣

∫
R2

+

θ (x,u,v)(F1ρ1)(u)(F2ρ2)(v)dudv

∣∣∣∣ (17)

�
(∫

R2
+

∣∣θ (x,u,v)
∣∣|F1(u)|pρ1(u)|F2(v)|pρ2(v)dudv

)1/p

×
(∫

R
2
+

∣∣θ (x,u,v)
∣∣ρ1(u)ρ2(v)dudv

)1/q

.

From (16) and (17), we have
∥∥∥∥(

(F1ρ1)
γ∗ (F2ρ2)

)(
ρ1

γ∗ρ2
) 1

p−1
∥∥∥∥

p

Lp(R+)

� 1
π

∫ ∞

0

[(∫
R2

+

|θ (x,u,v)| |F1(u)|p ρ1(u) |F2(v)|p ρ2(v)dudv

)

×
(∫

R2
+

|θ (x,u,v)|ρ1(u)ρ2(v)dudv

) p
q
(∫

R2
+

|θ (x,u,v)|ρ1(u)ρ2(v)dudv

)1−p ]
dx

=
1
π

∫
R

3
+

|θ (x,u,v)| |F1(u)|p ρ1(u) |F2(v)|p ρ2(v)dudvdx

� 1
π

∫ ∞

0
|F1(u)|p ρ1(u)du

∫ ∞

0
|F2(v)|p ρ2(v)dv

∫ ∞

0
|θ (x,u,v)|dx

� ‖F1‖p
Lp(R+,ρ1)

‖F2‖p
Lp(R+,ρ2)

.

Therefore we obtain (15). �
Note, in particular, for ρ1 = 1 and ρ2 = ρ ∈ L1(R+) , the inequality (15) takes the

form
∥∥∥F1

γ∗ (F2ρ)
∥∥∥

Lp(R+)
� ‖ρ‖1− 1

p

L1(R+) ‖F1‖Lp(R+) ‖F2‖Lp(R+,ρ) . (18)

THEOREM 4. Let F1 and F2 be positive functions satisfying

0 < m
1
p
1 � F1(x) � M

1
p
1 < ∞, 0 < m

1
p
2 � F2(x) � M

1
p
2 < ∞, p > 1, x ∈ R+. (19)

Then for any positive functions ρ1 and ρ2 we have the reverse Lp(R+)-weighted con-
volution inequality

∥∥∥∥(
(F1ρ1)

γ∗ (F2ρ2)
)(

ρ1
γ∗ρ2

) 1
p−1

∥∥∥∥
Lp(R+)

� π
1
p

[
Ap,q

( m1m2

M1M2

)]−1 ‖F1‖Lp(R+,ρ1) ‖F2‖Lp(R+ ,ρ2) , (20)



FOURIER COSINE-LAPLACE GENERALIZED CONVOLUTION INEQUALITIES 187

here, Ap,q(t) = p−
1
p q−

1
q t−

1
pq (1− t)(1− t

1
p )−

1
p (1− t

1
q )−

1
q . Inequality (20) and others

should be understood in the sense that if the left hand side is finite, then so is the right
hand side, and in this case the inequality holds.

Proof. With θ is defined by (4), let

f (u,v) = θ (x,u,v)F p
1 (u)ρ1(u)Fp

2 (v)ρ2(v), g(u,v) = θ (x,u,v)ρ1(u)ρ2(v).

Then condition (19) implies

m1m2 � f (u,v)
g(u,v)

� M1M2, u,v ∈ R+.

Hence, one can apply the reverse Hölder inequality for f and g to get
(∫

R2
+

θ (x,u,v)F p
1 (u)ρ1(u)Fp

2 (v)ρ2(v)dudv
) 1

p
(∫

R2
+

θ (x,u,v)ρ1(u)ρ2(v)dudv
) 1

q

� Ap,q

( m1m2

M1M2

)∫
R2

+

θ (x,u,v)F1(u)F2(v)ρ1(u)ρ2(v)dudv.

