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EXTENSIONS OF FEFFERMAN-STEIN MAXIMAL INEQUALITIES

WENHUA GAO AND GUOEN HU

(Communicated by L. Pick)

Abstract. Let By, ..., Bn € [0, ) and M, (logL)f be the maximal operator defined by

logL

(f17 ceey fm)(x) = SQL;I)JCII;[l H.fj“L(logL)ﬁj#Q'

In this paper, we establish the weighted bounds in terms of the Az(R™") constant for /// Lllog )P

from LV (9 R wy) x ... X LP (ISR, wp) 10 LP(1% R, i), where i, pm, 1. ndn €
(1,0), I/p=1/p1+.. +1/I7m, 1/g=1/q1 +.. +1/qm and w=(wi, ..., wy) a multiple

Ap weights. A weak type endpoint inequality for vector-valued operator /// LllogL)P is also given.

1. Introduction

We will work on R", n € N. Let M be the Hardy-Littlewood maximal operator.
The well known Fefferman-Stein maximal inequalities (see [5, Theorem 1]) tell us that
forall p,q € (1,00),
M fit oo rny S It | gas ey

and for each A >0,

[{x e R [{Mfil) i > AH S A7 A o: o

where and in the following, for g € (0, e) and numbers {a;}7_, , we denote |[{ay}|| =
(g lax|?) /4. and for a weight w and p € (1,00), LP(19;R", w) is the space defined
as

(1% R, w) = {{fitizy - I{fidlrgasmn, ) < o},

where y
p
itz = ([ IKAGOEwEa) "

We denote [[{fi}llzra;rr 1) bY [{fi}llzr(a;rry for simplicity. Anderson and John [1]
considered weighted version of Fefferman-Stein maximal inequalities. For p € (1, ),
let A, (IR") be the weight functions class of Muckenhoupt, that is,

Ap(R") = {w: wis nonnegative and locally integrable in R" and [w]4, < e},
Mathematics subject classification (2010): 42B15.

Keywords and phrases: Maximal inequality, weighted bound, dyadic grid, Lerner’s formula, sparse
operator.
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b, = sp (17 [ 0a) (15 w7 Tar)

if pe(1,00), and

with

[W]a, := sup Mw(x).

A = b

! xeR? w(x)

[w]a, is called the A, constant of w (for details of A,(IR"), see [6]). Anderson and
John [1] proved that for p, g € (1, ) and w € A,(R"),

M fi} | Lo a:rmw) Spogow LS | pa;me ) (1.1)
and for each A >0 and w € A (R"),

w({x €R": [{Mfic(0) i > A3) S A A o)

It should be pointed out that (1.1) can be obtained from the boundedness of M on
LP(R", w), see [7]. Cruz-Uribe, SFO, Martell and Pérez [3] considered the sharp
weighted bounds for vector-valued Hardy-Littlewood maximal operator, and proved
that for p, g € (1, %) and w € A,(R"),

max{%

1
5T}
KM ft @y S Wla, 7 K fi e w)

For § €[0, ), acube Q C R" and a function f with [, £ () logP (14| f(1)])dr <
o, define ||fHL(]ogL)ﬁ7Q by

. 1
Hf||L(10gL)ﬁQ=1nf{7L >0: E/Q@logﬁ <l+|JC;—y)|>dy< 1}

Let me N, By, ..., Bn € [0, ), set B = (B4, ..., Bm). Define the maximal operator
%L(logL)B by

logL (f17' 7fm _SupHHf]” logL'BJQ

05x =

Operators of this type came from the study of the commutators of multilinear Calderdén-

Zygmund operators, see [13, 15]. For the case of B; = ... = B, = 0, we denote
‘///L(logL)ﬁ by .# ; for the case of m = 1, we denote ‘///L(logL)ﬁ by My (10518 for

simplicity. The operator .# was introduced by Lerner, Ombrosi, Pérez, Torres and
Trujillo-Gonzélez [13] and plays an important role in the study of weighted estimates
for the multilinear Calderén-Zygmund operators.

DEFINITION 1.1. Let m € N, wy,...,w;,, be weights, pi,...,pm € [1,), p €
(O,oo) with 1/p=1/p1+...4+1/pm. Set w= (wi,...,wn), P=(p1,..., pm) and
— I w?/ P We say that i € A5(R™) if

e g ) )<
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-1 1-1/p _
when py =1, (ﬁwik % (x) dx) * is understood as (infg wy) !

