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APPLICATIONS OF ONE INEQUALITY TO MEASURES

OF NON–COMPACTNESS AND NARROW OPERATORS
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Abstract. We consider a generalization of an inequality from papers by Yu. A. Dubinskii, J.-
L. Lions and E. Magenes. This inequality is of great importance for the proof of solvability
of nonlinear elliptic and parabolic equations. In contrast to their works, we do not require the
compactness of the embedding. We suggest a new approach to the problem of narrow operators.
In particular, we find a new application of measures of non-compactness.

1. Introduction

The paper is devoted to several variants of an inequality from [5, 15, 16]:

• ([5, Lemma 1]) Let E , E1 be linear normed spaces and E be embedded into E1 .
Let ℑ by any subset of E such that λu ∈ ℑ ∀u ∈ ℑ and ∀λ ∈ R . Let ℑ be
provided by function M : ℑ → R such that M(u) � 0, M(u) = 0 ⇐⇒ u = 0,
M(λu) = |λ |M(u) ∀u∈ ℑ and ∀λ ∈R . Let ℑ be embedded into E , i.e. ‖u‖E �
KM(u) for some K > 0 and all u ∈ ℑ . Let the embedding ℑ ⊂ E be compact,
i.e. every sequence {un} (un ∈ ℑ , M(un) � K0 for some K0 > 0) contains a
subsequence which converges in E . Then

‖u− v‖E � ε(M(u)+M(v))+ cε‖u− v‖E1 (1.1)

for all u,v ∈ ℑ .

• ([15, Lemma 5.1] and [16, Theorem 16.4]) Let E0 , E , E1 be Banach spaces,
E0 ⊂ E ⊂ E1 and the embedding E0 into E be compact. Then, for every ε > 0
there exists a constant cε such that

‖u‖E � ε‖u‖E0 + cε‖u‖E1 (1.2)

for all u ∈ E0 .
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In [15, Lemma 5.1] E0 , E1 are also reflexive.
As it was noted in [15, 12.2], Inequality (1.1) implies Inequality (1.2).
In [5, 15, 16] Inequalities (1.1) and (1.2) were used to obtain a priori estimates of

solutions of nonlinear elliptic and parabolic equations (see for example [16, Remark
16.3]).

In this paper we investigate similar inequalities under assumptions that are less
restrictive than in [5, 15, 16]. In particular we do not require the compactness of the
embedding. We prove the inequalities and construct an example (Example 1) where the
inequalities are still valid but the corresponding embedding is not compact.

The results obtained could have the same applications as the results from [5, 15,
16], e.g. to the proof of solvability of nonlinear elliptic and parabolic equations [5, 15,
16]. Moreover, in this paper we find a new application of this inequality and measures
of non-compactness (MNCs for brevity), namely to narrow operators. For an account
of the theory of measures of non-compactness, we forward the reader to [1, 3, 4] (see
also [2, 6, 7, 8, 9, 10, 11, 12, 20, 21, 22]) and references therein.

Theorems 1-3 of this paper generalize previous results obtained in [6].

2. Main results

Let E and E1 be normed spaces. Let M : I → R+ be a function defined on some
subset I ⊆ E where R+ is the set of real non-negative numbers.

Consider maps A : I → E , T : I → E1 , and a subset U ⊆ I satisfying the follow-
ing condition:

∀ε > 0 ∃cε > 0 : ∀u ∈U ‖A(u)‖E � εM(u)+ cε‖T (u)‖E1 . (2.1)

REMARK 1. If ‖A(u0)‖E = 0 for some u0 ∈ I then (2.1) is trivial for u = u0 .
Note that (2.1) also implies

1. ‖A(u0)‖E = 0 for all u0 ∈ I with ‖T (u0)‖E1 = 0;

2. lim
n→∞

‖A(un)‖E = 0 if lim
n→∞

‖T (un)‖E1 = 0 and lim
n→∞

M(un)= 0 for some {un}, un ∈
I .

For a subset U ⊆ I we define

τ(U) = sup
v∈U

M(v), τ̃(U) = inf
v∈U

M(v).

A subset U ⊆ I is called M-bounded if τ(U) < ∞ . We say that a set U ⊂ I has
M-property, if U is M -bounded and τ̃(U) > 0. We say that an operator A : I → E is
M-bounded, if A maps every M -bounded set U ⊂ I into a bounded subset of E .