Hence, ∫
R2

+

θ (x,u,v)Fp
1 (u)ρ1(u)F p

2 (v)ρ2(v)dudv

�
[
Ap,q

( m1m2

M1M2

)]p(∫
R2

+

θ (x,u,v)F1(u)F2(v)ρ1(u)ρ2(v)dudv
)p

×
(∫

R2
+

θ (x,u,v)ρ1(u)ρ2(v)dudv
)p−1

. (21)

By using (8) and taking integration of both sides of (21) with respect to x from 0 to ∞
we obtain the inequality

π
∫

R2
+

F p
1 (u)ρ1(u)F p

2 (v)ρ2(v)dudv

�
[
Ap,q

( m1m2

M1M2

)]p ∫ ∞

0

[(∫
R2

+

θ (x,u,v)F1(u)F2(v)ρ1(u)ρ2(v)dudv
)p

×
(∫

R2
+

θ (x,u,v)ρ1(u)ρ2(v)dudv
)p−1]

dx. (22)

Raising both sides of the inequality (22) to power 1
p , we have

π
1
p

(∫ ∞

0
F p

1 (u)ρ1(u)du
) 1

p
(∫ ∞

0
F p

2 (v)ρ2(v)dv
) 1

p

� Ap,q

( m1m2

M1M2

){∫ ∞

0

[(∫
R2

+

θ (x,u,v)(F1ρ1)(u)(F2ρ2)(v)dudv
)p

×
(∫

R2
+

θ (x,u,v)ρ1(u)ρ2(v)dudv
)p−1]

dx
} 1

p
.

Therefore the inequality (20). �
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3. Fourier cosine-Laplace generalized convolution transform

In this section, we will study the integral transform which related Fourier cosine-
Laplace generalized convolution (3), namely, the transform of the form

f (x) �→ g(x) =
(
Tk1,k2 f

)
(x) =

(
1− d2

dx2

){(
f

γ∗ k1
)
(x)+

(
f ∗

Fc
k2

)
(x)

}
. (23)

Where f ∗
Fc

k2 is the Fourier cosine convolution of two functions f and k2 (see [4])

(
f ∗

Fc
k2

)
(x) =

1√
2π

∫ ∞

0
f (y)

[
k2(|x− y|)+ k2(x+ y)

]
dy, x > 0,

this convolution satisfy the following Parseval’s type identity (see [11])
(
f ∗

Fc
k2

)
(x) = Fc

((
Fc f

)(
Fck2

))
(x), ∀x > 0, f ,k2 ∈ L2(R+). (24)

THEOREM 5. (Watson’s type theorem) Suppose that k1 ∈L1(R+) and k2 ∈L2(R+) ,
then necessary and sufficient condition to ensure that the transform (23) is unitary on
L2(R+) is that

∣∣e−μy(L k1
)
(y)+

(
Fck2

)
(y)

∣∣ =
1

1+ y2 . (25)

Moreover, the inverse transform has the form

f (x) =
(
1− d2

dx2

){(
g

γ∗ k1
)
(x)+

(
g ∗

Fc
k2

)
(x)

}
. (26)

Proof. Necessity. Assume that k1 and k2 satisfy condition (25). We known that
h(y) , yh(y) , y2h(y) ∈ L2(R) if and only if

(
Fh

)
(x) , d

dx

(
Fh

)
(x) , d2

dx2

(
Fh

)
(x) ∈ L2(R)

(Theorem 68, p. 92, [1]). Moreover,

d2

dx2

(
Fh

)
(x) =

1√
2π

d2

dx2

∫ ∞

−∞
h(y)e−ixydy = F

(
(−iy)2h(y)

)
(x).

Specially, if h is an even or odd function such that h(y),y2h(y) ∈ L2(R+) , then the
following equality holds

(
1− d2

dx2

)(
Fch

)
(x) = Fc

(
(1+ y2)h(y)

)
(x). (27)

From condition (25), therefore e−μy
(
L k1

)
(y)+

(
Fck2

)
(y) is bounded, combining with

f ∈ L2(R+) , hence (1+y2)
[
e−μy

(
L k1

)
(y)+

(
Fck2

)
(y)

](
F{ c

s} f
)
(y)∈ L2(R+) . Using

Parseval’s type properties (6), (24) and formula (27), we have

g(x) =
(
1− d2

dx2

)
Fc

[
e−μy(Fc f

)
(y)

(
L k1

)
(y)+

(
Fc f

)
(y)

(
Fck2

)
(y)

]
(x) (28)

= Fc

[
(1+ y2)

(
e−μy(L k1

)
(y)+ (Fck2)(y)

)(
Fc f

)
(y)

]
(x).
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Therefore the Parseval identity ‖ f‖L2(R+) = ‖Fc f‖L2(R+) and condition (25) gives

‖g‖L2(R+) =
∥∥(1+ y2)

[
e−μy(L k1

)
(y)+

(
Fck2

)
(y)

](
Fc f

)
(y)

∥∥
L2(R+)

=
∥∥(

Fc f
)
(y)

∥∥
L2(R+) = ‖ f‖L2(R+).

