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POLYNOMIAL INEQUALITIES IN Lp NORMS

WITH GENERALIZED JACOBI WEIGHTS

LEOKADIA BIALAS-CIEZ AND GRZEGORZ SROKA

(Communicated by T. Erdélyi)

Abstract. We give concrete estimates of Schur- and Nikolskii-type inequalities with the best
exponent of polynomial degree in Lp norms with generalized Jacobi weights. In particular, we
obtain these inequalities with the Chebyshev weight, with the Gegenbauer weights and with the
classical Jacobi ones.

1. Introduction

Let w be a generalized Jacobi weight

w(x) = g(x)
m

∏
j=1

|x− x j|r j , x ∈ (−1,1) (1)

where x1 = −1, xm = 1, r1,rm � − 1
2 and x j ∈ (−1,1) , r j � 0 for j = 2, . . . ,m− 1

and g = g(x) is a positive integrable function separated from 0 and from infinity for
x ∈ [−1,1] . Consider q norms with the weights described above, i.e.

‖ f‖q,w :=
[∫ 1

−1
| f (x)|q w(x)dx

]1/q

for q ∈ [1,∞)

‖ f‖∞,w := max
x∈[−1,1]

{| f (x)|w(x)} for r j � 0, j = 1, . . . ,m

for any function f continuous on [−1,1] . If g ≡ 1 and r1 = r2 = . . . = rm = 0, then
we have the usual norms ‖ · ‖q and ‖ · ‖∞ in Lq and L∞ . For g ≡ 1, r1 = rm = − 1

2 ,
r2 = . . . = rm−1 = 0 we obtain the Lq norms for the equilibrium measure of [−1,1]
also called the q norms with the Chebyshev weight. When r2 = . . . = rm−1 = 0 we
have the q norms with the classical Jacobi weight. If in addition r1 = r2 = α , we get
Gegenbauer norms

‖ f‖q,α :=
(∫ 1

−1
| f (x)|q (1− x2)αdx

)1/q

.
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We will also consider ‖ · ‖q,w , ‖ · ‖q and ‖ · ‖q,α when q ∈ (0,1) although they are not
norms in this case.

Let N = {1,2,3, . . .}, N0 = {0}∪N and Pn be the space of all algebraic poly-
nomials of degree at most n ∈ N . In this paper we adhere to the convention that 00 = 1
and 1

∞ = 0.
Estimations of polynomials in q norms with the above weights have been studied

by many authors, e.g., [15, Chap. VI], [16, Chap. 15], [17] and the references therein.
This paper is inspired mainly by two kinds of estimates:

• Schur inequality:

‖p‖∞ � (n+1) max
x∈[−1,1]

|
√

1− x2 p(x)| for p ∈ Pn

that is optimal because we have equality for the n -th Chebyshev polynomials of
the second kind,

• Nikolskii inequality:

‖p‖q � [(1+ s)n2]
1
s − 1

q ‖p‖s for 0 < s � q � ∞, p ∈ Pn. (2)

One of the key problems that we address in the paper is the estimation of ‖p‖q,β
by ‖p‖s,α . We will study inequalities of the form

‖p‖q,β � Mn(s,α,q,β ) ‖p‖s,α (3)

with Mn(s,α,q,β ) independent of p ∈ Pn. These estimates are worthy of interest
because of their numerous applications. For references to the extensive literature on the
subject one may refer to the book [15]. The dependence on n in Mn(s,α,q,β ) was
described almost 40 years ago, see [3], [11], [15, Sec. 6.1.8]. Namely, the constant

C(s,α,q,β ) := sup

{ ‖p‖q,β

nγ‖p‖s,α
: p ∈ Pn, p �≡ 0, n ∈ N

}
(4)

is finite for q,s > 0, α,β � − 1
2 and

γ = 2
(

1
s − 1

q + α
s − β

q

)
for q � s, α � β (5)

is the best possible exponent of n . However, the exact values of C(s,α,q,β ) have been
found only in some specific cases, see e.g. [7], [12] and the references in [17].

