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ON THEOREMS OF MORGAN AND COWLING–PRICE

FOR SELECTED NILPOTENT LIE GROUPS

KAIS SMAOUI

(Communicated by I. Perić)

Abstract. Let G be a connected, simply connected nilpotent Lie group. For p,q ∈ [1,+∞] ,
the Lp −Lq analogue of Morgan’s theorem was proved only for two step nilpotent Lie groups.
In order to study this problem in larger subclasses, we formulate and prove a version of Lp −
Lq Morgan’s theorem on nilpotent Lie groups whose Lie algebra admits an ideal which is a
polarization for a dense subset of generic linear forms on the Lie algebra. A proof of an analogue
of Cowling-Price Theorem is also provided in the same context.

1. Introduction

A classical aspect of an uncertainty principle affirms that a non-zero integrable
function f on the real line and its Fourier transform f̂ , defined by

f̂ (y) =
∫

R

f (x)e2iπxydx, y ∈ R,

cannot both be sharply localized.
An important result making this precise is Hardy’s Theorem (see [11]):

THEOREM 1. Let a,b,c be positive real numbers and f a measurable function
on R such that:

(i) | f (x)| � ce−aπx2
, x ∈ R ,

(ii) | f̂ (y)| � ce−bπy2
, y ∈ R .

If ab > 1 , then f = 0 almost everywhere. If ab = 1 then f (x) = ke−aπx2
, for some

constant k . If ab < 1 , then there are infinitely many linearly independent functions
satisfying (i) and (ii).

Cowling and Price (see [9]) generalized this theorem by replacing point wise Gaus-
sian bounds for f by Gaussian bounds in Lp sense and in Lq sense for f̂ as well. More
precisely, they proved the following:
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THEOREM 2. Let a,b be positive real numbers and f a measurable function on
R such that:

(i) ‖eaπx2
f (x)‖p < +∞ ,

(ii) ‖ebπy2
f̂ (y)‖q < +∞ ,

where 1 � p,q � +∞ such that min(p,q) is finite. If ab � 1 , then f = 0 almost
everywhere. If ab < 1 , then there are infinitely many linearly independent functions
satisfying (i) and (ii).

With the purpose of obtaining an even more general variant of Hardy’s uncertainty
principle, Morgan’s Theorem (see [13]) involved the generalized Gaussians:

THEOREM 3. Let a,b be positive real numbers and f a measurable function on

R . Let p′ > 2 and q′ be the conjugate of p′ , that is
1
p′

+
1
q′

= 1 . Suppose that,

eaπ |x|p′ f ∈ L∞(R) and ebπ |y|q′ f̂ ∈ L∞(R).

Then f = 0 almost everywhere, if (ap′)
1
p′ (bq′)

1
q′ > 2

(
sin
(π
2

(q′ −1)
)) 1

q′ .

In [7], Ben Farah and K. Mokni provided a version referred to as the Lp − Lq

Morgan uncertainty principle and has the advantage to unify the last two principles:

THEOREM 4. Let f be a measurable function on R . Suppose for some a,b > 0 ,

p,q ∈ [1,+∞] , p′ > 2 , and q′ such that
1
p′

+
1
q′

= 1 , f satisfies

eπa|x|p′ f ∈ Lp(R) and eπb|y|q′ f̂ ∈ Lq(R).

If moreover (ap′)
1
p′ (bq′)

1
q′ > 2

(
sin
(π

2 (q′ −1)
)) 1

q′ then f = 0 almost everywhere.

Several analogues for these aforementioned results have been obtained for some
kinds of non-commutative Lie groups (see [2,4,8,16] etc.). Our attention in the first
part of this paper is focused on the study of Lp − Lq Morgan’s theorem in the setup
of connected, simply connected nilpotent Lie groups. Recently, F. Abdelmoula and
A. Baklouti produced in [1] an analogue of Lp −Lq Morgan’s theorem for connected
nilpotent Lie groups. However, their upshots hold only with an unnatural restriction
on the hypothesis. They imposed that the real numbers p,q belong to [2,+∞] . The
problem when 1 � p,q � +∞ is only solved for Heisenberg group (see [7]) and two
step nilpotent Lie groups (see [14]). For general nilpotent Lie groups the problem seems
to be subtle and delicate and the difficulties involved in this problem are considerable.

