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ON GENERALIZED CESÀRO STABLE FUNCTIONS
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(Communicated by J. Pečarić)

Abstract. The notion of Cesàro stable function is generalized by introducing Cesàro mean of
type (b− 1;c) which give rise to a new concept of generalized Cesàro stable function. As an
application of generalized Cesàro stable functions we also prove for a convex function of order
λ ∈ [1/2,1) , its Cesàro mean of type (b− 1;c) is close-to-convex of order λ . Further two
conjectures are also posed in the direction of generalized Cesàro stable function. Some particular
cases of these conjectures are also discussed.

1. Preliminaries

Let b+1 > c > 0 and 0 < μ < 1. Define the sequence {ck} as

c2k = c2k+1 = dk =
Bn−k

Bn

(μ)k

k!
, k = 0,1,2, . . . (1)

where B0 = 1 and Bk = (b)k
(c)k

1+b−c
b for k � 1.

This sequence was used in [21] to obtain the positivity of the trigonometric cosine
sums.

THEOREM 1. [21] Let the coefficient {ck} be given as in (1). Then for b � c > 0
and n ∈ N

n

∑
k=0

ck coskθ > 0 for μ � μ ′
0 and 0 < θ < π ,

where μ ′
0 is the solution of

∫ 3π/2

0

cost
t1−μ

(
1− 2t

3π

)b−c

dt = 0.

The positivity of sine sums analogous to Theorem 1 is also given in [21].
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THEOREM 2. [21] Let the coefficient {ck} be given as in (1). Then for b � c > 0 ,
n ∈ N and 0 < θ < π the following inequalities hold.

2n+1

∑
k=1

ck sinkθ > 0 for μ � μ ′
0,

2n

∑
k=1

ck sinkθ > 0 for μ �
(

1+b
2c

)
− 1

2
.

Note that for b = 1 and c = 1, ck given in (1) reduces to γk given by Vietoris [23]
which are defined as follows.

γ0 = γ1 = 1 and γ2k = γ2k+1 =
(1/2)k

k!
, k � 1.

Clearly Theorem 1 and Theorem 2 are further development of the following theorem
given by Vietoris [23], by choosing ak = γk .

THEOREM 3. [23] Let {ak}∞
k=0 be a non-increasing sequence of non-negative

real numbers such that a0 > 0 and satisfying

2ka2k � (2k−1)a2k−1, k � 1,

then for all positive integers n and θ ∈ (0,π) , we have

n

∑
k=1

ak sinkθ > 0 and
n

∑
k=0

ak coskθ > 0.

Vietoris [23] observed that these two inequalities for the special case in which
ak = γk where the sequence γk is defined as above.

Several generalizations of Theorem 3 can be found in the literature. For example,
see [1, 5, 11, 21]. As an application of positive trigonometric sums, Ruscheweyh and
Salinas [19] introduced the concept of stable functions. Due to its wide significance,
the generalization of Theorem 3 is of much interest. For the recent development in this
direction see [21] and the references therein.

In [21] the applications of Theorem 1 and Theorem 2 in finding the location of ze-
ros of a class of trigonometric polynomials is discussed. Some new inequalities related
to Gegenbauer polynomials are also given in [21]. It is of interest to interpret Theorem
1 and Theorem 2 in the context of geometric function theory. For this purpose, we
recall some concepts and definitions.

The set of analytic functions in the unit disc D := {z : |z| < 1} is denoted by A
and the set of all one-to-one (univalent) functions in D is denoted by S . Let A0

and A1 are the subset of A with normalization f (0) = 0, f ′(0) = 1 and f (0) = 1
respectively.

The following subclasses of S are useful for further discussion. Let S ∗(α) ,
0 � α < 1, be the class of starlike functions of order α , f ∈A satisfying Re

(
z f ′(z)
f (z)

)
>

α and C (α) , 0 � α < 1 be the class of convex function of order α , satisfying
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Re
(
1+ z f ′′(z)

f (z)

)
> α , for z ∈ D . If we take α = 0, these two subclasses reduce to star-

like and convex class denoted by S ∗ and C respectively. The relation between these
two subclasses is given by Alexander transformation i.e. f ∈ C (α) ⇐⇒ z f ′ ∈ S ∗(α) .
One another important subclass K (α) be the class of all close-to-convex functions

f ∈ A with respect to a starlike function g(z) ∈ S ∗ if Reeιγ
(

z f ′(z)
g(z)

)
> α,γ ∈ R . For

information regarding these classes we refer to [2, 3, 12]. There is a proper inclusion to
hold among these classes.

C � S ∗ � K � S .

Further a function f ∈ A0 is called pre-starlike function of order α , 0 � α < 1 if
f (z)∗kα(z) ∈S ∗(α) . This class is denoted by R∗(α) , where kα(z) = z

(1−z)2−2α plays

the vital role as it is the extremal function of S ∗(α) and for a complete account of
details on R∗(α) see [15]. It is obvious that R∗(1/2) ≡ S ∗(1/2) and R∗(0) ≡ C .
Here the Hadamard product or convolution denoted by ∗ is defined as follows:

Let f (z) =
∞

∑
k=0

akz
k and g(z) =

∞

∑
k=0

bkz
k , z ∈ D . Then

( f ∗ g)(z) :=
∞

∑
k=0

akbkz
k, for all z ∈ D. (2)

In the present context, the following lemma is of considerable interest, which plays
important role in several problems in function theory involving duality technique.

LEMMA 1. [13, p. 54] Let F be prestarlike of order 0 � γ < 1 , G ∈ S ∗(γ) and
H is any analytic function in D . Then,

F ∗ (GH)
F ∗G

(D) ⊂ co(H(D)),

where co(A) is the convex hull of a set A.