The aim of our paper is to give some concrete admissible bounds of the values
Mn(s,α,q,β ) and C0(s,α,q,β ) with the best possible exponent of n . Our estimates
remain true for q > 0, s � 1, α,β �− 1

2 (see Theorem 1, Corollary 3, Theorem3). We
also propose some bounds for corresponding constants with generalized Jacobi weights
of type (1).

The paper is organized as follows. Section 2 is concerned with changing the Jacobi
weights in integral norms. In particular, we estimate the constants C0(q,α,q,β ) . We
also give estimates of constants in Nikolskii-type inequalities with generalized Jacobi
weights. The third Section deals with Schur-type inequalities.
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2. Inequalities with Jacobi weights of type (1− x)a(1+ x)b

2.1. Change of Jacobi weights

We start this Section with rather general estimates from which we will derive some
inequalities that admit change of Jacobi weights with an appropriate control of the
constants and with the best possible exponents of the polynomial degree n .

PROPOSITION 1. For q ∈ (0,∞) , αi � βi � − 1
2 , i = 1,2 and for all polynomials

p ∈ Pn the following inequality holds

∫ 1

−1
|p(x)|q(1+x)β1(1−x)β2dx � A(α1,α2,β1,β2,n,q)

∫ 1

−1
|p(x)|q(1+x)α1(1−x)α2dx

(6)
where A(α1,α2,β1,β2,n,q) > 0 is such that for all r ∈ (0,1)

A(α1,α2,β1,β2,n,q) � 2α1−β1+α2−β2

(1+ r)2δ0(1− r)2δ r2(nq+1+β1+β2)
(7)

where δ0 := min{α1 − β1,α2 − β2}, δ := max{α1 − β1,α2 − β2} . In particular, if
α1 −β1 = α2 −β2 then

A(α1,α2,β1,β2,n,q) � 22(α1−β1)

(1− r2)2(α1−β1) r2(1+β1+β2+nq) for all r ∈ (0,1) (8)

and

A(α1,α2,β1,β2,n,q) � 1

(α1 −β1)2(α1−β1)
(1+ α1 + α2 +nq)1+α1+α2+nq

(1+ β1 + β2 +nq)1+β1+β2+nq
. (9)

Proof. We can assume that deg p = n . Set

Jγ1,γ2(ρ) :=
∫ 2π

0
uγ1,γ2(ρ eit)dt for ρ > 0, γ1,γ2 � −1

2

where uγ1,γ2(z)=
∣∣∣∣znp

(
1
2

(
z+

1
z

))∣∣∣∣
q ∣∣∣∣ z+1√

2

∣∣∣∣
1+2γ1

∣∣∣∣z−1√
2

∣∣∣∣
1+2γ2

.

Next, we have

2
∫ 1

−1
|p(x)|q(1+ x)β1(1− x)β2dx = 2

∫ 0

−π
|p(cost)|q(1+ cost)β1(1− cost)β2 |sin t|dt

=
∫ 2π

0

∣∣∣∣p
(

eit + e−it

2

)∣∣∣∣
q ∣∣∣∣2+ eit + e−it

2

∣∣∣∣
β1

∣∣∣∣2− eit − e−it

2

∣∣∣∣
β2

∣∣∣∣eit − e−it

2i

∣∣∣∣dt = Jβ1,β2
(1).