Damidn, Lerner and Pérez [4] considered the sharp weighted bound for .# and
proved that for pi,..., p € (1,0), p € (L, 00) with 1/p=1/p;+...+1/p,, and
W= (Wi,..., wn) € Ag(R™),

1 m
12 (frs s o) loo o vy S 1915 TT 0w Hllf,HLp,Rn e (12)

i=1 Jj=

oo

where and in the following, for a weight u, [u]4.. is defined by

o= sy [ s
QCR” M

Li, Moen and Sun [14] established another sharp weighted bound for .#, which is

independent of (1.2) each other. Li et al. [14] proved that for py,...,p, € (1, ) and

W= (Wi,...,wn) € Ap(R™),

max{l e pm}

12 (frs s F)llLr e vy S W4 H 173l (g

Our main purpose in this paper is to prove the following extension of Fefferman-Stein
maximal inequalities.

THEOREM 1.2. Let m € N, By,....Bn € [0,%0), q1,...,qm € (1,00) and q €
(1/m, o) with 1/q=1/q1+ ...+ 1/qm, W= (wi, ..., wn) € Ag(R™).

() If p1,---,pm € (1,00) and p € (1/m, o) with 1/p=1/p1+ ...+ 1/pp, then

k k
H{ lOgL 1 7fm)}| LP(19;R",vi5)
mdx{i_’l,,,ﬂin}m L l_ m
S, 7 e R TIIRE s oy (3)
i=1 j=1 -

1) If w= (wi, ..., wn) € A1, 1(R™), then for each fixed A >0,

‘(f{cvvfrlr{l .XI }qu >)L}

" H{f"y,)}lqu 5 {5 )}l
U</ - ! glﬁ\< - !

- [

)Wj (yj)dyj> g , (14

here and in the following, for B =(B1,---, Bm), B| = Bi+...+ Bn.

REMARK 1.3. For the case m =1, € N and w = 1, the inequality (1.4) was
proved by Hu [8]. However, the argument used in [8] does not apply to the case f €
(0,50)\N, and does not apply to the case m > 1.
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In what follows, C always denotes a positive constant that is independent of the
main parameters involved but whose value may differ from line to line. We use the
symbol A < B to denote that there exists a positive constant C such that A < CB.
Specially, we use A <,, B to denote that there exists a positive constant C depending
only on w such that A < CB. Constant with subscript such as C;, does not change
in different occurrences. For any set E C R", yg denotes its characteristic function.
For a cube Q C R" and A € (0, ), we use £(Q) (diamQ) to denote the side length
(diamter) of Q, and AQ to denote the cube with the same center as Q and whose side
length is A times that of Q.

2. Proof of Theorem 1.2

Recall that the standard dyadic grid in R” consists of all cubes of the form
Ko, 1)"+)), kez, jez"

Denote the standard dyadic grid by % . For a fixed cube Q, denote by Z(Q) the set of
dyadic cubes with respect to Q, that is, the cubes from Z,(Q) are formed by repeating
subdivision of Q and each of descendants into 2" congruent subcubes.

As usual, by a general dyadic grid &, we mean a collection of cubes with the
following properties: (i) for any cube Q € 2, its side length ¢(Q) is of the form 2F
for some k € Z; (ii) for any cubes Q;, 0> € Z, 01N Qs € {01, 02, 0}; (iii) for each
k € Z, the cubes of side length 2% form a partition of R”.

For a dyadic grid 2 and By, ..., Bu € [0,00), let A L 5 be the operator

(logL)
defined by
-ﬂ@ logL (fl;- -,fm)(x):Qaique H”fJH logLﬁ/ Q
For the case of m =1, we denote j/@ L(logL)P by M, L(logL)B -

LEMMA 2.1. Let B € (0,00) and q € (1, ). Then for any cube Q C R",
H{kaHL(logL)ﬁ,Q}Hm S HH{fk}||lq||L(1ogL)ﬁ,Q' 2.1

Proof. For s € (0, ), we define ||A|exprs, 0 by

hmwgzmql>0wélfm(mw>hmﬁ}

We claim that if s; < 57, then

HhHexple,Q ,S ||h||expL“2,Q~ (2.2)
To see this, let A9 > 0 such that

o

w»nwgl
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then

51 1 [ (x) |\ 1
— | exp dx<e+— exp dx < 8.
2 /Q Ao 0] Jixe: ntx)1>20} ( )