One of the aims of this paper is to formulate and prove an analogue of Lp − Lq

Morgan’s theorem when 1 � p,q � +∞ for a large subclass of nilpotent Lie groups. It
concerns Lie groups admitting an ideal b which polarizes all generic orbits. Our proof
make use of the orbit method and the Plancherel theory.
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The second part of this paper is devoted to Cowling-Price Theorem. In [15], Ray
proved an analogue of this theorem for two step nilpotent Lie groups with the assump-
tion 1 � p � +∞ , q � 2 and ab > 1. Baklouti and Ben Salah [5] treated the situation
when G is an arbitrary connected, simply connected nilpotent Lie group in the case
where p,q ∈ [2,+∞] and ab > 1. To prove the sharpness of the constant 1, Baklouti
and Thangavelu [6] provided a variant of Cowling-Price Theorem in the same context.
However, their result holds for p,q ∈ [2,+∞] . The second part of the paper aims to
investigate the sharpness of the constant 1 in Cowling-Price Theorem with the origi-
nal condition p,q ∈ [1,+∞] , for nilpotent Lie groups admitting a common polarization
ideal for all generic orbits.

2. Backgrounds

We begin this section by reviewing some useful facts and notations for nilpo-
tent Lie group. This material is quite standard, we refer the reader to [10] for details.
Throughout, g will be a n−dimensional real nilpotent Lie algebra, G will be the as-
sociated connected, and simply connected nilpotent Lie group. The exponential map
exp : g → G is a global C∞ -diffeomorphism from g into G .

2.1. The Kirillov theory

Let g∗ be the vector dual space of g . The Lie algebra g acts on g by the adjoint
representation adg , i.e.,

adg(X)Y = ad(X)Y = [X ,Y ], ∀ X , Y ∈ g.

The group G acts on g by the adjoint representation AdG , that is:

AdG(g)Y = Ad(g)Y = ead(X)Y, g = expX ∈ G, Y ∈ g,

and on g∗ by the coadjoint representation Ad∗G , i.e.

〈Ad∗G(g)l,X〉 = 〈g · l,X〉 = 〈l,AdG(g−1)X〉, g ∈ G, l ∈ g∗, X ∈ g.

The coadjoint orbit of l is the set G · l = {g · l : g ∈ G} . The unitary dual Ĝ of G
is parameterized via the Kirillov orbit method by the space of coadjoint orbits g∗/G .
A subspace b = b(l) of the Lie algebra g is called a polarization for l ∈ g∗ if b is a
maximal dimension isotropic subalgebra with respect to the skew-symmetric bilinear
form Bl defined by:

Bl(X ,Y ) = l([X ,Y ]), X ,Y ∈ g.

So we can consider the unitary character χl of B = expb associated to l defined by:

χl(exp X) = e2iπ〈l,X〉, X ∈ b.

The irreducible unitary representation πl,b = IndG
B χl is defined by letting G act on the

right and its class [πl,b] depends only on the coadjoint orbit of l . Moreover, every
irreducible unitary representation π is equivalent to an induced representation πl,b for
some l ∈ g∗ and a polarization b at l . The unitary dual Ĝ is homeomorphic to g∗/G
when these spaces are endowed with their usual topologies.
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2.2. Plancherel formula

Let B = {X1, . . . ,Xn} be a strong Malcev basis of g . Let g j = R−span{X1, . . . ,Xj} ,
j = 1, . . . ,n and g0 = {0} . Let g(l) = {X ∈ g : 〈l, [X ,g]〉 = {0} } be the stabilizer of
l ∈ g∗ in g . An index j ∈ {1, . . . ,n} is a jump index for l if

g(l)+g j 
= g(l)+g j−1.

We let
e(l) = { j : j is a jump index for l}.

This set contains exactly dim(G · l) indices, which is necessarily an even number. Even
more, there are two disjoint sets of indices S,T with S∪ T = {1, . . . ,n}, and a G
invariant Zariski open set U of g∗ (set of generic elements in the sense of Pukanszky)
such that e(l) = S for all l ∈ U . Let P f (l) denote the Pfaffian of the skew-symmetric
matrix MS(l) = (l([Xi,Xj]))i, j∈S. Then, one has that:

|P f (l)|2 = detMS(l).

Let B∗ = {X∗
1 , . . . ,X∗

n } be the basis of g∗ dual to the basis B . Let VT = R−span{X∗
i :

i ∈ T},VS = R− span{X∗
i : i ∈ S} and dl be the Lebesgue measure on VT such that the

unit cube spanned by {X∗
i : i∈ T} has volume 1. Then, W = U ∩VT is a cross section

of the generic orbits and W supports the Plancherel measure on Ĝ . Furthermore, if
dl is the Lebesgue measure on W , then dμ = |P f (l)|dl is a Plancherel measure for
Ĝ . Let dg be the Haar measure on G . For ϕ ∈ L1(G)∩L2(G) , the Plancherel formula
reads:

‖ϕ‖2
2 =

∫
G
|ϕ(g)|2dg =

∫
W
‖πl(ϕ)‖2

HSdμ(l),

where πl(ϕ) =
∫

G
ϕ(g)πl(g)dg and ‖πl(ϕ)‖HS denotes the Hilbert-Schmidt norm of

the operator πl(ϕ) .