THEOREM 1. Let E and E1 be normed spaces, let A be an M-bounded opera-
tor from I into E , and let T be an M-bounded operator from I into E1 . Then the
following conditions are equivalent:
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(i) For every subset U ⊂ I possessing the M-property and for every ε > 0 there
exists a constant cε > 0 such that (2.1) is true for all u ∈U .

(ii) For any sequence {un} of elements from I such that {un} possesses the M-
property and

lim
n→∞

‖T (un)‖E1 = 0, (2.2)

we have
lim
n→∞

‖A(un)‖E = 0. (2.3)

(iii) For any sequence {un} of elements from I such that {un} possesses the M-
property and (2.2) holds we have

lim
n→∞

‖A(un)‖E = 0. (2.4)

Proof. Suppose that (i) is true. We claim that (ii) is true too.
Let a sequence {un} have the M -property. Then there exist numbers 0 < r � R <

∞ such that r � M(un) � R for all n . Now we assume that (2.2) is true and claim
that (2.3) is true too. Fix any ε > 0. Let cε be the constant from (2.1). Then there
exists a number nε > 0 such that for all n > nε we have ‖T (un)‖E1 � ε/cε . Now (2.1)
implies that for all n > nε we have also ‖A(un)‖E � εR+ ε .

Letting ε → 0, we get (2.3), that is, Condition (ii) holds.
Condition (iii) obviously follows from (ii).
Suppose now that (iii) is true, but (i), that is, (2.1), is not true. Thus there exist a

set U with the M -property, ε > 0, a sequence of elements {un} (un ∈U for every n )
and a sequence of numbers {cn} (cn → ∞) such that

‖A(un)‖E > εM(un)+ cn‖T (un)‖E1 (2.5)

holds for all n .
By the assumptions of Theorem 1, the operator A is M -bounded. Since {un} has

the M -property and hence M -bounded, the sequence {A(un)} is bounded in the norm
of E . Now (2.5) together with cn → ∞ implies ‖T (un)‖E1 → 0. However by (2.5) we
have ‖A(un)‖E > εr for all n , which contradicts (2.4). Therefore, (iii) indeed implies
(i). �

REMARK 2. In contrast to [5, 15, 16], we do not assume that set I1 = {v ∈ I :
M(v) � 1} is relatively compact in E .

EXAMPLE 1. Let Ω be a subset of R
n , let μ be a continuous measure in the sense

of [14]. Suppose μ(Ω) < ∞ . Denote by Lp(μ) the space of μ -measurable functions

on Ω with the norm ‖u‖Lp(μ) =
(∫

Ω
|u|pdμ

)1/p

for 1 � p < ∞ and

‖u‖L∞(μ) = inf{t ∈ R : μ(D(u,t)) = 0},
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where
D(u,t) = {s ∈ Ω : |u(s)| > t}

for t > 0.
Let I ⊆ L∞(μ) be a set all functions u such that |u(s)| = γ almost everywhere in

Ω for any γ ∈ R+ . Then for all ε > 0 there exists a constant cε > 0 such that

‖u‖Lp(μ) � ε‖u‖L∞(μ) + cε‖u‖Lq(μ)

for all 1 � p < ∞ , 1 � q < ∞ and u ∈ I belonging to an arbitrary spherical interlayer
r � ‖u‖L∞(μ) � R (0 < r � R < ∞) .

Indeed, consider the norm in L∞(μ) as a M -function on I . Let a sequence {un}
satisfy conditions: there exist constants 0 < r � R < ∞ such that r � ‖un‖L∞(μ) � R for
all n and

lim
n→∞

‖un‖Lq(μ) = 0.

It follows that
lim
n→∞

r(μ(supp un))1/q � lim
n→∞

‖un‖Lq(μ) = 0

and
lim
n→∞

μ(supp un) = 0

and

lim
n→∞

p

√∫
Ω

|un|pdμ = lim
n→∞

‖un‖Lp(μ) � R lim
n→∞

(μ(supp un))1/p = 0,

that is, the condition (ii) of Theorem 1 is satisfied. By Theorem 1 it implies (i).

REMARK 3. It is well known that the sequence of Rademacher functions rn =
signsin(2nπt) (t ∈ [0,1] , n = 1,2, . . .) is not compact in Lp([0,1],R) .

Analogously to Theorem 1, we can prove the assertion below.