Another tool used in the sequel is the concept of subordination denoted by ≺ . An
analytic function f is subordinate to a univalent function g , written as f (z) ≺ g(z) ,
if there exists a Schwarz function ω(z) : D → D , satisfying |ω(z)| � |z| such that
f (z) = g(ω(z)) .

To apply Theorem 1 and Theorem 2 in context of geometric function theory, we
generalize the concept of stable function by means of generalized Cesàro mean of type
(b− 1;c) . For f ∈ A1 and b+ 1 > c > 0, the n th Cesàro mean of type (b− 1;c) of

f (z) =
∞

∑
k=0

akz
k ∈ A1 is given by,

σ (b−1,c)
n ( f ,z) :=

1
Bn

n

∑
k=0

Bn−kakz
k = σ (b−1,c)

n (z)∗ f (z), n ∈ N0, (3)
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where Bk is defined as B0 = 1 and Bk = (b)k
(c)k

1+b−c
b for k � 1. For f ∈ A , we say

σ (b−1,c)
n ( f ,z) is the n th Cesàro mean of type (b − 1;c) of f . Geometric proper-

ties of σ (b−1,c)
n ( f ,z) can be found in [22] and references therein. Further sn( f ,z) =

σ (1−1,1)
n ( f ,z) was studied by Ruscheweyh with his collaborators, see [20] and ref-

erences therein. Similarly σα
n ( f ,z) = σ (1+α−1,1)

n ( f ,z) was studied by Mondal and
Swaminathan in [11].

2. Generalized Cesàro stable function

Using simple computation, (3) can be rewritten in the following form.

σ (b−1,c)
n ( f ,z) =

(
c+n−1
b+n−1

)
σ (b−1,c)

n−1 ( f ,z)+
(b− c)

Bn

n−2

∑
k=0

Bn−k−1

(c+n− k−1)
akz

k

+
1
Bn

(
1+b−2c

c

)
an−1z

n−1 +
B0

Bn
anz

n.

(4)

In the sequel, we denote fμ(z) :=
1

(1− z)μ which satisfies the following relations that

are easy to verify.

σ (b−1,c)
n ( fμ ,z)′ =

(
c+n−1
b+n−1

)
σ (b−1,c)

n−1 ( f ′μ ,z),

zσ (b−1,c)
n ( fμ ,z)′ = σ (b−1,c)

n (z f ′μ ,z),

fμ − (1− z)
μ

f ′μ ≡ 0.

Now we state the main result of this section. For the proof, we follow the procedure
similar to the one given in [20, Theorem 1.1].

THEOREM 4. For b � max{c,2c− 1} > 0 and μ ∈ [−1,1] , the following equa-
tion holds.

(1− z)μσ (b−1,c)
n ( fμ ,z) ≺ (1− z)μ . (5)

Proof. The n th Cesàro mean of type (b−1;c) of f (z) =
∞

∑
k=0

akz
k ∈A1 is given in

(3). Let h(z) := 1− (1− z)σ (b−1,c)
n ( fμ ,z)

1
μ . In order to prove our result it is sufficient

to prove |h(z)| � 1. Clearly, for μ = 0, fμ = 1 and hence |h(z)| � 1. We consider the
proof in two parts based on the range of μ . For the first part, let μ ∈ (0,1] . Consider

(1− z)σ (b−1,c)
n ( fμ ,z)′ = σ (b−1,c)

n ( fμ ,z)′ − zσ (b−1,c)
n ( fμ ,z)′

=
(

c+n−1
b+n−1

)
σ (b−1,c)

n−1 ( f ′μ ,z)−σ (b−1,c)
n (z f ′μ ,z)

(6)
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Using (4) , σ (b−1,c)
n (z f ′μ ,z) can be rewritten as,

σ (b−1,c)
n (z f ′μ ,z) =

(
c+n−1
b+n−1

)
σ (b−1,c)

n−1 (z f ′μ ,z)+
(b− c)

Bn

n−2

∑
k=0

Bn−k−1

(c+n− k−1)
kakz

k

+
(

1+b−2c
c

)
(n−1)an−1

Bn
zn−1 +

B0

Bn
nanz

n.

(7)

After substituting the value of ak = (μ)k
k! , from (6) and (7) we obtain,

(1− z)σ (b−1,c)
n ( fμ ,z)′

=
(

c+n−1
b+n−1

)
σ (b−1,c)

n−1 ((1− z) f ′μ ,z)− (b− c)
Bn

n−2

∑
k=0

Bn−k−1

(c+n− k−1)
k(μ)k

k!
zk

−
(

1+b−2c
c

)
(n−1)(μ)n−1

Bn(n−1)!
zn−1− B0

Bn

n(μ)n

n!
zn.

Therefore,

σ (b−1,c)
n ( fμ ,z)− (1− z)

μ
σ (b−1,c)

n ( fμ ,z)′

=
(

c+n−1
b+n−1

)
σ (b−1,c)

n−1

(
fμ − 1− z

μ
f ′μ ,z

)

+
(b− c)

Bn

n−2

∑
k=0

Bn−k−1

(c+n− k−1)

(
(μ)k

k!
+

k(μ)k

μk!

)
zk

+
(

1+b−2c
c

)(
(μ)n−1

(n−1)!
+

(n−1)(μ)n−1

μ(n−1)!

)
zn−1

Bn
+
(

(μ)n

n!
+

n(μ)n

μn!