2.3. Norm function on nilpotent Lie groups

Using the strong Malcev coordinates of the group G , we introduce a norm function
on G by setting for x = expx1X1 . . .expxnXn ∈ G, x j ∈ R :

N (x) =
√

(x2
1 + . . .+ x2

n).

The map:

R
n → G, (x1, . . . ,xn) →

n

∏
j=1

expx jXj

is a diffeomorphism and maps the Lebesgue measure on R
n to the Haar measure on G.

In this setup, we shall identify G as set with Rn. We consider the Euclidean norm of
g∗ with respect to the basis B∗, that is,

‖
n

∑
j=1

l jX
∗
j ‖ =

√
(l21 + . . .+ l2n) = ‖l‖, l j ∈ R.
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3. The Lp−Lq analogue of Morgan’s theorem

We start this section by the following definition:

DEFINITION 1. Let G = expg be a connected, simply connected nilpotent Lie
group. We say that G satisfies the ideal polarization condition if there exists an ideal b
of g which is a polarization for every l in a G-invariant dense subset of g∗ .

Let’s take all the conventions and notations of section 2. From now on, G de-
notes a nilpotent Lie group satisfying the ideal polarization condition. We assume
that the fixed ideal b = Lie(B) is a polarization for every l in the set of generic
elements U . In particular, the ideal b has to be abelian, as [b,b] is annihilated
by a dense subset of g∗ . We choose a strong Malcev basis B = {X1, . . . ,Xn} such
that b = R− span{X1, . . . ,Xm} , for some m < n . With respect to the basis B , we
will let S = { j1 < .. . < j2d} , T = {t1 < .. . < tr} denote the collection of jump and
non-jump indices respectively. Then, the index set T is included in {1, . . . ,m} and
{m+1, . . . ,n}= { jd+1 < .. . < j2d} . Let Sb = { j1 < .. . < jd} and VSb

= R−span{X∗
i :

i ∈ Sb} . Let b∗ be the vector dual space of b . Hence, b∗ = VT ⊕VSb
. As b is a po-

larization for l , the stabilizer g(l) ⊂ b . This means that the coadjoint orbit of l is
saturated in the directions X∗

m+1, . . . ,X
∗
n , i. e.

G · l ≡ G · l|b +b⊥,

where b⊥ = {ξ ∈ g∗ : 〈ξ ,b〉 ≡ 0} . Let’s make the following conventions: For any
ξ ∈ g∗ we write ξ|b for the element of g∗ such that:{ 〈ξ|b,Xj〉 = 〈ξ ,Xj〉 if 1 � j � m,

〈ξ|b,Xj〉 = 0 if m+1 � j � n.

Similarly, we identify G · l|b with a subset of g∗ . Considering the coadjoint action
of G on g∗ , we get parametrization of generic orbits in U . From Theorem 3.1.9
of [10], there is a diffeomorphism ψ : U ∩VT ×VS −→ U such that the Jacobian

determinant is identically 1. If we identify (u,λ ) =
(

∑r
k=1 ukX∗

tk ,∑
2d
h=1 λhX∗

jh

)
with

(u1, . . . ,ur,λ1, . . . ,λ2d) ∈ R
r ×R

2d , we have:

ψ(u,λ ) =
n

∑
j=1

Pj(u,λ )X∗
j ,

where:
(i) The Pj are rational, non singular on U ∩VT ×R2d .
(ii) If j = tk ,

Pj(u,λ ) = uk +Rtk(u1, . . . ,uk−1,λ1, . . . ,λc), (1)

where c is the largest index such that jc < tk . Moreover, P1(u,λ ) = u1 .
(iii) Pjh(u,λ ) = λh , 1 � h � 2d .
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Let Ub = {u|b : u∈U } . Since Pj(u,λ ) , 1 � j � m , does not depend on λd+1, . . . ,
λ2d , the map U ∩VT ×VSb

→ Ub : (u,λ1, . . . ,λd) → ψ(u,λ1, . . . ,λd ,0, . . . ,0) is a dif-
feomorphism.

On the other hand, the map γ : Rd → G given by:

γ(s) = γ(s1, . . . ,sd) = exp(s1Xm+1) . . .exp(sdXn)

is a cross-section for B \G . Let ϕ be a complex valued function defined on G . For
each fixed γ(s) , let ϕγ(s) be the function defined on B by:

ϕγ(s)(z) = ϕγ(s)(z1, . . . ,zm) = ϕ
(
zγ(s)

)
= ϕ

(
zexp(s1Xm+1) . . .exp(sdXn)

)
,

where z = exp(z1X1) . . .exp(zmXm) ∈ B . Now for φ ∈ L1(B) and μ =
m

∑
j=1

μ jX
∗
j ∈ b∗ ,

let

φ̂ (μ) =
∫

B
φ(z)χμ(z)dz =

∫
Rm

φ
(

exp(z1X1) . . .exp(zmXm)
)
e2iπ ∑m

j=1 μ j z j dz1 . . .dzm.