THEOREM 2. Let (E,d) and (E1,d1) be metric spaces, A be an M-bounded
operator from I into E and T be an M-bounded operator from I into E1 . Then the
following conditions are equivalent:

(i) For every subset U ⊂ I possessing the M-property and every ε > 0 , there
exists a constant cε > 0 such that for all u,v ∈U

d(A(u),A(v)) � ε(M(u)+M(v))+ cεd1(T (u),T (v)). (2.6)

(ii) For any sequences {un} , {vn} in I possessing the M-property and satisfying

lim
n→∞

d1(T (un),T (vn)) = 0,

we have
lim
n→∞

d(A(un),A(vn)) = 0.
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(iii) For any sequences {un} , {vn} in I possessing the M-property and satisfying

lim
n→∞

d1(T (un),T (vn)) = 0,

we have
lim
n→∞

d(A(un),A(vn)) = 0.

Proof. Suppose that (i) is true. We claim that (ii) is true too.
Let sequences {un} , {vn} in I have the M -property. Then there exist numbers

0 < r � R < ∞ such that r � M(un),M(un) � R for all n . Now we assume that

lim
n→∞

d1(T (un),T (vn)) = 0

and we claim that
lim
n→∞

d(A(un),A(vn)) = 0.

Fix any ε > 0. Let cε be the constant from (2.6). Then there exists a number nε > 0
such that for all n > nε we have d1(T (un),T (vn)) � ε/cε . Now (2.6) implies that for
all n > nε we have also d(A(un),A(vn)) � ε2R+ ε .

Letting ε → 0, we get lim
n→∞

d(A(un),A(vn)) = 0, i.e. Condition (ii) holds.

Condition (iii) obviously follows from (ii).
Suppose now that (iii) is true, but (i), i.e. (2.6) is not true. Then there exist ε > 0,

sequences of elements {un} , {vn} with the M -property and a sequence of numbers
{cn} (cn → ∞) such that

d(A(un),A(vn)) > ε(M(un)+M(vn))+ cnd1(T (un),T (vn)) (2.7)

holds for all n .
By the assumptions of Theorem 2, the operator A is M -bounded. Since {un}

and {vn} have the M -property and hence M -bounded, the sequence {d(A(un),A(vn))}
is bounded in E . Now (2.7) together with cn → ∞ implies d1(T (un),T (vn)) → 0.
However by (2.7) we have d(A(un),A(vn)) > ε2r for all n , which contradicts

lim
n→∞

d(A(un),A(vn)) = 0.

Therefore, (iii) indeed implies (i). �

3. Measures of non-compactness in the inequality

Let (E,d) be any metric space. Let us recall that a set U is totally bounded if for
each δ > 0 the set may be covered by a finite number of balls of radius r < δ . In a
complete metric space a totally bounded set is precompact (relatively compact), that is,
its closure is compact.

The MNC βE(U) = β (U) of U ⊂ E or the separation MNC is defined as the
supremum of all numbers r > 0 such that there exists an infinite sequence in U with
d(un,um) � r for every n �= m (see, for example, [1, 3, 4]).

The MNC β satisfies the regularity property: βE(U) = 0 if and only if U is a
totally bounded set in E .
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THEOREM 3. Let (E,d) and (E1,d1) be metric spaces and let A : I → E and
T : I → E1 be M-bounded operators. Let U ⊂ I be a subset possessing the M-
property. Suppose that for every ε > 0 there exists a constant cε > 0 such that the
inequality (2.6) holds for all u,v ∈U . Then for every ε > 0 and every subset V ⊆U
we have

βE(A(V )) � 2ετ(V )+ cεβE1(T (V )). (3.1)

Proof. Let (2.6) be true for all u,v from U . Let V be an arbitrary subset of U .
If βE(A(V )) = 0, then the assertion is trivial. Let βE(A(V )) > 0. By the definition of
the MNC βE , for any 0 < δ < βE(A(V )) there exists a sequence {A(vn)} ⊂ A(V ) such
that

βE(A(V ))− δ � d(A(vn),A(vm))

for all n �= m .
By the definition of βE1 we can choose in {vn} elements ṽn , ṽm , satisfying the

inequality
d1(T (ṽn),T (ṽm)) � βE1(T (V ))+ δ .