)
B0

Bn
zn

=
(b− c)

Bn

n−2

∑
k=0

Bn−k−1

(c+n− k−1)
(μ +1)k

k!
zk

+
(

1+b−2c
c

)
1
Bn

(μ +1)n−1

(n−1)!
zn−1 +

(μ +1)n

n!
B0

Bn
zn

Further,

h′(z) =
[
σ (b−1,c)

n ( fμ ,z)
] 1

μ − (1− z)
μ

[
σ (b−1,c)

n ( fμ ,z)
] 1

μ −1 ·
[
σ (b−1,c)

n ( fμ ,z)
]′

=
[
σ (b−1,c)

n ( fμ ,z)
] 1

μ −1
[

σ (b−1,c)
n ( fμ ,z)− (1− z)

μ
σ (b−1,c)

n ( fμ ,z)′
]

=
[
σ (b−1,c)

n ( fμ ,z)
] 1

μ −1×
[

(b− c)
Bn

n−2

∑
k=0

Bn−k−1

(c+n− k−1)
(μ +1)k

k!
zk

+
(

1+b−2c
c

)
1
Bn

(μ +1)n−1

(n−1)!
zn−1 +

(μ +1)n

n!
B0

Bn
zn

]
.
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Clearly, fμ(z) = (1− z)−μ = 1+ μz+ μ(μ+1)
2! z2 + · · ·+ (μ)k

k! zk + · · · . Since 0 < μ � 1,
the Taylor coefficients of fμ are positive. Thus,

∣∣∣σ (b−1,c)
n ( fμ ,z)

∣∣∣� n

∑
k=0

Bn−k

Bn

(μ)k

k!
|z|k = σ (b−1,c)

n ( fμ , |z|)

We obtained that the Taylor coefficients of h′(z) are positive and from the definition of
h(z) , we have h(0) = 0 and h(1) = 1. Hence,

|h(z)| =
∣∣∣∣
∫ z

0
h′(t)dt

∣∣∣∣�
∫ 1

0
|h′(tz)|dt �

∫ 1

0
h′(t)dt = 1, z ∈ D.

Now for the second case −1 � μ < 0, the coefficients of (1−z)−μ = 1+μz+ μ(μ+1)
2! z2

+ · · ·+ (μ)k
k! zk + · · · are negative except 1 and σ (b−1,c)

n ( fμ ,z) = 1+
n

∑
k=1

Bn−k

Bn

(μ)k

k!
zk =

1−b(z) , where b(z) has positive Taylor series coefficients. Therefore,

σ (b−1,c)
n ( fμ ,z)

1
μ −1 = (1−b(z))

1
μ −1 = 1+

∞

∑
k=1

(1− 1
μ )k

k!
(b(z))k.

This implies, σ (b−1,c)
n ( fμ ,z)

1
μ −1 has non-negative Taylor series coefficients and fol-

lowing the same steps as in part one, we obtain the result. �
If we choose b = c = 1, then Theorem 4 reduces to the following corollary given

in [20].

COROLLARY 1. [20] Let sn(z, f ) denote the nth partial sum of f (z) . Then for
n ∈ N∪{0} and for μ ∈ [−1,1] ,

(1− z)μsn(z, fμ) ≺ (1− z)μ .

Important member of S ∗(λ ) are z f2−2λ = z
(1−z)2−2λ that plays the role of ex-

tremal functionwhile studying several properties such as growth, distortion etc. Clearly,
an equivalent form of Theorem 4 for λ ∈ [1/2,1) , is given as

(1− z)2−2λ σ (b−1,c)
n

(
1

(1− z)2−2λ ,z

)
≺ (1− z)2−2λ , for all z ∈ D. (8)

It seems that starlike function of order λ , λ ∈ [1/2,1) is comparably a much narrow
class but on the other side it has several interesting properties. For example, our next
theorem exhibits that (8) remains valid while in the left hand side of (8), f2−2λ is
replaced by any f ∈ S ∗(λ ) for λ ∈ [1/2,1) .

THEOREM 5. Let f ∈ S ∗(λ ) , for λ ∈ [ 1
2 ,1) , then

zσ (b−1,c)
n ( f/z,z)

f
≺ (1− z)2−2λ , for all z ∈ D. (9)
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Proof. Let f ∈S ∗(λ ) , then ∃ a unique prestarlike function F(z) of order λ such
that f (z) = z f2−2λ ∗F(z) . Then from Theorem 4,

σ (b−1,c)
n ( f2−2λ ,z)

f2−2λ
≺ 1

f2−2λ
for λ ∈ [ 1

2 ,1), z ∈ D.

Using Lemma 1,

zσ (b−1,c)
n ( f/z,z)

f
=

z(σ (b−1,c)
n (z)∗ f (z)

z )
f

=
zσ (b−1,c)

n (z)∗ f (z)
F(z)∗ z f2−2λ

=
zσ (b−1,c)

n (z)∗ (F(z)∗ z f2−2λ )
F(z)∗ z f2−2λ

=
F(z)∗ (zσ (b−1,c)

n (z)∗ z f2−2λ )
F(z)∗ z f2−2λ

=
F(z)∗

(
z f2−2λ .

σ (b−1,c)
n ( f2−2λ ,z)

f2−2λ

)
F(z)∗ z f2−2λ

∈ co

(
σ (b−1,c)

n ( f2−2λ ,z)
f2−2λ

(D)

)
,

This means by Lemma 1, the range of σ (b−1,c)
n ( f/z,z)

f/z lies in the closed convex hull of

image of σ (b−1,c)
n ( f2−2λ ,z)

f2−2λ
under D . From (8), for λ ∈ [ 1

2 ,1) , we have σ (b−1,c)
n ( f2−2λ ,z)

f2−2λ
≺

1
f2−2λ

. Therefore,

σ (b−1,c)
n ( f/z,z)

f/z
≺ 1

f2−2λ
,

which is equivalent to (9) and the proof is complete. �
Theorem 5 has several consequences with Kakeya Eneström theorem, that will be

discussed in Section 5. Taking b = c = 1, it reduces to the following result given by
Ruscheweyh [20].