We now prove the following result, which is of major importance in the sequel.

LEMMA 1. For f ∈ L1(G)∩L2(G) and l ∈ W = U ∩VT ,

‖πl( f )‖2
HS =

1
|Pf(l)|

∫
Rd

∫
VSb

∣∣∣ f̂γ(s)
(
ψ(l,λ )

)∣∣∣2dλds. (2)

Proof. First of all, remark that the operator

πl( f ) =
∫

G
f (g)πl(g)dg

is a kernel operator: It is of the form

πl( f )ζ (x) =
∫

B\G
K(l,x,y)ζ (y)dẏ,

where ζ belongs to the Hilbert space of the representation πl and

K(l,x,y) =
∫

B
f (x−1zy)χl(z)dz.

The operator kernel K satisfies the covariance relation:

K(l,zx,z′y) = χl(z)χl(z′)K(l,x,y), ∀z,z′ ∈ B.
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The Hilbert-Schmidt norm of πl( f ) is given by:

‖πl( f )‖2
HS =

∫
B\G×B\G

|K(l,x,y)|2dẋdẏ

=
∫

B\G×B\G

∣∣∣∫
B

f (x−1zy)χl(z)dz
∣∣∣2dẋdẏ

=
∫

B\G×B\G

∣∣∣∫
B

f (zx−1y)χl(xzx−1)dz
∣∣∣2dẋdẏ

=
∫

B\G×B\G

∣∣∣∫
B

f (zx−1y)χx−1·l|b(z)dz
∣∣∣2dẋdẏ

=
∫

B\G×B\G

∣∣∣∫
B

f (zy)χx−1·l|b(z)dz
∣∣∣2dẋdẏ

(by substituting x−1y for y). Hence, we get that:

‖πl( f )‖2
HS =

∫
Rd

∫
B\G

∣∣∣ f̂γ(s)
(
x−1 · l|b

)∣∣∣2dẋds. (3)

Let bl = {X ∈ g : 〈l, [X ,b]〉 ≡ {0}} and S′ = {1 � j � n : g j−1 + bl 
= g j + bl} . The
maximality of b , implies that bl = b , and so the set S′ = { jd+1, . . . , j2d} . Moreover,
the jacobian determinant of the map B\G→ {l}×VSb

: ẋ → ψ−1(x−1 · l|b)) is∣∣det
(
x−1 · l|b([Xi,Xj])(i, j)∈Sb×S′

)∣∣= ∣∣det
(
l([Xi,Xj])(i, j)∈Sb×S′

)∣∣.
As b is abelian,

Pf(l)2 = det
(
l([Xi,Xj])i, j∈S

)
= det

(
(0) l([Xj,Xi]) jd+1� j� j2d , j1�i� jd

l([Xi,Xj]) j1�i� jd , jd+1� j� j2d (∗)

)

=
(

det
(
l([Xi,Xj])i∈Sb, j∈S′

))2
.

Thus, ∫
VSb

∣∣∣ f̂γ(s)(ψ(l,λ ))
∣∣∣2dλ = |Pf(l)|

∫
B\G

∣∣∣ f̂γ(s)
(
x−1 · l|b

)∣∣∣2dẋ, (4)

where dλ is the Lebesgue measure on VSb
. In view of equations (3) and (4),

‖πl( f )‖2
HS =

1
|Pf(l)|

∫
Rd

∫
VSb

∣∣∣ f̂γ(s)
(
ψ(l,λ )

)∣∣∣2dλds,

which is the desired formula. �

We shall now prove an analogue of Lp−Lq Morgan’s theorem for a large subclass
of nilpotent Lie groups.



218 KAIS SMAOUI

THEOREM 5. Let G be a connected, simply connected nilpotent Lie group. Let’s
assume that G satisfies the ideal polarization condition. Let f be a square integrable
function on G satisfying the following decay conditions:∫

G
| f (x)|peπapN (x)p′

dx < +∞, (5)

∫
W
‖πl( f )‖q

HSe
πbq‖l‖q′ |Pf(l)| q

2 dl < +∞, (6)

where a,b > 0 , p,q∈ [1,+∞] , p′ � 2 , and q′ such that
1
p′

+
1
q′

= 1 . Then f vanishes

almost everywhere whenever (ap′)
1
p′ (bq′)

1
q′ > 2

(
sin
(π

2 (q′ −1)
)) 1

q′
.

Proof. First of all, we mention that it is sufficient to consider the case where p, q
are both finite and therefore the case p = q = 1. In fact, we can choose a′ < a , b′ < b

such that (a′p′)
1
p′ (b′q′)

1
q′ > 2

(
sin
(π

2 (q′ −1)
)) 1

q′ and use Hölder’s inequality to show

that ∫
G
| f (x)|eπa′N (x)p′

dx < +∞, (7)∫
W
‖πl( f )‖HSe

πb′‖l‖q′ |Pf(l)| 1
2 dl < +∞. (8)

The mechanism of our proof basically consists in bringing the study of the function f
defined on the group G to the study of new function defined on R satisfying equivalent
conditions.