Applying (2.6) for any ε > 0, we obtain

βE(A(V ))− δ � d(A(ṽn),A(ṽm))
� ε(M(ṽn)+M(ṽm))+ cεd1(T (ṽn),T (ṽm))
� 2ετ(V )+ cε(βE1(T (V ))+ δ ),

which implies (3.1) since δ is arbitrary. �

COROLLARY 1. If (3.1) be true then β (T (U)) = 0 implies β (A(U)) = 0 for all
subsets U ⊂ I possessing the M-property. It is obviously that the last remains valid
for every MNC equivalent to the MNC β .

Let us recall φ is an MNC equivalent to the MNC β , that is, there exist constants
c1 > 0 and c2 > 0 such that

c1φ(V ) � β (V ) � c2φ(V ).

Below we consider any non-negative function ψE (not necessarily equivalent to
β ) defined on bounded subsets of a normed space E with ψE(U) < ∞ for all bounded
subsets of a normed space E . For example, ψE may be the measure of nonequiabsolute
continuity νE in a regular space E ([2, 7, 8, 9, 10, 20, 21, 22]). It is well known that
the equality νE(U) = 0 is possible on non-compact sets.

THEOREM 4. Let E and E1 be linear normed spaces, A be an M-bounded op-
erator from I into E , and let T be an M-bounded operator from I into E1 . Then the
following conditions are equivalent:

(i) For every subset U ⊂ I possessing the M-property and for every ε > 0 there
exists a constant cε > 0 such that

ψE(A(V )) � 2ετ(V )+ cεψE1(T (V )) (3.2)
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is true for every subset V ⊆U .
(ii) For any sequence {Vn} of subsets from I such that ∪Vn possesses the M-

property and
lim
n→∞

ψE1(T (Vn)) = 0, (3.3)

we have
lim
n→∞

ψE(A(Vn)) = 0. (3.4)

(iii) For any sequence {Vn} of subsets from I such that ∪Vn possesses the M-
property and (3.3) holds we have

lim
n→∞

ψE(A(Vn)) = 0. (3.5)

Proof. Suppose that (i) is true. We claim that (ii) is true too. Let a consequence
{Vn} such that ∪Vn have the M -property. Then there exist numbers 0 < r � R such that
r � M(u) � R for all u ∈ ∪Vn . Now we assume that (3.3) is true and claim that (3.4) is
true too. Fix any ε > 0. Let cε be the constant from (3.2). Then there exists a number
nε > 0 such that for all n > nε we have ψE1(T (Vn)) � ε/cε . Now (3.2) implies that
for all n > nε we have also ψE(A(Vn)) � εR+ ε . Letting ε → 0, we get (3.4), that is,
Condition (ii) holds.

Condition (iii) obviously follows from (ii).
Suppose now that (iii) is true, but (i), that is, (3.2), is not true. Then there exist a

set U with the M -property, ε > 0, a sequence of subsets {Vn} (Vn ⊆U for every n )
and a sequence of numbers {cn} (cn → ∞) such that

ψE(A(Vn)) > 2ετ(Vn)+ cnψE1(T (Vn)) (3.6)

holds for all n . By the assumptions of Theorem 4, the operator A is M -bounded.
Since U has the M -property and hence M -bounded, Vn ⊆ U for every n , the se-
quence {A(Vn)} is bounded in the norm of E . Now (3.6) together with cn → ∞ implies
ψE1(T (Vn))→ 0. However by (3.6) we have ψE(A(Vn)) > 2εr for all n , which contra-
dicts (3.5). Therefore, (iii) indeed implies (i). �

4. Application to narrow operators

We first recall basic definitions and notation in a form convenient for us.
Let (Ω,∑,μ) be a measure space where Ω is a subset of R

n and μ is a continuous
measure in the sense of [14]; that is, each subset D ⊆ Ω , μ(D) > 0, can be split into
two subsets of the same measure. Assume also that μ(Ω) < ∞ .

Let ∑+ be the set of all D ∈ ∑ with μ(D) > 0 and let S(μ) be the linear space of
all equivalence classes of μ -measurable functions u : Ω → K , where K ∈ {R,C} .

Let κD be the characteristic function of a set D∈ ∑ . A function u∈ S(μ) is called
a mean zero sign on D if u2 = κD and μ({t ∈D : u(t) = 1}) = μ({t ∈D : u(t) =−1}) .