It shows that the transform (23) is isometric.
On the other hand, since

(1+ y2)
[
e−μy(L k1

)
(y)+

(
Fck2

)
(y)

](
Fc f

)
(y) ∈ L2(R+),

we have

(
Fcg

)
(y) = (1+ y2)

[
e−μy(L k1

)
(y)+

(
Fck2

)
(y)

](
Fc f

)
(y).

Using condition (25), we have

(
Fc f

)
(y) = (1+ y2)

[
e−μy(L k1

)
(y)+

(
Fck2

)
(y)

](
Fcg

)
(y).

Again, condition (25) shows that

(1+ y2)
[
e−μy(L k1

)
(y)+

(
Fck2

)
(y)

](
Fcg

)
(y) ∈ L2(R+).

By using (27), we have

f (x) = Fc

[
(1+ y2)

(
e−μy(L k1

)
(y)+

(
Fck2

)
(y)

)(
Fcg

)
(y)

]
(x)

=
(
1− d2

dx2

)
Fc

[
e−μy(Fcg

)
(y)

(
L k1

)
(y)+

(
Fcg

)
(y)

(
Fck2

)
(y)

]
(x)

=
(
1− d2

dx2

)[(
g

γ∗ k1
)
c(x)+

(
g ∗

Fc
k2

)
(x)

]
.

Thus, the transform (23) is unitary on L2(R+) and the inverse transform have the form
(26).

Sufficiency. Assume that, the transform (23) is unitary on L2(R+) . Then the
Parseval identity for Fourier cosine transform yield

‖g‖L2(R+) =
∥∥(1+ y2)

[
e−μy(L k1

)
(y)+

(
Fck2

)
(y)

](
Fc f

)
(y)

∥∥
L2(R+)

=
∥∥(

Fc f
)
(y)

∥∥
L2(R+) = ‖ f‖L2(R+).

Therefore the operator Mθ [ f ](y) = θ (y) f (y) , here θ (y) = (1+ y2)
[
e−μy

(
L k1

)
(y)+(

Fck2
)
(y)

]
is unitary on L2(R+) , or equivalent, the condition (25) holds. �

REMARK 1. Suppose that k1 ∈ L1(R+) and k2 ∈ L2(R+) such that

0 < C1 �
∣∣(1+ y2)

[
e−μy(L k1

)
(y)+

(
Fck2

)
(y)

]∣∣ � C2 < ∞, (29)
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then Tk1,k2 defines a isomophirm on L2(R+) , and the following estimation hold

C1‖ f‖L2(R+) � ‖g‖L2(R+) � C2‖ f‖L2(R+). (30)

Moreover, the inverse transform has the form

f (x) =
(
1− d2

dx2

)(
g ∗

Fc
k
)
(x), (31)

here k ∈ L2(R+) such that

(
Fck

)
(y) =

1

(1+ y2)2
[
e−μy

(
L k1

)
(y)+

(
Fck2

)
(y)

] . (32)

Proof. From (28) and (29), we have

C1
∥∥(

Fc f
)
(y)

∥∥
L2(R+) �

∥∥(1+ y2)
[
e−μy(L k1

)
(y)+

(
Fck2

)
(y)

](
Fc f

)
(y)

∥∥
L2(R+)

� C2
∥∥(

Fc f
)
(y)

∥∥
L2(R+) ,

therefore estimation (30) holds.
Besides, from condition (29), we get

1
C2(1+ y2)

� 1

(1+ y2)2
[
e−μy

(
L k1

)
(y)+

(
Fck2

)
(y)

]
� 1

C1(1+ y2)
.

Therefore

1

(1+ y2)2
[
e−μy

(
L k1

)
(y)+

(
Fck2

)
(y)

] ∈ L2(R+),

there exists k ∈ L2(R+) satisfy the condition (32). From (28) and (32) we have

(
Fc f

)
(y) =

1

(1+ y2)
[
e−μy

(
L k1

)
(y)+

(
Fck2

)
(y)

](
Fcg

)
(y)

= (1+ y2)
1

(1+ y2)2
[
e−μy

(
L k1

)
(y)+

(
Fck2

)
(y)

](
Fcg

)
(y)

= (1+ y2)
(
Fck

)
(y)

(
Fcg

)
(y)

= (1+ y2)Fc
(
g ∗

Fc
k
)
(y).