By condition (8) of our hypothesis and lemma 1, we have

+∞ >
∫

W
‖πl( f )‖HSe

πb′‖l‖q′ |Pf(l)| 1
2 dl

�
∫

W
‖πl( f )‖HSe

πb′|l1|q′ |Pf(l)| 1
2 dl

=
∫

W

(∫
Rd

∫
VSb

| f̂γ(s)
(
ψ(l,λ )

)|2dλds
) 1

2
eπb′|l1|q′dl

�
(∫

Rd

∫
VSb

(∫
W
| f̂γ(s)

(
ψ(l,λ )

)|eπb′|l1|q′dl
)2

dλds
) 1

2

(using the generalized Minkowsky inequality). Then, by substituting lk +Rtk(l,λ ) for
lk , by means of equation (1), k = 2, . . . ,r , we get that(∫

Rd

∫
VSb

(∫
W
| f̂γ(s)(l + λ )|eπb′|l1|q′dl

)2
dλds

) 1
2

< +∞,

where l + λ = ∑r
k=1 lkX∗

tk + ∑2d
h=1 λhX∗

jh
. It results that,∫

R

| f̂γ(s)(l + λ )|eπb′|l1|q′dl1 < +∞,
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for almost all l2, . . . , lr ∈ R , λ ∈ VSb
and s1, . . . ,sd ∈ R . Let Fγ(s) be the function

defined on R by:

Fγ(s)(z1) =
∫

Rm−1
fγ(s)(z1, . . . ,zm)e2iπ

(
∑r

k=2 ztk lk+∑d
h=1 z jh

λh

)
dz2 . . .dzm,

for fixed lk ∈ R, k = 2, . . . ,r , λ ∈ VSb
and s1, . . . ,sd ∈ R . The function Fγ(s) is inte-

grable and F̂γ(s)(l1) = f̂γ(s)(l + λ ) . Then obviously,∫
R

|F̂γ(s)(l1)|eπb′|l1|q′dl1 < +∞.

On the other hand,∫
R

|Fγ(s)(z1)|eπa′|z1|p′dz1 �
∫

Rm
| fγ(s)(z1, . . . ,zm)|eπa′|z1|p′dz1 . . .dzm

=
∫

Rm

∣∣∣ f(exp(z1X1) . . .exp(zmXm)γ(s)
)∣∣∣eπa′|x1|p′dz1 . . .dzm

< +∞,

by condition (7). Hence Fγ(s) vanishes almost everywhere, using Theorem 4 as (a′p′)
1
p′

(b′q′)
1
q′ > 2

(
sin
(π

2 (q′ − 1)
)) 1

q′ . In the case where p′ = 2, we use Theorem 2. This

implies that, f̂γ(s) = 0 almost everywhere, and then ‖πl( f )‖HS = 0. It follows, using
the Plancherel formula, that f = 0 almost everywhere. �

4. On the Cowling-Price Theorem

As we mention before, considerable attention have been devoted to give an inde-
pendent proof of Cowling-Price Theorem in context of nilpotent Lie groups. Never-
theless none of these works solve the sharpness problem in this theorem. For general
nilpotent Lie groups Baklouti and Thangavelu proved an analogue of Cowling-Price
Theorem with the sharpness of the constant 1 as a consequence of Miyachi’s theorem
(Theorem 2.4 in [6] ). Their result covers only the case where p,q ∈ [2,+∞] :

THEOREM 6. Let G be a connected, simply connected nilpotent Lie group and
p,q ∈ [2,+∞] such that min(p,q) < +∞ . Let f be a measurable function on G such
that, for some positive numbers a and b,∫

G
| f (x)|peπap‖x‖2

dx < +∞, (9)

∫
W
‖πl( f )‖q

HSe
πbq‖l‖2 |Pf(l)| q

2 dl < +∞. (10)

Then f is zero almost everywhere on G whenever ab � 1 .
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Here the function norm x → ‖x‖ is defined as follows: let {X1, . . . ,Xn} be a
strong Malcev basis of g and use it to define exponential coordinates on G . For

x = exp
(
x1X1 + . . .+ xnXn

) ∈ G , ‖x‖ =
√

x2
1 + . . . .+ x2

n . Now, we are going to give an
independent proof of Cowling-Price theorem for a large subclass of nilpotent Lie groups
which also shows that the constant 1 is sharp for q ∈ [1,2] . For technical reasons, we
will use the norm function N (·) instead of ‖ · ‖ .