COROLLARY 2. [20] Let f ∈ S ∗(λ ) , λ ∈ [1/2,1) . Then for n ∈ N∪{0} ,

zsn(z, f/z)
f

≺ 1
f2−2λ

.

REMARK 1. If we take b = 1+ β and c = 1, then it was proved in [11] that for
β � 0,

σβ
n ( fμ ,z)

fμ
≺
{ 1

fμ−β
, μ ∈ [−1,0];

1
fμ+β

, μ ∈ (0,1] such that μ + β � 1.

The condition μ +β � 1 restricts β to lie in [0,1] where as Theorem 4 does not impose
an upper bound on β and moreover

1
fμ

≺ 1
fμ+β

, μ ∈ (0,1] where μ + β � 1.

1
fμ

≺ 1
fμ−β

, μ ∈ [−1,0].
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So, Theorem 4 improves the result in [11, Theorem 2.2]. A similar comparison can be
made for Theorem 5 with [11, Theorem 2.3].

Theorem 5 leads to a new definition of generalized Cesàro stable functions.

DEFINITION 1. (Generalized Cesàro Stable Function) A function f ∈ A1 is said
to be n -generalized Cesàro stable with respect to F ∈ A1 if

σ (b−1,c)
n ( f ,z)

f (z)
≺ 1

F(z)
(10)

holds for some n ∈ N . We call f as n -generalized Cesàro stable if it is n -generalized
Cesàro stable with respect to itself. If it is n -generalized Cesàro stable with respect to
F(z) for every n , then it is said to be generalized Cesàro stable with respect to F(z) .

REMARK 2. If we take b = 1+ β ,c = 1 then (10) reduces to

Sβ
n ( f ,z)

f
≺ 1

F(z)

gives the (n,β ) Cesàro-stability [11] of f (z) about F(z) which if β = 0 further reduces
to stability [20] of f (z) about F(z) .

LEMMA 2. [7, Proposition 5] For α,β > 0 . If F ≺ (1− z)α and G ≺ (1− z)β

then FG ≺ (1− z)α+β , z ∈ D .

Now for 0 < μ � ρ � 1, we have the following corollary of Theorem 4 following
the same procedure as in [7, page 57].

COROLLARY 3. For 0 < μ � ρ � 1 and b � max{c,2c−1}> 0 we have

(1− z)ρσ (b−1,c)
n ( fμ ,z) ≺ (1− z)ρ , z ∈ D. (11)

The relation (11) is sharp in the sense that it will not hold for μ > ρ . It is clear
when n becomes large then left hand side of (11) becomes unbounded and is subordi-
nate to a bounded domain which is not possible.

If we change the right hand side of (11) by replacing the bounded function (1−
z)ρ , 0 � ρ < 1 by the unbounded one

( 1+z
1−z

)ρ
, 0 � ρ < 1, then the subordination in

(11) is still valid because (1− z)ρ ≺ ( 1+z
1−z

)ρ
in D . Now this becomes a very interest-

ing problem and leads to some new directions. This situation leads to the following
definition.

DEFINITION 2. For ρ ∈ (0,1] , define μ(ρ ,b−1,c) as the maximal number such
that

(1− z)ρσ (b−1,c)
n ( fμ ,z) ≺

(
1+ z
1− z

)ρ
, n ∈ N (12)

holds for all 0 < μ � μ(ρ ,b−1,c) .
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Writing

(1− z)2ρ−1σb−1,c
n ( fμ ,z) = (1− z)ρσb−1,c

n ( fμ ,z)
1

(1− z)1−ρ

Then (12) implies,

Re
[
(1− z)2ρ−1σb−1,c

n ( fμ ,z)
]

> 0, z ∈ D and n ∈ N. (13)

Motivated by Conjecture 1 given in [7], numerical evidences suggests the validity
of the following conjecture given below.

CONJECTURE 1. For ρ ∈ (0,1] we have μ(ρ ,b− 1,c) = μ∗(ρ ,b− 1,c) , where
μ∗(ρ ,b−1,c) is the unique solution in (0,1] of the equation

∫ (ρ+1)π

0
sin(t−ρπ)tμ−1

(
1− t

(ρ +1)π

)b−c

dt = 0. (14)

Conjecture 1 for the case ρ = 1/2 will be verify in Theorem 6, which justifies
validity for the existence of conjecture 1. Note that the case ρ = 3/4 and 1/4 with
b = 1,c = 1 are addressed in [7, 8]. The authors have provided affirmative answer
for the conjecture for several ranges including the one given in [8] in a separate work.
Conjecture 1 contains the following weaker one.

CONJECTURE 2. Let ρ ∈ (0,1] and μ∗(ρ ,b−1,c) be as in Conjecture 1, then

Re
[
(1− z)2ρ−1σ (b−1,c)

n ( fμ ,z)
]

> 0, z ∈ D, n ∈ N (15)

holds for 0 < μ � μ∗(ρ ,b− 1,c) and μ∗(ρ ,b− 1,c) is the largest number with this
property.

If we take b = 1+β and c = 1 then σ (b−1,c)
n (z) reduces to Cesàro mean of order

β . Figure 2 shows the graphs of μ∗(ρ ,β ,1) for β = 0,1,2,3.

For β = 0, Figure 1 (a) is same as graph of μ∗ given in [7]. For ρ = 1, both
conjectures are equivalent and reduces to

(1− z)σ (b−1,c)
n ( fμ ,z) ≺

(
1+ z
1− z

)

which holds for 0 < μ � 1.
For μ(ρ ,b−1,c) and μ∗(ρ ,b−1,c) , we have the following proposition.