Thus, the inverse transform (31) holds. �
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4. Applications

Let us consider the Laplace equation in the first quadrant

uxx +utt = 0, 0 < x, t < ∞, (33)

with the boundary conditions

u(x,0) =
( a

a2 + τ2

γ∗ (hρ)(τ)
)
(x), 0 < x < ∞, (34)

ux(0,t) = 0, ∀t > 0, (35)

ux(x,t) → 0 as x → ∞, t → ∞, (36)

here h and ρ are given functions such that h ∈ L1(R+,ρ)∩Lp(R+,ρ) .
We introduce the Fourier cosine transform with respect to x of a function of two

variables u(x, t)

(Fcu)(y,t) =

√
2
π

∫ ∞

0
u(x,t)cosxydx. (37)

Applying the Fourier cosine transform (37) to both sides of (33), using conditions (34)–
(36), we have

d2

dt2
(Fcu)(y,t)− y2(Fcu)(y,t) = 0, (38)

with the boundary condition

(Fcu)(y,0) = e−μy
(√

π
2

e−ay
)

L (hρ)(y). (39)

The solution of the equation (38) with condition (39) is of the form

(Fcu)(y,t) = (Fcu)(y,0)e−yt .

Using formula (1.4.1) in [3] and the factorization property (5), we have

(Fcu)(y,t) = e−μy
(√

π
2

e−y(t+a)
)

L (hρ)(y)

= e−μyFc

(
t +a

(t +a)2 + τ2

)
(y,t)L (hρ)(y)

= Fc

(
t +a

(t +a)2 + τ2

γ∗ (hρ)(τ)
)

(y,t).

Therefore

u(x,t) =
(

t +a
(t +a)2 + τ2

γ∗ (hρ)(τ)
)

(x,t).
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For each t > 0, using inequality (18) we obtain the following estimation

‖u‖Lp(R+) � ‖ρ‖1− 1
p

L1(R+)

∥∥∥∥ t +a
(t +a)2 + τ2

∥∥∥∥
Lp(R+)

‖h‖Lp(R+,ρ)

=
Γ(p− 1

2 )
Γ(p)

‖ρ‖1− 1
p

L1(R+)‖h‖Lp(R+,ρ)(t +a)1−p.

Here, Γ(.) denotes the Gamma function Γ(s) =
∫ ∞
0 ts−1e−tdt.

Consider the initial value problem for the one-dimensional diffusion equation with
no sources or sinks

ut = kuxx, 0 < x < ∞, t > 0. (40)

with the boundary conditions

ux(0,t) = 0, ∀t > 0, (41)

ux(x,t) → 0 as x → ∞, (42)

u(x,t) → 0 as x → ∞, (43)

and the initial condition

u(x,0) =
(

e−
y2
4a√
a

γ∗ (hρ)(τ)
)

(x), 0 < x < ∞, (44)

where h, ρ are given functions such that h ∈ L1(R+,ρ)∩Lp(R+,ρ) , and k > 0 is a
diffusivity constant.

Again, by applying the Fourier cosine transform (37) with respect to x to both
sides of equation (40) and using conditions (41)–(44) we obtain

d
dt

(Fcu)(y,t) = −ky2(Fcu)(y,t), (45)

with the initial condition

(Fcu)(y,0) = e−μy
(√

π
2

e−ay2
)

L (hρ)(y). (46)

The solution of the equation (45) with condition (46) is of the form

(Fcu)(y,t) = (Fcu)(y,0)e−ky2t .

Using formula (1.4.11) in [3] and the factorization property (5), we have

(Fcu)(y,t) = e−μy
(√

π
2

e−y2(kt+a)
)

L (hρ)(y)

= e−μyFc

(
e
− τ2

4(kt+a)
√

kt +a

)
(y,t)L (hρ)(y)

= Fc

(
e
− τ2

4(kt+a)
√

kt +a

γ∗ (hρ)(τ)
)

(y,t).
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Therefore

u(x,t) =
(

e
− τ2

4(kt+a)
√

kt +a

γ∗ (hρ)(τ)
)

(x, t).