Thus by Holder’s inequality,

g () e (g el a9 <2

This gives (2.2).
We now prove (2.1). By (2.2), it is easy to verify that

(19731777 ! —||Z\fk\q|| o ’|Z\fk|q||
expLP 0 expL

7B expL 7Q

On the other hand, by a standard duality argument (see [16, p.20]), we deduce that

Hgﬂfk\q/ 1o~ . ‘Q|)/Z|fk )| g( dY‘

expLP .0 gl L)ﬁQ

S su q
" el I%Lf)ﬁ leszk HexpLé7QHgHL(logL)ﬁ7Q

N lefkllq L

expL B.o

Therefore,

)

/ < . .
el g SRy 23

The inequality (2.1) is an easy consequence of inequality (2.3). In fact, by a duality
argument, we have that

[l osre 03] swp S| [ Aso)]
e HH ol 1 || <t K @
expLﬁ)Q
1
S s [ AG) e ody
e 1 || o<1 ™€
exerB.Q
< s A e ol sl
([P o expLB 0
expLﬁ,Q

S H”{fk}H”HL(logL)/},Q7

where the second inequality follows from Minkowski’s inequality, and the third inequal-
ity follows from the generalized Holder’s inequality (see [16, p. 64]). This completes
the proof of Lemma 2.1. [
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LEMMA 2.2. Let B € [0, ) and g € (1, ). Then for each A >0,

I{xeﬁ” {My0g 1 fi@) o > A}
LA g (1, AL g, o

Rn

Proof. We employ the ideas of Fefferman and Stein in [5], together with some
other tricks. By the well known one-third trick (see [10, Lemma 2.5]), we know that
there exists 3" dyadic grid %, ..., %3, such that for any f and x € R",

3n

M logLﬁf ZMQ, logLﬁf()

Thus, it suffices to prove that for each dyadic grid &,

[{x e R [{Myg Liogryp fi(0)} |0 > 1}]
§/Rn 1{ £}l Tog? (14 [{£(0) ) dx. (2.5)
Write
{xeR": My, 1 ogrys ({fi}llia) (x) > 1} = U;0;,

with {Q;} C 2 the maximal cubes such that |[[[{ i}l > 1. Obviously,

HL(logL)ﬁQ.x

1< @/, £ £ (6) Hlia Tog? (14 [[{ () Y| ) o < 27 26)

Set
[ = fr@)xmmu,0,(®), ) = fx)x0,0,(x)-

Since [[{f Hlz=(a;rm) S 1. it follows that

[ R [{My0gp S0} o > 1} S | {Mugogin i}
< 1 o

Now let £ = U;4Q;. Itis easy to verify that

L4(19;R?)

ELS Y [ A Hnlog? (1-+{ula)} 1)
J J
< [ A nlog? (14 {0} )

For each fixed k, set

; y) = Z ||fk||L(logL).B7Qj%Qj )
J
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An application of Lemma 2.1 leads to that

KA O e < 2N AHli ]| og s, 0,20, )-
J

It then follows from (2.6) that
L H =0y S 1,
and

1Ay < DI gy o,
J

< [ KA llog? (14 1AM ). @)

where in the last inequality, we have invoked the fact that |[[[{fi}[| ~1.

If we can prove that for x € R"\E,
My, 110gryp () < CiMygo01 5 17 (%), (2.8)
with C| a positive constant, then by the inequality (2.7),
[{x e RNE [{My, 10qu 20} | > 1}
<|{r e RNE s [[{Myogip i 9} > €1}
SIH{Myogryp 12 } HLq(zq,Rn) S A oo ey

S [ A Hntog? (14 1{A) )

Our desired conclusion (2.5) follows directly.

It remains to prove (2.8). For each fixed x € R"\ E and each cube I € & containing
x, note that /N Q; # O implies that Q; C I. Thus, for each A > 0, a straightforward
computation tells us that

HL(logL).B .0j

/|fk |fk( H)dy
|fk W08 (4 MO
= ——log” | 1 + == )dy
j:Q;CI/Qj A ( A )
/ ||kaL(1ogL)ﬂ,Qj logﬁ (1 4 ||ka(logL)ﬁ7Qj>
Nj:QjCI Qj A A

o O logh (1+ lfe )] )dy

||kaL(logL)ﬁ7Q_,- ||kaL(logL)ﬁ7Q_,-

1/l L10g1)8. 0, /il Logryp 0,
< Y |0 o (14— )
3 o e g 1 Wlne
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and
/\fk B0y,
”fk“Llo 0)B.0; 1 fell Z10g 8.0
j:0;CI
Therefore,