PROPOSITION 1. For 0 < ρ < 1 , we have μ∗(ρ ,b−1,c) � μ(ρ ,b−1,c) .
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(a) β = 0 (b) β = 1

(c) β = 2 (d) β = 3

Figure 1: Graph of μ∗(ρ,β ,1) for (a) β = 0 , (b) β = 1 , (c) β = 2 and (d) β = 3 with respect
to ρ .

Proof. For z = eiφ , (13) is equivalent to

n

∑
k=0

Bn−k

Bn

(μ)k

k!
sin [(k+ ρ −1/2)φ −ρπ ] < 0, for 0 < φ < 2π. (16)

Now limiting case of this inequality can be obtained using the asymptotic formula,

lim
n→∞

(
φ
n

)μ n

∑
k=0

Bn−k

Bn

(μ)k

k!
sin

[
(k+ ρ −1/2)

φ
n
−ρπ

]

=
1

Γ(μ)

∫ φ

0
tμ−1

(
1− t

φ

)b−c

sin(t−ρπ)dt (17)

Hence a necessary condition for the validity of (16) is the non positivity of the integral
(17). In particular, φ = (ρ +1)π gives

I(b−1,c)(μ) =
∫ (ρ+1)π

0
sin(t−ρπ)tμ−1

(
1− t

(ρ +1)π

)b−c

dt.
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We prove that I(b−1,c)(μ) is strictly increasing function in (0,1) . Now differentiation
under integral sign gives

I(b−1,c)(μ)′ =
∫ (ρ+1)π

0
sin(t−ρπ)

(
1− t

(ρ +1)π

)b−c

tμ−1 log(1/t)dt

=
(

1− t
(ρ +1)π

)b−c ∫ (ρ+1)π

0

sin(t−ρπ)
t1−μ log(1/t)dt

+(b− c)
∫ (ρ+1)π

0

(
1− t

(ρ +1)π

)b−c−1 ∫ (ρ+1)π

0

sin(t −ρπ)
t1−μ log(1/t)dt

The positivity of I(b−1,c)(μ)′ follows from the increasing property of the integral I(μ)
in [7, Lemma 1] using the method given in [24, V. 2.29]. So I(b−1,c)(μ) is strictly
increasing in (0,1) and if we choose b = c then I(0) = −∞ and I(1) > 0, so I(μ) = 0
has only one solution in (0,1] which is μ∗(ρ ,b− 1,c) given by (14). Hence the best
possible bound for μ in Conjecture 2 cannot be greater than μ∗(ρ ,b− 1,c) . This
proves the assertion. �

Since the conditions in Conjecture 1 and Conjecture 2 turns out to be the positivity
of trigonometric polynomials. So it follows from summation by parts that both con-
jectures need to established only for μ = μ∗(ρ ,b− 1,c) . We discuss some particular
cases of these conjectures.

THEOREM 6. Conjecture 1 holds for ρ = 1/2 .

Proof. If ρ = 1/2 then (12) is equivalent to

Re[(1− z)σ (b−1,c)
n ( fμ ,z)2] > 0 (18)

Using minimum principle for harmonic functions it is sufficient to establish (18) for
z = e2iφ ,0 < φ < π . Let

Pn(φ) := (1− e2iφ)

(
n

∑
k=0

Bn−k

Bn

(μ)k

k!
e2ikφ

)2

(19)

and we want to prove RePn(φ) > 0 for all n ∈ N , 0 < φ < π .
For arbitrary number dk = c2k = c2k+1 , k = 0,1,2, . . . ,n , we have

(1+ z)
n

∑
k=0

dkz
2k =

2n+1

∑
k=0

ckz
k,

and (1− z)
n

∑
k=0

dkz
2k =

2n+1

∑
k=0

(−1)kckz
k,

so that (1− z2)

[
n

∑
k=0

dkz
2k

]2

=

(
2n+1

∑
k=0

ckz
k

)(
2n+1

∑
k=0

(−1)kckz
k

)
.
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Choosing z = eiφ ,−z = e−i(π−φ) we have

(1− e2iφ)

(
n

∑
k=0

dke
2ikφ

)2

=

(
2n+1

∑
k=0

cke
ikφ

)(
2n+1

∑
k=0

(−1)kcke
ikφ

)
,

which implies

Re(Pn(φ))

=

(
2n+1

∑
k=0

ck coskφ

)(
2n+1

∑
k=0

ck cosk(π −φ)

)
+

(
2n+1

∑
k=1

ck sinkφ

)(
2n+1

∑
k=1

ck sink(π −φ)

)
.

Since c2k = c2k+1 , we have

sin
φ
2

2n+1

∑
k=0

ck coskφ = cos
φ
2

2n+1

∑
k=1

ck sink(π −φ).

This leads to the fact that

2n+1

∑
k=0

ck coskφ > 0, 0 < φ < π (20)

and

2n+1

∑
k=1

ck sinkφ > 0, 0 < φ < π (21)

are equivalent. When dk = Bn−k
Bn

(μ)k
k! then positivity of (20) and (21) hold respectively

from Theorem 1 and Theorem 2 for 0 < μ � μ ′
0 and 0 < φ < π . So Re(Pn(φ)) > 0

which means Conjecture 1 is true for ρ = 1/2. �
We observe that Theorem 6 becomes equivalent to the extension of Vietori’s the-

orem [21]. We interpret extension of Vietoris’ theorem in terms of generalized Cesàro
stable functions.

For further generalization of Theorem 5, we define for μ > 0,

Fμ :=
{

f ∈ A0 : Re

(
z f ′

f

)
>

−μ
2

,z ∈ D
}

,

and fμ = 1
(1−z)μ taken as an extremal function for Fμ . For all f ∈Fμ we get f ≺ fμ .