For each t > 0, using inequality (18) we obtain the following estimation

‖u‖Lp(R+) � ‖ρ‖1− 1
p

L1(R+)

∥∥∥∥e
− τ2

4(kt+a)
√

kt +a

∥∥∥∥
Lp(R+)

‖h‖Lp(R+,ρ)

=
(

π√
p(
√

kt +a)p−1

) 1
p

‖ρ‖1− 1
p

L1(R+)‖h‖Lp(R+,ρ).

Consider the Toeplitz plus Hankel integro-differential equation

f (x)+ f ′′(x)+
(
1− d2

dx2

)∫ ∞

0
f (u)[k(x−u)+ k(x+u)]du = h(x), x > 0, (47)

f ′(0) = f (0) = 0,

where

k(t) =
1
π

∫ ∞

0

v+ μ
(v+ μ)2 + t2

ϕ(v)dv+
1√
2π

ψ(|t|), μ > 0,

and ϕ ,ψ ,h are given functions and f is unknown function.

THEOREM 6. Suppose ϕ , ϕ” ∈ L1(R+) , ϕ ′(0) = ϕ(0) = 0 , ψ ,h ∈ L2(R+) and
the following condition holds

sup
y∈R+

∣∣∣[1+ e−μy(L ϕ
)
(y)+

(
Fcψ

)
(y)

]−1
∣∣∣ < ∞. (48)

Then equation (47) has unique solution in L2(R+) . Moreover, the solution can be
presented in closed form as follows

f (x) =
√

π
2

(
h ∗

Fc
e−t

)
(x)−

√
π
2

((
h ∗

Fc
e−t) ∗

Fc
q
)
(x), (49)

where q ∈ L2(R+) is defined by

(
Fcq

)
(y) =

e−μy
(
L ϕ

)
(y)+

(
Fcψ

)
(y)

1+ e−μy
(
L ϕ

)
(y)+

(
Fcψ

)
(y)

. (50)

Proof. The equation (47) can be rewritten in the form related to the transform (23)

f (x)+ f ′′(x)+
(
1− d2

dx2

)[(
f

γ∗ϕ
)
(x)+

(
f ∗

Fc
ψ

)
(x)

]
= h(x). (51)
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By using Parseval’s type identities (6) and (24) for the equations (51), we get

(
Fc f

)
(y)+ y2(Fc f

)
(y)

+ (1+ y2)
[
e−μy(Fc f

)
(y)

(
L ϕ

)
(y)+

(
Fc f

)
(y)

(
Fcψ

)
(y)

]
=

(
Fch

)
(y),

therefore

(
Fc f

)
(y)

[
1+ y2 +(1+ y2)

(
e−μy(L ϕ

)
(y)+

(
Fcψ

)
(y)

)]
=

(
Fch

)
(y). (52)

From condition (48) and (52), we have

(
Fc f

)
(y) =

(
Fch

)
(y)

1+ y2

[
1− e−μy

(
L ϕ

)
(y)+

(
Fcψ

)
(y)

1+ e−μy
(
L ϕ

)
(y)+

(
Fcψ

)
(y)

]
. (53)

On the other hand, from the hypothesis of this theorem and using formula (2.13.5) in
[5], we have

e−μy(L ϕ
)
(y) = e−μy 1

1+ y2 L
(
ϕ + ϕ”

)
(y)

=
√

π
2

e−μy(Fce
−t)(y)L (

ϕ + ϕ”
)
(y)

=
√

π
2

Fc
(
e−t γ∗ (ϕ + ϕ”)

)
(y).

Therefore

e−μy(L ϕ
)
(y)+

(
Fcψ

)
(y) = Fc

[√π
2

(
e−t γ∗ (ϕ + ϕ”)

)
+ ψ

]
(y) ∈ L2(R+). (54)

From (54), therefore there esixts a function q ∈ L2(R+) defined by (50). Thus, from
(53) and the hypothesis of theorem, we have

(
Fc f

)
(y) =

√
π
2

(
Fce

−t)(y)(Fch
)
(y)

[
1− (Fcq)(y)

]

=
√

π
2

Fc
(
h ∗

Fc
e−t)(y)−

√
π
2

Fc
(
h ∗

Fc
e−t)(y)(Fcq

)
(y)

=
√

π
2

Fc
(
h ∗

Fc
e−t)(y)−

√
π
2

Fc

((
h ∗

Fc
e−t) ∗

Fc
q
)
(y) ∈ L2(R+).

Therefore, we obtain solution f in L2(R+) defined by (49). �
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