Recall that a normed space X which is a linear subspace of S(μ) is called an ideal
space if κΩ ∈ X and for each u∈ S(μ) and v∈ X the condition |u|� |v| implies u∈ X
and ‖u‖X � ‖v‖X .
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Let D ∈ ∑+ be any subset and let X be an ideal space on (Ω,∑,μ) . Denote by
ID ⊂ X be set of all mean zero signs on D . Since |u|� κΩ for all u∈ ID and D ∈ Σ+ ,
the set ID is bounded in X for all D ∈ Σ+ .

In addition, the embedding I : L∞(μ) → X is bounded for all ideal spaces X .
The spaces Lp(μ) (see Example 1) are examples of ideal Banach spaces.
The elements of the sequence of Rademacher functions rn = signsin(2nπt) (t ∈

[0,1] , n = 1,2, . . .) in Lp([0,1],R) are examples of mean zero signs on [0,1] .
The definition of a mean zero sign implies the following assertion:

PROPOSITION 1. Let D1,D2 ∈ Σ+ be any sets with D1 ∩D2 = ∅ . Then for any
u1 ∈ ID1 , u2 ∈ ID2 the function u = u1±u2 belongs to ID1∪D2 .

For normed spaces E and E1 denote by L (E,E1) the space of all linear continu-
ous operators A : E → E1 .

Let X be an ideal space on (Ω,∑,μ) and let Y be a Banach space.
An operator A ∈ L (X ,Y ) is called narrow if for each δ > 0 and each D ∈ ∑+

there exists a mean zero sign u on D with ‖Au‖Y < δ .
The notion of a narrow operator was introduced by A. Plichko and M. Popov [18].

Narrow operators were studied by many mathematicians (for details and bibliography
see, for example, [13, 17, 19]).

The following assertion is a consequence of the definition.

PROPOSITION 2. Let X be an ideal space on (Ω,∑,μ) and let D ∈ ∑+ be any
subset. Then the following conditions are equivalent:

(i) A ∈ L (X ,Y ) is a narrow operator;
(ii) ∀D ∈ ∑+ inf

u∈ID
‖Au‖Y = 0 ;

(iii) ∀D ∈ ∑+ ∃ {un} : un ∈ ID, n = 1,2, . . . , lim
n→∞

‖Aun‖Y = 0 .

We suggest a new approach to the problem of narrow operators via inequality (2.1).
(Recall that by ID ⊂ X we denote the set of all mean zero signs on D .)

THEOREM 5. Let X be an ideal space on (Ω,∑,μ) and let Y be a Banach space.
Suppose that for every D ∈ ∑+ there exists a bounded function MD : ID → R+ and
an MD -bounded operator (not necessarily linear) TD : ID → E1 (where E1 is some
normed space) such that for any δ > 0 there exists u ∈ ID with ‖TD(u)‖E1 < δ . Then
every operator A ∈ L (X ,Y ) , satisfying for all D ∈ ∑+ the condition:

∀ε > 0 ∃cε > 0 : ∀u ∈ ID ‖Au‖Y � εMD(u)+ cε‖TD(u)‖E1 (4.1)

is a narrow operator.

Proof. Let D ∈ ∑+ be any subset and suppose A ∈ L (X ,Y ) satisfies (4.1). Since
TD is MD -bounded, (4.1) implies that A is MD -bounded too. Putting δ → 0 in the
assumptions of Theorem 5, we get a sequence {un} of elements of ID such that
lim
n→∞

‖TD(un)‖E1 = 0.
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If lim
n→∞

MD(un) > 0, then U = {un} ⊆ ID possesses MD -property. Applying The-

orem 1 to U = {un} , we obtain lim
n→∞

‖Aun‖Y = 0.

If lim
n→∞

MD(un) = 0, then lim
n→∞

‖Aun‖Y = 0 by (4.1), i.e. A is narrow by Proposition

2. �

REMARK 4. Let Lp(μ) , 1 � p < ∞ , be as in Example 1. Since ‖u‖Lp(μ) =
(μ(D))1/p for all u ∈ ID and D ∈ ∑+ , the identity operator I : Lp(μ) → Lp(μ) and
the embedding I : Lp(μ) → Lq(μ) (q < p ) are not narrow.

Recall that an operator A : E → E1 , where E , E1 are normed spaces, is compact if
it maps bounded subsets of E into totally bounded subsets of E1 . Below we show that
the restriction on ID of the embedding I : L∞(μ)→ Lq(μ) (1 � q < ∞) is not compact
for all D ∈ Σ+ .