It is obvious that f ∈ Fμ ⇔ z f ∈ S ∗(1− μ/2) . We define

PF μ = { f ∈ A0 : f ∗ fμ ∈ Fμ}.
Clearly PF 1 = F1 . The functions of F and PF behaves same as the functions of
starlike and prestarlike classes respectively. Before going to proceed further we recall
some results on starlike and prestarlike class.
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LEMMA 3. [13] For 0 < μ � ρ , we have

1. Fμ ⊂ Fρ

2. PF μ ⊃ PF ρ

3. If h ∈ PF μ and f ∈ Fμ then h ∗ f ∈ Fμ .

Lemma 1 also holds good in context with the class Fμ and PF μ . We need the
following lemma.

We define f̃μ ∈ A0 be the unique solution of fμ ∗ f̃μ = 1
1−z . It is clear that f ∈

Fμ ⇐⇒ f ∗ f̃μ ∈ PF μ .

THEOREM 7. Let ρ ∈ (0,1] and z f ∈ S ∗(1− μ/2) with 0 < μ � ρ , then for
b � max{c,2c−1}> 0 ,

σ (b−1,c)
n ( f ,z)

φρ ,μ ∗ f
≺ (1− z)ρ , n ∈ N, (22)

where φρ ,μ(z) = F(1,ρ ;μ ;z) , where F is the Gaussian hypergeometric function can
also be defined by the equation,

z
(1− z)μ ∗ zφρ ,μ =

z
(1− z)ρ .

Proof. Let φρ ,μ(z) =
∞

∑
k=0

(ρ)k

(μ)k
zk = fρ ∗ f̃μ where f̃μ is defined as fμ ∗ f̃μ = 1

1−z .

For 0 < μ < ρ � 1, fρ−μ = 1
(1−z)ρ−μ maps D univalently into a convex domain. f ∈

Fμ ⇒ f ∗ f̃μ ∈ PF μ and fμ ∈ Fμ . Clearly,

φρ ,μ ∗ f

f
=

fρ ∗ f̃μ ∗ f

fμ ∗ f̃μ ∗ f
=

f ∗ f̃μ ∗ fμ fρ−μ

f ∗ f̃μ ∗ fμ
∈ co

(
fρ−μ(D)

)
,

i.e.
φρ,μ ∗ f

f ≺ 1
(1−z)ρ−μ . Since f ∈ Fμ ⇒ σ (b−1,c)

n ( f ,z)
f ≺ (1− z)μ . So using Lemma 2,

σ (b−1,c)
n ( f ,z)

φρ ,μ ∗ f
≺ (1− z)ρ .

If we take z f ∈ S ∗(1− μ/2) we get that,

σ (b−1,c)
n ( f ,z)
φρ ,μ ∗ f

≺ (1− z)ρ . �

REMARK 3. If we take ρ = μ = 2− 2λ , then (22) becomes (9). This means
Theorem 7 can be regarded as a generalization of Theorem 5.
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3. Matrix representation

Cesàro mean of type (b−1,c) can be written in terms of lower triangular matrix
(gi j) defined as,

gi0 = 1, gik =

{
Bi−k
Bi

, 1 � k � i;
0, k � i+1.

Then the entries in (n+1)th row of the matrix induces Cesàro mean of type (b−1,c)
of order n is given by,

σ (b−1,c)
n (z) =

n

∑
k=0

Bn−k

Bn
zk, z ∈ D.

Consider,

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0
1 B0

B1
0 0 · · · 0

1 B1
B2

B0
B2

0 · · · 0

1 B2
B3

B1
B3

B0
B3

· · · 0
...

...
...

... · · · ...

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

a0

a1z
a2z2

a3z3

...

⎞
⎟⎟⎟⎟⎟⎠

Then (n+1)th row of G generates the Cesàro mean of type (b−1,c) of f (z) =
∞

∑
k=0

akz
k

of order n for n � 0. Then the concept of stable function can be generalized in terms
of lower triangular matrix as well.

For n ∈ N , Hn be the set of lower triangular matrix (hi j) of order (n+1) satis-
fying hi j � 0, i, j = 0,1,2 . . . ,n , and satisfy the following conditions:

1. hi0 = 1 for every i = 0,1, . . . ,n ,

2. for each fixed i � 1, hi j = hi1hi−1, j−1 , j = 1, . . . ,n ,

3. for each fixed i � 1, {hi j} is a decreasing sequence.

Then (n+1)th row of (hi j) induces a polynomial Hn of degree n is

Hn(z) :=
n

∑
k=0

hnkz
k,

and for f (z) =
∞

∑
k=0

akz
k ∈ A1 the polynomial

Hn( f ,z) =
n

∑
k=0

hnkakz
k = Hn(z)∗ f (z). (23)

Following the same procedure as in Theorem 4 we can obtain the following theorem
for Hn defined by lower triangular matrix. We state the result without proof.
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THEOREM 8. Let Hn be given by (23), and fμ = 1/(1− z)μ . Suppose hn1 � 1 ,
then for μ ∈ [−1,1] ,

(1− z)μHn( fμ ,z) ≺ (1− z)μ . (24)

4. Application in geometric properties of Cesàro mean of type (b−1,c)

For finding the geometric properties of Cesàro mean of type (b− 1,c) , instead

of σ (b−1,c)
n (z) we will use normalized Cesàro mean of type (b− 1,c) denoted by

s(b−1,c)
n (z) because the geometric properties like convexity, starlikeness and close-to-

convexity remains intact under such normalization. For b+1 > c > 0, let

s(b−1,c)
n (z) := z+

n

∑
k=2

Bn−k

Bn−1
zk, z ∈ D.

For f ∈ A , it is easy to obtain that

s(b−1,c)
n ( f ,z)′ = σ (b−1,c)

n−1 ( f ′,z) = σ (b−1,c)
n−1 (z)∗ f ′(z).