THEOREM 7. Let G be a connected, simply connected nilpotent Lie group. Let’s
assume that G satisfies the ideal polarization condition. Let p,q ∈ [1,+∞] such that
min(p,q) < +∞ . Let f be a square integrable function on G satisfying the following
decay conditions: ∫

G
| f (x)|peπapN (x)2dx < +∞, (11)∫

W
‖πl( f )‖q

HSe
πbq‖l‖2 |Pf(l)| q

2 dl < +∞. (12)

Then:
(i) f vanishes almost everywhere if ab � 1 and 1 � q � 2 ,
(2i) f vanishes almost everywhere if ab � 1 and 2 � p,q � +∞ ,
(3i) f vanishes almost everywhere if ab > 1 , 1 � p < 2 and 2 � q � +∞ .

Before starting the proof, we give more notation and then prove a preliminary
lemma. We need a localized version of the Plancherel measure (see [3]). Let Z = expz
be the center of G and fix a non zero vector X1 of z . Let A = expa = expRX1 be the
closed connected subgroup of Z and χ = χψ , ψ ∈ RX∗

1 , be a unitary character of A .
Let A \G be the left quotient of G with A and dġ be a Haar measure on A \G . Let
1 � p′ < +∞ and Lp′(A\G,ψ) be a space of all measurable functions ϕ : G→ C such
that ϕ(zg) = χ(z)ϕ(g) for almost all g ∈ G and z ∈ A and

‖ϕ‖p′
Lp′ (A\G)

:=
∫

A\G
|ϕ(g)|p′dġ < +∞.

Let
Ĝχ = {π ∈ Ĝ : π|A = χ · I}.

Then Ĝχ is a closed subset of Ĝ , in fact it is the dual space of the convolution algebra
L1(A\G,ψ) . The convolution here is defined for ϕ and ϕ ′ in L1(A\G,ψ) by

ϕ ∗ϕ ′(ẋ) =
∫

A\G
ϕ(g)ϕ ′(g−1ẋ)dġ, ẋ ∈ A\G.

So, in this case the Plancherel formula reads: if

π(ϕ) =
∫

A\G
ϕ(g)π(g)dġ, π ∈ Ĝχ ,

then ∫
A\G

|ϕ(g)|2dġ =
∫

Ĝχ
tr π(ϕ∗ ∗ϕ)dμχ(π)
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where the measure dμχ is obtained in the following way. Let g∗ψ = ψ +a⊥ and Wψ =
W ∩g∗ψ . For ϕ ∈ L1(A\G,ψ)∩L2(A\G,ψ) we have:

‖ϕ‖L2(A\G) =
(∫

Wψ
‖πl(ϕ)‖2

HS|P f (l)|dl
) 1

2
. (13)

If 2d is the maximal dimension of coadjoint orbits in g∗ , then T has n−2d elements
and thus VT can be identified with Rn−2d . We can identify VT with RX∗

1 ⊕Rn−2d−1 .
We denote by

p∗ : VT → RX∗
1 , l → l1X

∗
1

the canonical projection, then it will be convenient to write elements l ∈ W , as (l1, l′)
where l1 ∈ p∗(W ) and l′ ∈ Wl1 = {l′ ∈ Rn−2d−1 : (l1, l′) ∈ W } . Define the function
f y on R by

f y(x1) = f
(

expx1X1

n

∏
j=2

expy jXj

)
, for all x1 ∈ R and y = (y2, . . . ,yn) ∈ R

n−1.

Then we have the following lemma.

LEMMA 2. For p � 2 , let f meet the condition (11) of Theorem 7. Then,∫
Rn−1

∣∣ f̂ y(l1)
∣∣2dy =

∫
Wl1

‖πl( f )‖2
HS|P f (l)|dl′.

Proof. Let l1 ∈ p∗(W ) and Vα(l1) =
[
l1 − 1

2α
, l1 +

1
2α

]
, α ∈ N∗ . From [12,

p. 491], one has that:∫
Rn−1

∣∣ f̂y(l1)∣∣2dy = lim
α→+∞

α
∫
Vα (l1)

∫
Wη1

|P f (η)|‖πη( f )‖2
HSdη ′dη1,

where η = (η1,η ′) and

fy(x1) = f
(

exp
(
x1X1 +

n

∑
j=2

y jXj
))

= f
(

expx1X1 exp
( n

∑
j=2

y jXj
))

.

Then using the localized Plancherel formula for A\G , we get∫
Rn−1

∣∣ f̂y(l1)∣∣2dy = lim
α→+∞

∫
A\G

α
∫
Vα (l1)

| fη1(g)|2dη1dġ,

where fη1(g) =
∫

R

f (exp(x1X1)g)e2iπx1η1dx1 .

We are going to use the dominated convergence theorem. We remak that

α
∫
Vα (l1)

| fη1(g)|2dη1 = | fcα (g)|2,
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for some cα ∈Vα(l1) . In addition,

| fcα (g)|2 =
∣∣∣∫

R

f (exp(x1X1)g)e2iπx1cα dx1

∣∣∣2 �
(∫

R

| f (exp(x1X1)g)|dx1

)2
.