EXAMPLE 2. Fix any D ∈ Σ+ . We construct a sequence {un},un ∈ ID,n =
1,2, . . . , defined in a manner analogous to the sequence of Rademacher functions.

Since μ is a continuous measure we can split D into subsets D = D1 ∪D2 , D1 ∩
D2 = /0 , μ(D1) = μ(D2) . Putting

u1(s) =

⎧⎪⎨
⎪⎩

1 if s ∈ D1,

−1 if s ∈ D2,

0 if s /∈ D,

(4.2)

we obtain some function from ID . By analogy with (4.2) we can construct u11 ∈ ID1

and u12 ∈ ID2 . Denote u2 := u11 +u12 ∈ ID . Iterating the above process, we obtain a
sequence {un} , un ∈ ID,n = 1,2, . . . , defined in a manner analogous to the sequence
of Rademacher functions.

Note that u1 − u2 = 2ũ where ũ ∈ ID̃12
and 2μ(D̃12) = μ(D) , 2μ(D̃12 ∩Di) =

μ(Di) , i = 1,2. For all n �= m

un−um = 2ṽ, ṽ ∈ ID̃nm
, 2μ(D̃nm) = μ(D) (4.3)

where 2μ(D̃nm∩Di) = μ(Di) , i = 1,2.

Note that ‖u1 − u2‖Lq(μ) = (2q−1μ(D))1/q for all 1 � q < ∞ . For the sequence
{un} , un ∈ ID , n = 1,2, . . . , constructed in Example 2 we have βLq(μ){un} =
(2q−1μ(D))1/q since ‖uk − um‖Lq(μ) = (2q−1μ(D))1/q for all k �= m and 1 � q < ∞ .
Hence the restriction on ID of the embedding I : L∞(μ) → Lq(μ) (1 � q < ∞) is not
compact for all D ∈ Σ+ .

The idea of the proof of the following sufficient condition for an operator to be
narrow is based on the definition of the MNC β as well as on the proof of Theorem 3.

We assume below that μ is σ -additive, i.e. for all countable collections {Di}∞
i=1

of pairwise disjoint sets in Σ we have

μ

(
∞⋃

k=1

Dk

)
=

∞

∑
k=1

μ(Dk). (4.4)
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THEOREM 6. Let X be an ideal space on (Ω,∑,μ) where the measure μ is σ -
additive, and let Y be a Banach space. Denote by Z the set of all mean zero signs u in
X . Suppose A ∈ L (X ,Y ) is compact on Z and

∀ε > 0 ∃cε > 0 ‖Au‖Y � ε + cε μ(suppu) (4.5)

for all u ∈ Z . Then A is a narrow operator.

Proof. Fix any D ∈ Σ+ . Let {un} , un ∈ ID , n = 1,2, . . . , be a sequence con-
structed in Example 2. Then the sequence {Aun} is relatively compact, that is, βY{Aun}
= 0. Hence for any δ > 0 there exist uñ and um̃ ( ñ �= m̃) such that ‖Auñ−Aum̃‖Y � δ .
Hence by (4.3) and linearity of A

δ � ‖Auñ−Aum̃‖Y = ‖A(uñ−um̃)‖Y = ‖A(2ṽ)‖Y = 2‖Aṽ‖Y

where ṽ ∈ IDñm̃ and 2μ(Dñm̃) = μ(D) .
For simplicity of notation put Δ1 = Dñm̃ , v1 = ṽ , Δ+

1 = {ω ∈ D : v1 = 1} and
Δ−

1 = {ω ∈ D : v1 = −1} .
Thus we find the sets Δ1 , Δ+

1 and Δ−
1 with Δ+

1 ∪Δ−
1 = Δ1 , Δ+

1 ∩Δ−
1 = ∅ , 22μ(Δ+

1 )
= 22μ(Δ−

1 ) = μ(D) and the function v1 = κΔ+
1
− κΔ−

1
, v1 ∈ IΔ1 such that ‖Av1‖Y �

δ/2. We repeat our argument for D \Δ1 and we find the sets Δ2 ⊂ D \Δ1 , Δ+
2 , Δ−

2
with Δ+

2 ∪Δ−
2 = Δ2 , Δ+

2 ∩Δ−
2 = ∅ , 23μ(Δ+

2 ) = 23μ(Δ−
2 ) = μ(D) and the function

v2 = κΔ+
2
−κΔ−

2
, v2 ∈ IΔ2 such that ‖Av2‖Y � δ/22 .