Note that s(β ,1)
n = sβ

n (z) was studied in [16]. Among the results available in the

literature regarding sβ
n (z) , the interesting result is given by Lewis [9] is that for β � 1

and n ∈ N , sβ
n (z) ∈ K . Using the convolution between convex and close-to-convex

functions, it is clear that for f ∈ C , (n+ β )sβ
n ( f ,z)/n ∈ K ,β � 1. Ruscheweyh and

Salinas [17] also discussed the geometric property of (n+β )sβ
n ( f ,z)/n when 0 < β <

1. It is interesting to discuss the geometric property of Cesàro mean of type (b−1,c)
of f (z) , where f (z) belongs to some class of functions. Note that certain geometric

properties of s(b−1,c)
n (z) are given in [22], mainly using the positivity results that are

consequences of [22]. In this section, we provide some more geometric properties as
consequences of Theorem 4 and Theorem 5 which are fundamental in the formulation
of concept of Cesàro stable functions.

THEOREM 9. Let Fλ (z) = z +
∞

∑
k=2

(2− 2λ )k−1
zk

k!
, λ ∈ [1/2,1) . Then for b �

max{c,2c−1}> 0 , ∣∣∣∣1− (1− z) ·
(
(s(b−1,c)

n (Fλ ,z))′
) 1

2−2λ
∣∣∣∣� 1.

In particular, s(b−1,c)
n (Fλ ,z) ∈ K (λ ) .

Proof. It is given that,

Fλ (z) = z+
∞

∑
k=2

(2−2λ )k−1
zk

k!
, λ ∈ [1/2,1).
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By Alexander transform it is obvious that,

Fλ (z) ∈ C (λ ) ⇐⇒ zF ′
λ =

z

(1− z)2−2λ ∈ S ∗(λ ). (25)

Substituting 2−2λ = μ , we obtain

(1− z)2−2λ σ (b−1,c)
n−1

(
1

(1− z)2−2λ ,z

)
≺ (1− z)2−2λ .

Since

(1− z)2−2λ σ (b−1,c)
n−1

(
1

(1− z)2−2λ ,z

)
= (1− z)2−2λ σ (b−1,c)

n−1 (F ′
λ ,z)

= (1− z)2−2λs(b−1,c)
n (Fλ ,z)′,

we get, using Theorem 4,∣∣∣∣1−((1− z)2−2λ · s(b−1,c)
n (Fλ ,z)′

) 1
2−2λ

∣∣∣∣� 1,

which is equivalent to,

Re
(
(1− z)2−2λ · s(b−1,c)

n (Fλ ,z)′
)

> 0.

This expressions together with (25) and the analytic characterization of K (λ ) guaran-

tees that s(b−1,c)
n (Fλ ,z) ∈K (λ ) with respect to the starlike function given in (25). �

In particular if λ = 1/2, F1/2(z) = − log(1− z) , then

s(b−1,c)
n (− log(1− z),z) ∈ K (1/2).

THEOREM 10. If f ∈C (λ ) , λ ∈ [1/2,1) and b� max{c,2c−1} , then for n � 1 ,

s(b−1,c)
n ( f ,z)′

f ′(z)
≺ (1− z)2−2λ .

In particular, s(b−1,c)
n (z, f ) ∈ K (λ ) .

Proof. If f ∈ C (λ ) , then by Alexander transform, g(z) = z f ′(z) ∈ S ∗(λ ) , then

s(b−1,c)
n ( f ,z)′

f ′(z)
=

zσ (b−1,c)
n−1 ( f ′,z)

g(z)
=

zσ (b−1,c)
n−1 (g/z,z)

g(z)
.

If g(z) ∈ S ∗(λ ) , λ ∈ [1/2,1) , then from Theorem 5,

s(b−1,c)
n ( f ,z)′

f ′(z)
≺ (1− z)2−2λ ⇒ Re

(
zs(b−1,c)

n ( f ,z)′

g(z)

)
> 0
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This means s(b−1,c)
n ( f ,z) ∈ K (λ ) . �

If we substitute b = 1+β and c = 1 in Theorem 10 then we obtain the following
corollary.

COROLLARY 4. If f ∈ C (λ ) , λ ∈ [1/2,1) and β � 0 then for n � 1 , sβ
n ( f ,z) ∈

K (λ ) .

Theorem 10 guarantees that for g(z) = z , for f ∈ C (λ ) where λ ∈ [1/2,1) then,

Re(s(b−1,c)
n ( f ,z))′ > 0 =⇒ s(b−1,c)

n ( f ,z)′ �= 0.

Since every close-to-convex function is univalent [2, p.47], the generalized Cesàro

mean s(b−1,c)
n ( f ,z) for the convex function f is also univalent. In this situation for

b = 1,c = 1, a subordination chain was provided by Ruscheweyh and Salinas [17]
which is given in the following result.

THEOREM 11. [17] If f ∈ C (1/2) , then

s(α+k)
1 ( f ,z) ≺ s(α+k)

2 ( f ,z) ≺ ·· · s(α+k)
n ( f ,z) ≺ ·· · f (z), k ∈ N.

holds for α � 0 and z ∈ D .

An extension of Theorem 11 to σ (b−1,c)
n ( f ,z) can provide more information on

the geometric nature of σ (b−1,c)
n (z) and we state this as a problem.