264 L. BIALAS-CIEZ AND G. SROKA

Observe that z �→ zn p
(

1
2

(
z+ 1

z

))
is a polynomial of degree 2n , thus uγ1,γ2 is a subhar-

monic function in C and the function Jγ1,γ2 is increasing in (0,∞) for each
γ1,γ2 � − 1

2 , see [10, Th. 3.2.3]. Therefore, for any r ∈ (0,1) we get

Jβ1,β2
(1)� Jβ1,β2

(
1
r

)
=

∫ 2π

0

∣∣∣∣eint

rn p

(
1
2

(
eit

r
+

r
eit

))∣∣∣∣
q ∣∣∣∣eit + r√

2r

∣∣∣∣
1+2β1

∣∣∣∣eit − r√
2r

∣∣∣∣
1+2β2

dt

=
1

r2nq+2+2β1+2β2

∫ 2π

0

∣∣∣∣rn p

(
1
2

(
eit

r
+

r
eit

))∣∣∣∣
q ∣∣∣∣1+ re−it

√
2

∣∣∣∣
1+2β1

∣∣∣∣1− re−it
√

2

∣∣∣∣
1+2β2

dt.

From the inequality

∣∣1+ re−it
∣∣1+2β1

∣∣1− re−it
∣∣1+2β2 =

∣∣1+ re−it
∣∣1+2α1

∣∣1− re−it
∣∣1+2α2

|1+ re−it|2(α1−β1)|1− re−it|2(α2−β2)

�
∣∣1+ re−it

∣∣1+2α1
∣∣1− re−it

∣∣1+2α2

(1− r2)2δ0(1− r)2δ−2δ0
=

∣∣1+ re−it
∣∣1+2α1

∣∣1− re−it
∣∣1+2α2

(1+ r)2δ0(1− r)2δ

we conclude that

Jβ1,β2
(1)r2(nq+1+β1+β2)

� 2α1−β1+α2−β2

(1+ r)2δ0(1− r)2δ

∫ 2π

0

∣∣∣∣rnp

(
1
2

(
eit

r
+

r
eit

))∣∣∣∣
q ∣∣∣∣1+ re−it

√
2

∣∣∣∣
1+2α1

∣∣∣∣1− re−it
√

2

∣∣∣∣
1+2α2

dt

=
2α1−β1+α2−β2

(1+r)2δ0(1−r)2δ

∫ 2π

0

∣∣∣∣rnp

(
1
2

(
1

reis + reis
))∣∣∣∣

q ∣∣∣∣1+reis
√

2

∣∣∣∣
1+2α1

∣∣∣∣1−reis
√

2

∣∣∣∣
1+2α2

ds

=
2α1−β1+α2−β2

(1+r)2δ0(1−r)2δ

∫ 2π

0
uα1,α2(r eis)ds =

2α1−β1+α2−β2

(1+r)2δ0(1−r)2δ Jα1,α2(r).

By the monotonicity of the function J , we get

Jα1,α2(r) � Jα1,α2(1) = 2
∫ 1

−1
|p(x)|q(1+ x)α1(1− x)α2dx

the last equality being a consequence of the same computation as in the first lines of the
proof. Combining the last two estimates yields (7) for all r ∈ (0,1) . Now, set

f (r) := (1− r2)2(α1−β1) r2(nq+1+β1+β2).

Since f (0) = f (1) = 0, there is r0 ∈ (0,1) such that sup(0,1) f = f (r0) . One can

calculate that r0 =
(

1+β1+β2+nq
1+α1+α2+nq

)
1/2 and

f (r0) =
[2(α1 −β1)]2(α1−β1) (1+ β1 + β2 +nq)1+β1+β2+nq

(1+ α1 + α2 +nq)1+α1+α2+nq .

From this and (8) it follows (9). �
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THEOREM 1. If α � β � − 1
2 , q ∈ (0,∞) then for any polynomial p ∈ Pn

‖p‖q
q,β � 1

(α −β )2(α−β )
(1+2α +nq)1+2α+nq

(1+2β +nq)1+2β+nq
‖p‖q

q,α (10)

and

‖p‖q
q,β � C0(q,α,q,β )q n2(α−β ) ‖p‖q

q,α (11)

for n � 1 where

C0(q,α,q,β )q � 1

(α −β )2(α−β )
(1+2α +q)1+2α+q

(1+2β +q)1+2β+q
� e2/e (1+2α +q)1+2α+q

(1+2β +q)1+2β+q

(12)
Moreover, the exponent 2(α −β ) of n in (11) is optimal.