It is therefore enough to prove that the integral

E =
∫

A\G

(∫
R

| f (exp(x1X1)g)|dx1

)2
dġ

converges. Using the generalized Minkowski inequality, one gets:

E �
(∫

R

(∫
A\G

| f (exp(x1X1)g)|2dġ
) 1

2
dx1

)2

=
(∫

R

(∫
Rn−1

∣∣∣ f(expx1X1

n

∏
j=2

expy jXj

)∣∣∣2dy
) 1

2
dx1

)2
.

Choose a positive r such that r < a . Cauchy-Schwarz inequality implies that the last
integral is dominated by

C1

∫
R

∫
Rn−1

e2πrx2
1

∣∣∣ f(expx1X1

n

∏
j=2

expy jXj

)∣∣∣2dydx1,

for some positive constant C1 . We then have

E � C1

∫
R

∫
Rn−1

e2π
(
(r−a)x2

1−a∑n
i=2 y2

i

)
e2πa

(
x2
1+∑n

i=2 y2
i

)∣∣∣ f(expx1X1

n

∏
j=2

expy jXj

)∣∣∣2dydx1

� C1C2

∫
R

∫
Rn−1

eπap(x2
1+∑n

j=2 y2
j )
∣∣∣ f(expx1X1

n

∏
j=2

expy jXj

)∣∣∣pdydx1 < +∞

(by Hölder inequality), for some positive constant C2 . It follows that,∫
Rn−1

∣∣ f̂y(l1)∣∣2dy =
∫

Wl1

‖πl( f )‖2
HS|P f (l)|dl′.

On the other hand,∫
Rn−1

∣∣ f̂ y(l1)
∣∣2dy =

∫
Rn−1

∣∣∣∫
R

f
(

expx1X1

n

∏
j=2

expy jXj

)
e2iπx1l1dx1

∣∣∣2dy.

Remark that

expx1X1

n

∏
j=2

expy jXj = exp
((

x1 +Q1(y)
)
X1 +

n

∑
j=2

Qj(y)Xj

)
,

where, for 1 � j � n , Qj is a polynomial function depending on y2, . . . ,yn . Further-
more, one can write

Qj(y) = y j +Q′
j(y j+1, . . . ,yn), j = 2, . . . ,n. (14)
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It results that,∫
Rn−1

∣∣ f̂ y(l1)
∣∣2dy =

∫
Rn−1

∣∣∣∫
R

f
(

exp
((

x1 +Q1(y)
)
X1 +

n

∑
j=2

Qj(y)Xj

))
e2iπx1l1dx1

∣∣∣2dy

=
∫

Rn−1

∣∣∣∫
R

f
(

exp
(
x1X1 +

n

∑
j=2

Qj(y)Xj

))
e2iπx1l1dx1

∣∣∣2dy

(by substituting x1 +Q1(y) for x1)

=
∫

Rn−1

∣∣∣∫
R

f
(

exp
(
x1X1 +

n

∑
j=2

y jXj

))
e2iπx1l1dx1

∣∣∣2dy

=
∫

Rn−1

∣∣ f̂y(l1)∣∣2dy

(by substituting Qj(y) for y j , j = 2, . . . ,n , using equation (14)). �
Proof of Theorem 7. We shall study the cases separately.
(i) We keep the same notations as in section 3. By lemma 1, the Hilbert-Schmidt

norm of πl( f ) is given by:

‖πl( f )‖2
HS =

1
|Pf(l)|

∫
Rd

∫
VSb

∣∣∣ f̂γ(s)(ψ(l,λ ))
∣∣∣2dλds. (15)

From condition (12),

+∞ >

∫
W
‖πl( f )‖q

HSe
πbq‖l‖2 |Pf(l)| q

2 dl

�
∫

W
‖πl( f )‖q

HSe
πbql21 |Pf(l)| q

2 dl

=
∫

W

(∫
Rd

∫
VSb

∣∣∣ f̂γ(s)(ψ(l,λ ))
∣∣∣2dλds

) q
2
eπbql21dl

�
(∫

Rd

∫
VSb

(∫
W

∣∣∣ f̂γ(s)(ψ(l,λ ))
∣∣∣qeπbql21 dl

) 2
q
dλds

) q
2

(using the generalized Minkowski inequality). Now by substituting lk +Rtk (l,λ ) for
lk , k = 2, . . . ,r , we obtain(∫

Rd

∫
VSb

(∫
W

∣∣∣ f̂γ(s)(l + λ )
∣∣∣qeπbql21dl

) 2
q
dλds

) q
2

< +∞.