Iterating this process we get sequences of sets {Δn} , {Δ+
n } , {Δ−

n } and of func-
tions {vn} such that Δn ⊂D\(Δ1∪. . .∪Δn−1) , Δ+

n ∪Δ−
n = Δn , Δ+

n ∩Δ−
n = ∅ , 2n+1μ(Δ+

n )
= 2n+1μ(Δ−

n ) = μ(D) , vn = κΔ+
n
−κΔ−

n
, vn ∈ IΔn and ‖Avn‖Y � δ/2n for all n .

Note that this process does not terminate. Define

P+
m =

∞⋃
n=m

Δ+
n ; P−

m =
∞⋃

n=m

Δ−
n ; wm = κP+

m
−κP−

m
(4.6)

for all m . Note that P+
m ∩P−

m = ∅ and (4.4) implies μ(P+
m ) = μ(P−

m ) = μ(D)/2m .
Denote ym = Awm . By the construction, the sequence {ym}∞

m=1 is fundamental,
that is, it satisfies the Cauchy condition:

‖yk − yl‖Y = ||Awk −Awl||Y = ||A(wk −wl)||Y

=

∣∣∣∣∣
∣∣∣∣∣A
(

k

∑
n=l

vn

)∣∣∣∣∣
∣∣∣∣∣
Y

�
k

∑
n=l

‖Avn‖Y �
k

∑
n=l

δ
2n

for any k > l . Hence lim
m→∞

Awm and as consequence lim
m→∞

||Awm||Y exist.

Moreover, by (4.4)
lim
m→∞

μ(suppwm) = 0. (4.7)

By (4.7) and (4.5) we have

lim
m→∞

||Awm||Y = 0. (4.8)
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By the construction, for all m

w1 = κP+
1
−κP−

1
=

m−1

∑
n=1

vn +wm

and w1 ∈ ID .
For all m we have

‖Aw1‖y =

∣∣∣∣∣
∣∣∣∣∣A
(

m−1

∑
n=1

vn

)
+Awm

∣∣∣∣∣
∣∣∣∣∣
Y

�
m−1

∑
n=1

||Avn||Y + ||Awm||Y .

Letting m → ∞ , we get by (4.8)

‖Aw1‖y �
∞

∑
n=1

‖Avn‖Y �
∞

∑
n=1

δ
2n = δ .

Thus for each δ > 0 and each D ∈ ∑+ there exists a mean zero sign w1 on D
with ‖Aw1‖Y < δ . Then A is narrow. �

REMARK 5. In contrast to [19, Proposition 2.1], in Theorem 6 we suppose that Y
is a Banach space and μ is σ -additive measure. However, we do not require from the
norm in X to be absolutely continuous on the unit.

Since we do not use the property ‖λu‖X = |λ |‖u‖X where λ ∈ R or C , then X
could be a Köthe F -space.

We recall briefly that an F -space is a complete metric linear space X with an
invariant metric ρ (i.e. ρ(u,v) = ρ(u+ z,v+ z) for each u,v,z ∈ X ).

An F -space X which is a linear subspace of S(μ) is called a Köthe F -space on
(Ω,∑,μ) if κΩ ∈ X and for each u ∈ S(μ) and v ∈ X the condition |u| � |v| implies
u ∈ X and ‖u‖X � ‖v‖X (see for example [13] and [19]).

Here ‖u‖X = ρ(u,0) and the property ‖λu‖X = |λ |‖u‖X could be not satisfied in
general.

The condition (4.5) in Theorem 6 is essential, since the non-narrow continuous
linear functional, constructed in [17], obviously does not satisfy (4.5).

Also note that if

lim
μ(D)→0

‖AκD‖Y = 0, (4.9)

then the condition (4.5) will be clearly satisfied.
In particular, if the norm in X is absolutely continuous on the unit as in [19,

Proposition 2.1], then lim
μ(D)→0

‖κD‖X = 0 and we have (4.9) for all A ∈ L (X ,Y ) both

compact and not compact.
As a consequencewe obtain the following result: every operator A∈L (Lp(μ),Y ) ,

1 � p < ∞ , with a compact restriction on L∞(μ) is narrow by Theorem 6.
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