Proof. Inequality (10) follows from (6) with α1 = α2 = α and β1 = β2 = β . To
show the estimates of C0(q,α,q,β ) , we set

h(x) :=
(x+a)x+a

(x+b)x+b xb−a for x > 0, a � b � 0.

Since x+a
x+b = 1+ a−b

x+b � 1+ a−b
x � e

a−b
x and

d
dx [logh(x)] = log(x+a)+1− log(x+b)−1+ b−a

x = log x+a
x+b + b−a

x ,

the function logh is decreasing in (0,∞) and

sup{h(x) : x ∈ [x0,∞)} = h(x0) for x0 > 0. (13)

Therefore, by inequality (9) in Proposition 1, nq � q implies

A(α,α,β ,β ,n,q) (nq)2β−2α � (1+2α +q)1+2α+q

(α −β )2(α−β ) (1+2β +q)1+2β+q
q2β−2α

and so

A(α,α,β ,β ,n,q) � (1+2α +q)1+2α+q

(α −β )2(α−β )(1+2β +q)1+2β+q
n2(α−β ).

A standard verification shows that

max
{(c

x

)x
: x ∈ (0,∞)

}
= ec/e for any c > 0. (14)

Combining the above remark we obtain inequalities (12). The optimality of the expo-
nent in (11) is a consequence of the results in [3] or [11], see (5). �
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REMARK 1. Similarly to (3), let Mn,1(2,0,2,0) := sup
{ ‖p′‖2

‖p‖2
: p ∈ Pn

}
. By

results from [3], [11], we have γ = 2. It is worth noticing that in 1990 Goetgheluck
[8] proved that Mn,1(2,0,2,0)/nγ is a decreasing sequence in n and posed a question
whether this is a general rule. This remains an open problem. Taking into account
the proof of Theorem 1, especially property (13), we can see that C0(q,α,q,β )q �
A(α,α,β ,β ,1,q) (see Proposition 1), i.e. it is sufficient to take n = 1 in inequality (9)
to get an estimate of the constant C0(q,α,q,β ) in (11) for all n ∈ N . In this fashion
our estimates agree with Goetgheluck’s conjecture.

Without the assumption α1 −β1 = α2−β2 in Proposition 1 we obtain

THEOREM 2. For q ∈ (0,∞) , αi � βi � − 1
2 , i = 1,2 and p ∈ Pn inequality (6)

holds with

A(α1,α2,β1,β2,n,q) � 2δ

δ 2δ
(1+ β1 + β2 +q+2δ )1+β1+β2+q+2δ

(1+ β1 + β2 +q)1+β1+β2+q
n2δ

where δ is defined in Proposition 1. Moreover, the exponent 2δ of n is optimal.

Proof. From (7) in Proposition 1 we have

A(α1,α2,β1,β2,n,q) � 23δ

(1− r2)2δ r2(1+β1+β2+nq) ,

because 2α1−β1+α2−β2(1+r)2δ−2δ0 � 2α1−β1+α2−β222δ−2δ0 � 23δ . The rest of the proof
runs as in Proposition 1 and Theorem 1. The optimality of the exponent 2δ of n has
been proved in [9]. �

COROLLARY 1. If α,β and q are as in Theorem 1 then for p ∈ Pn inequality
(11) holds with

C0(q,α,q,β )q �
(

2q
α −β

)2(α−β ) (1+ α)2(1+α)

(1+ β )2(1+β ) � e4q/e (1+ α)2(1+α)

(1+ β )2(1+β ) (15)

whenever nq � 1 .