(a) β = 0 (b) β = 1

Figure 2: Univalent subordination chain for − log(1−z) , (a) n = 1,2,3,4 and (b) n = 5,6,7,8 .
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Open Problem. For b � max{c,2c−1} > 0 and f ∈ C (λ ) where λ ∈ [1/2,1) we
have the following subordination chain.

s(b−1+k,c)
1 ( f ,z) ≺ s(b−1+k,c)

2 ( f ,z) ≺ ·· · s(b−1+k,c)
n ( f ,z) ≺ ·· · f (z), k ∈ N. (26)

We do not have the proof of this problem but the graphical justification of the

problem is provided here. If we take f (z) = − log(1− z) =
∞

∑
k=1

zk

k
∈ C (1/2) . Figure 2

shows the univalent subordination chain for f (z) when k = 1 and b = 2, c = 1. Figure
2 (a) shows the subordination chain for n = 1,2,3,4 and Figure 2 (b) for n = 4,5,6,7.

5. Concluding remarks

In this section, we define a set Ω be the set of nonnegative real numbers having
the following property.

Ω := {μk ∈ [0,1] : such that
n

∑
k=1

μk = 1}.

In the context of generalization of Kakeya-Eneström theorem given in [14], we have
the following corollary of Theorem 5.

LEMMA 4. [14] Let n ∈ N and f (z) = z
∞

∑
k=0

bkz
k ∈ S ∗(1/2) . Then ∃ a number

ρ = ρ(n, f ) � 1 such that for every sequence ak ∈ R,k = 0,1,2 · · · ,n, with

1 = a0 � a1 � · · · � an � 0,

we have

P(z) =
n

∑
k=0

akbkz
k �= 0, |z| < ρ .

We get the following consequences of Theorem 5 using Lemma 4.

COROLLARY 5. Let z f ∈S ∗(λ ),λ ∈ [1/2,1) and b � max{c,2c−1} . Then for
any {μk}n

k=1 ∈ Ω , we have

n

∑
k=1

μkσ (b−1,c)
k ( f ,z) �= 0, z ∈ D.

Proof. Clearly {μk}n
k=1 ∈ Ω , implies

n

∑
k=1

μk = 1. We consider

n

∑
k=1

μkσ (b−1,c)
k ( f ,z) =

n

∑
k=0

δkakz
k, z ∈ D.
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By simple calculation we can get that,

1 = δ0 � δ1 � δ2 � · · · � δn > 0.

Therefore δk satisfies the conditions of Lemma 4, hence we proved that

n

∑
k=1

μkσ (b−1,c)
k ( f ,z) �= 0, z ∈ D. � (27)

Among several other consequences possible we would like to provide an applica-
tion involving Gegenbauer polynomials. Note that, for 0 < λ < 1/2 and −1 � x � 1,

G(z) =
z

(1−2xz+ z2)λ = z
∞

∑
k=0

Cλ
k (x)zk ∈ S ∗(1−λ ),

where Cλ
k are the Gegenbauer polynomial of degree k and order λ . Therefore (choos-

ing μn = 1 and rest μk are all zero) we obtain,

n

∑
k=0

Bn−k

Bn
Cλ

k (x)zk �= 0, z ∈ D. (28)

The inequality (5.1) contains the result by Koumandos [4] that the partial sum of G(z)/z
i.e. ∑n

k=0Cλ
k (x)zk are non-vanishing in the closed unit disc for 0 < λ < 1/2. This result

enables us to show that certain polynomials in z having Gegenbauer polynomials as a
coefficients are zero free in the unit disc. This result will also be helpful in proving
positivity of Jacobi polynomial sums [9]. The inequality (5.1) further can be sharpened
in Corollary 6.

COROLLARY 6. Let z f ∈S ∗(λ ),λ ∈ [1/2,1) and b � max{c,2c−1} . Then for
any {μk}n

k=1 ∈ Ω , we have

∣∣∣∣∣arg
n

∑
k=1

μkσ (b−1,c)
k ( f ,z)

∣∣∣∣∣� 2π(1−λ ), z ∈ D.

Proof. From Theorem 5 we have for z f ∈ S ∗(λ ),λ ∈ [1/2,1) ,

σ (b−1,c)
n ( f ,z) =

(
1−ω(z)

1− z

)2−2λ
, where |ω(z)| � |z|.

Choose μk,k = 1,2, . . . ,n ∈ Ω and taking the convex combination, we get

n

∑
k=1

μkσ (b−1,c)
k ( f ,z) =

(
1−ω(z)

1− z

)2−2λ
.
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This implies ∣∣∣∣∣arg
n

∑
k=1

μkσ (b−1,c)
k ( f ,z)

∣∣∣∣∣ = (2−2λ )
∣∣∣∣arg

(
1−ω(z)

1− z

)∣∣∣∣
=⇒

∣∣∣∣∣arg
n

∑
k=1

μkσ (b−1,c)
k ( f ,z)

∣∣∣∣∣ � 2π(1−λ ). �

Note that if λ ∈ [3/4,1) and z f ∈ S ∗(λ ) then,∣∣∣∣∣arg
n

∑
k=1

μkσ (b−1,c)
k ( f ,z)

∣∣∣∣∣� π/2 =⇒ Re
n

∑
k=1

μkσ (b−1,c)
k ( f ,z) > 0.

Choose μn = 1 and rest of μk are zero.

Re(σ (b−1,c)
n ( f ,z)) > 0, z ∈ D and n ∈ N.

Further in context of Gegenbauer polynomials this would imply for λ ∈ (0,1/4] , n∈N ,

n

∑
k=0

Bn−k

Bn
Cλ

k (x)coskθ > 0, θ ∈ (0,π),n ∈ N. (29)

This estimate of the upper bound on λ in (29) is not sharp. The theory of starlike
functions ensure that the upper bound will be evaluated at x = 1 for the large values
of n . However, for the case b = c = 1, this problem was solved by Koumandos and
Ruscheweyh [6]. For that case, the upper bound for λ is λ = 0.345778 . . .. In general
to find the upper bound for λ , for values of b and c , will lead to new problem which
will have further implications.
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