2
ka HL(logL)ﬁ I~ ka HL (logL)B,1°

This establishes (2.8) and completes the proof of Lemma 2.2. [J

Let Q C R" be a cube, and f be a measurable real-valued function on Q. ms(Q),
the median value of f on Q, is one of the real numbers such that

max{[{x € Q: f(x) >ms(Q)}|, {x € Q: f(x) <ms(Q)}} <[Q]/2.
The decreasing rearrangement of a measurable function f is defined by
S @) =inf{A>0: {xeR": |f(x)| > A} <t},1€(0,00).
For A € (0, 1) and cube Q C R”", the local mean oscillation of f is defined by

o (f: Q) = lnf((f_C)XQ)*(MQD~

The following lemma was proved by Hytonen [9], which improves original Lerner’s
formula established in [12].

LEMMA 2.3. Let f be a measurable function on R" and Qy C R" be a cube.
Then there exists a sparse family . of cubes Q € P9(Qy), such that for a. e. x € Qy,

[ (x) =ms(Qo)| 22601 (/s Q)x0()-

LEMMA 2.4. Let p € [0,) and 6 € (0,1), T be a sublinear operator which
satisfies the weak type estimate that

II{f"( )}l [RTAES )}Ilzq>

[r e R (T M > 21 S [ tog? (1+

Then for any cube I and appropriate functions { 7~ } with supp ffci,

(7 17 oNIE0)* < N i,
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Lemma 2.4 can be proved by mimicking the proof of Kolmogrov’s inequality, we
omit the details for brevity.

Let n € (0,1) and . be a family of cubes. We say that . is 1 -sparse, if for
each fixed Q € .7, there exists a measurable subset Ep C Q, such that |Eg| > 1n|Q)|
and {Ep} are pairwise disjoint. Associated with the sparse family .# and nonnegative

constants f,...,Bu € [0, =), we define the sparse operator .7 by
m,.% L(logL)P

1

%n(:,f (logL < Z H”fqulgL Bj Q ( )>q.

Qe j=

THEOREM 2.5. Let py, ..., pm € (1,0), p€(0,00) suchthat 1/p=1/p1+...+
1/ pm, and W= (w1, ..., wp) € Ag(R"™). Set 0; = wil/(p V. Let 2 be a dyadic grid
and % C 9 be a sparse family. Then for By, ..., B € [0, =),

/
max{é Ep]-

P m m
DLty ,.
|7 5 Sl en vy S Dy, " Tlolh 11 15l (e -
i

m,. L(logL)P -1

Proof. We employ the ideas used in the proof of Theorem 3.2 in [14]. As it is

well known, W € A3(R™) implies 0; = w; Vi) ¢ A,y (R"), and for rg; = 1+
J
1

211+’1|:Gj]Am s l
fo- o 1
S (x)dx q’gZ—/G-xdx
(g fy" 00 ™ <217 [

see [11]. Let pj = (1+ p;)/2. Recalling that for § > 1

1 1 5
h < {17}<—/h Say)?,
H HLlongQ max (5—1)" ‘Q| Q‘ (y)‘ y
we then have by the generalization of Holder’s inequality that

€
o
I

1656 g0 < (7 [, U17790) 107 e o
1
S lojlal <@/Q|fj\p’0j> g (@/QG/) &

S [oyJiL. inf Moy, 9)(05)o. 29)

with .

Moy fi0) = s (s [160)P700)av) .

Iax Ie@

1
=@ /Q h(y)0;(v)dy,

Let
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and define the operator d by

Es

iy (i) (6) = oV t0(s))".

Il
—

Qesj

Recall that Mg, ; is bounded on L?/ (R", o) with bound depending only on p;. Our
proof is now reduced to proving that

Py

o HHffllej(Rnﬁj). (2.10)

max

1 oo o) oy S 1]

/
14
9 p’
P

When p < ¢, the proof of (2.10) follows from the argument in [14, p. 757-759].
In fact, as in [14], we obtain that

178 oo i gy < 3 TTUAY (000" v6(Q)

ey j=1

~ [ }max{p“ p’”} H ||f]HLP] R, G

Now let p > ¢ and 7 = max{l, q%, ...,q%}. It is obvious that Tp/p’j > ¢q and so
4 —q th—q
{oj(@)} " ={oj(Eg)} " .
By the fact that
M e
101 S vie(E) ™ [ [{o)(Eg)}"
j=1