It follows that, ∫
R

∣∣∣ f̂γ(s)(l + λ )
∣∣∣qeπbql21dl1 < +∞,

for almost all s1, . . . ,sd ∈ R , λ ∈VSb
and lk ∈ R, k = 2, . . . ,r . For fixed s1, . . . ,sd ∈ R ,

λ ∈ VSb
and lk ∈ R, k = 2, . . . ,r , let Fγ(s) be the function defined in section 3. Then

obviously, ∫
R

|F̂γ(s)(l1)|qeπbql21 dl1 < +∞.
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On the other hand, we have∫
R

eπ paz21 |Fγ(s)(z1)|pdz1 �
∫

R

eπ paz21
(∫

Rm−1
| fγ(s)(z1, . . . ,zm)|dz2 . . .dzm

)p
dz1

�
(∫

Rm−1

(∫
R

eπ paz21 | fγ(s)(z1, . . . ,zm)|pdz1

) 1
p
dz2 . . .dzm

)p

(using the generalized Minkowski inequality)

� C
∫

Rm
eπ paN (z1,...,zm)2 | fγ(s)(z1, . . . ,zm)|pdz1 . . .dzm

(using Hölder inequality)

= C
∫

Rm
eπ paN (z1,...,zm)2

∣∣∣ f(exp
( m

∏
k=1

zkXk
)
γ(s)

)∣∣∣pdz1 . . .dzm

< +∞,

which is finite by the first condition of theorem 7 and where C is a positive constant.
Hence Fγ(s) vanishes almost everywhere, using Theorem 2, as ab � 1. We make use
the previous arguments to achieve the proof of this case.

(2i) Suppose that p,q ∈ [2,+∞] . For fixed Schwartz function ϕ on Rn−1 , define
the function F on R by

F(x1) =
∫

Rn−1
f y(x1)ϕ(y)dy.

It is obvious that
F̂(l1) =

∫
Rn−1

f̂ y(l1)ϕ(y)dy,

and then there exists a positive constant M1 such that

|F̂(l1)|2 � M1

∫
Rn−1

| f̂ y(l1)|2dy = M1

∫
Wl1

‖πl( f )‖2
HS|P f (l)|dl′

(using lemma 2). Thus,

|F̂(l1)|q � M
q
2
1

(∫
Wl1

‖πl( f )‖2
HS|P f (l)|dl′

) q
2
.

It follows that,∫
R

eπbql21 |F̂(l1)|qdl1 � M
q
2
1

∫
R

(∫
Wl1

‖πl( f )‖2
HS|P f (l)|dl′

) q
2
eπbql21 dl1

� M
q
2
1

(∫
Wl1

(∫
R

‖πl( f )‖q
HS|P f (l)| q

2 eπbql21 dl1
) 2

q
dl′
) q

2

(using the generalized Minkowski inequality)

� M
q
2
1 M2

∫
Wl1

∫
R

‖πl( f )‖q
HS|P f (l)| q

2 eπbq(l21+‖l′‖2)dl1dl′

(using Hölder inequality)

= M
q
2
1 M2

∫
W
‖πl( f )‖q

HS|P f (l)| q
2 eπbq‖l‖2

dl < +∞,
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for some positive constant M2 . In addition, we can see that∫
R

|F(x1)|peπapx2
1dx1 �

∫
R

(∫
Rn−1

| f y(x1)||ϕ(y)|dy
)p

eπapx2
1dx1

�
(∫

Rn−1

(∫
R

| f y(x1)|peπapx2
1dx1

) 1
p |ϕ(y)|dy

)p

(using the generalized Minkowski inequality)

� M
∫

Rn−1

∫
R

| f y(x1)|peπap(x2
1+∑n

j=2 y2
j )dx1dy

(using Hölder inequality)

= M
∫

G
| f (x)|peπapN 2(x)dx1 . . .dxn < +∞,

where x = expx1X1 . . .expxnXn and M is a positive constant. We have shown finally
that F verifies the decay conditions of the Cowling-Price Theorem on R . Then for
ab � 1, F = 0 almost for every x1 ∈ R . Allowing ϕ to vary through the space of
Schwartz functions on Rn−1 , we obtain that f y = 0 almost everywhere. It follows that
f is zero almost everywhere on the group G .

(3i) In this case we can show that f = 0 almost everywhere for every p,q in
[1,+∞] . Since ab > 1 it is sufficient to consider the case where p = q = 1. The
technique of the proof of case (i) allows us to conclude. �

REMARK 1. The arguments used in Theorem 6 could be easily adapted to prove
the same result for the function norm N (·) , using the strong Malcev coordinates of
the group G . In fact, a careful reading of proofs of Theorem 2.4 and Corollary 2.6 in
[6] shows that they are valid after changing fy by f y . However, the proofs of Theorem
5 and Theorem 7 fail to be correct if we use the exponential coordinates of G and the
function norm x → ‖ · ‖ .
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