(see [14, p. 758] for details), as in the proof of Theorem B in [2], a straightforward
computation gives us that

zn ()31e00)" | v

Qe j=

s, ¥ — e /Q s oaeTT ([, 5071010510

=

0es (VW(Q))T ?Llcfi(Q)T”?
S0, 3 (g o) s 0

f[ /f, Yi Gj(yj)dyj> (0j(EQ)) " 7
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<93, { 3 (g fysomstons) ¥ vete} O
lem‘ll{Qg/ EQ /f/ Yij G/(yj)dyl> (7/(EQ)}i

AQH”JCJHL”J R, o ”g” R Vi)

We then deduce (2.10) for p > ¢g. This completes the proof of Theorem 2.5. [J

LEMMA 2.6. Let By, ..., Bu €[0,00) and W= (wy,...,wy) €A1, 1(R™). Then
foreach A >0,

A gy 1 - ) (1) > A3)
’Sﬁ</ Lo (H%%)w;(x)dx)"l’.

P Am

This Lemma can be proved by repeating the argument in the proof of Theorem
3.171in [13], see also [15]. We omit the details for brevity.

Proof of Theorem 1.2. Let & be a dyadic grid. We claim that for each Q C & and
each A € (0, 1),

O ({4, ogry - F) e )<H||H{f,}||ﬂ,l|‘1 (2.1D)

LiogL)Pi 0"

In fact, we know from Lemma 2.2 and Lemma 2.4 that for each 6 € (0, miq),

(101 L0 s G0N 0) S N s s o 12

Let o = $0pray, o0 T 1oy, @ D= [{eHla. For & € (0, :4), it
follows from Holder’s inequality that

(1 1y g N~ )’
S (ﬁ/ H{ 2,L(logL)P (f1%Q" .,f,I,C,XQ }H >3
H<|Q|/ [{m L(logL)Pi (fi20)(x }H;Z(fié >%

This, via (2.12), yields (2.11).
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We now prove (1.3). For each cube Q C Z, we deduce from Lemma 2.3, inequal-
ity (2.11) and Theorem 2.5 that

/Q“‘{{//ZQ’L(IOgL)E(fﬁ.“7fr1;')(x)}wq_m\\{///g .L(lo L)ﬁ( o LTy ¢ (Q) qvﬂ'(x)dx
S/ N CAp— sy 1A ) () Vi )

_’max{l’pl’,’m i : i p
< (W7 Tl T iz )
i=1 j=1

with . C Zy(Q) being a sparse family. As in the proof of Theorem 5.1 in [3], we then
obtain from the last inequality that

(f

{4, L(logL)P (1 »ﬁﬁ)(x)}mvw(x)dx> ’

max {1, p},...,pm} )
ST § (G H 1A -
i=1
This, along with the one-third trick (see [10, Lemma 2.5]), leads to (1.3) for the case of

g€ (1,).
It remains to prove (1.4). Again by the one-third trick, it suffices to prove that for
each dyadic 7,

VW({XERH H{ _@LlogL (ffa)ffq)(x)}||l‘l>1})

L
H (L, I Ml o8 (1 LA Hlps o)) ™. @.13)
Associated with &, define the sharp maximal function Mz, ¢ as

Mﬁ@f(x) = sup 1nf {10 / |f(y) — c|dy.

QSX ce
0€2

For & € (0, 1), let M* 5f( X) = [Mﬁ (1£19)(x )] . Repeating the argument in [17, p.

153], we can verify that if u € Au(R") and @ is a increasing function on [0, e) which
satisfies that
®(21) < CO(1), 1 € [0, ),

then

ili%d)(l)u({x ER": |h(x)| > A}) Su il;%d)(l)u({x eER": Mgéh(x) > A}),

provided that sup; .o ®(A)u({x € R" : My sh(x) > A}) < eo. On the other hand, it
follows from (2.11) that for each fixed § € (0, min{1, 1/q}),

b sy g oo ) ) S oy UL i I ) )
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This, together with Lemma 2.6, gives us that

vp({x e R": H{ 2, L(logL)P (ff‘,...,f,ﬁ)(X)}qu>1})
Ssupy()vp({xreR": M 5(”{ 2. L(logL)P (ff:- ) Hii) ) > 1})

t>0

Ssupy(O)ve({xeR": 4\ 5 5 (A s - I liam ) (x) > 1})

t>0
1

<H( LA yj>}u,qjlog'ﬁ'<1+||{fk<y,>}||,q,)w,<y,>dyj) 7

here we take y(z) = t'/"1og™"Bl(1 4++='/™)_ This leads to (2.13) and completes the
proof of Theorem 1.2. [
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