Proof. By inequality (9) and property (13) with a = 1+2α , b = 1+2β , x = nq �
1 = x0 we have

A(α,α,β ,β ,n,q) (nq)2β−2α � (nq)2β−2α

(α −β )2(α−β )
(1+2α +nq)1+2α+nq

(1+2β +nq)1+2β+nq

� 1

(α −β )2(α−β )
(2+2α)2+2α

(2+2β )2+2β =
(

2
α −β

)2(α−β ) (1+ α)2(1+α)

(1+ β )2(1+β )

and we get the first inequality in (15). The second one is a consequence of (14). �
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COROLLARY 2. For α,β as in Theorem 1 and for p ∈ Pn inequality (11) is
fulfilled with

C0(q,α,q,β )q � 21+2α+qeq for n � 2, q > 0

and
C0(q,α,q,β )q � 22(α−β )e q2+2α(q−1)−2−2β f or n � 1, q > 1.

Proof. One can easily show that

C0(q,α,q,β )q = sup{A(α,α,β ,β ,n,q)/n2(α−β ) : n ∈ N}.

Now we apply inequality (8) with α1 = α2 = α , β1 = β2 = β and r =
(
1− 1

n

)1/2

to show the first estimate of Corollary 2. We obtain the second one if we take r =√
1− 1

nq . �

2.2. Nikolskii-type inequalities with Gegenbauer weights

This subsection concerns estimates between different norms that are often called
Nikolskii-type inequalities. Classical results admitting comparison between norms ‖ ·
‖q and ‖ · ‖s can be found in [15, Chap. 5.3] and [2, Chap. A4]. The most convenient
for us is estimate (2), see e.g. [4, Th. 2.6, Chap. 4].

PROPOSITION 2. Assume that 1 � s � q, − 1
2 � β � α and β

q � k
j � α

s for
some j ∈ N, k ∈ N0 . Then for any polynomial p ∈ Pn the Nikolskii-type inequality

‖p‖q,β � e
2
e ( 1

q + 1
s ) (2q+2αq)4+4α

(2+2β )
1
q (4+4β )

[
(j+s) j(1+ 2α

s )2] 1
s − 1

q ‖p‖s,α (16)

and the exponent d = 2
(

1
s − 1

q + α
s − β

q

)
of n is optimal.

Proof. Proposition 1 leads us to

∫ 1

−1
|p(x)|q(1− x2)β dx � A( kq

j , kq
j ,β ,β ,n,q)

∫ 1

−1

[
|p(x)| j(1− x2)k

]q/ j
dx.

Since Q(x) := p(x) j(1− x2)k is a polynomial of degree n j +2k , from inequality (2)
we have

‖Q‖q/ j
q/ j �

[(
1+ s

j

)
( jn+2k)2

]( j
s− j

q )
q
j ‖Q‖q/ j

s/ j =
[
( j + s) j(n+ 2k

j )2
]( 1

s − 1
q )q ‖Q‖q/ j

s/ j .

Again by Proposition 1 we get

‖Q‖s/ j
s/ j =

∫ 1

−1
|p(x)|s(1− x2)ks/ jdx � A(α,α, ks

j , ks
j ,n,s)

∫ 1

−1
|p(x)|s(1− x2)αdx.
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By the above, for all 0 < s � q we obtain

‖p‖q,β �
(
A( kq

j , kq
j ,β ,β ,n,q)

)1
q
[
( j + s) j(n+ 2k

j )2
]1

s − 1
q
(
A(α,α, ks

j , ks
j ,n,s)

)1
s‖p‖s,α

To prove (16), we use the same argument as in the proof of Theorem 1 and we get

E(s,α,q,β ,n,j,k)�
(
A(kq

j , kq
j ,β ,β ,1,q)

)1
q[( j+s) j(1+ 2α

s )2]1
s − 1

q
(
A(α,α, ks

j , ks
j ,1,s)

)1
s
nd

with the exponent of n equal to

2
(

kq
jq − β

q

)
+2

(
1
s − 1

q

)
+2

(
α
s − ks

js

)
= 2

(
α
s − β

q + 1
s − 1

q

)

because
(
n+ 2k

j

)2
�

(
1+ 2α

s

)2
n2 . From inequality (9) we have

(
A( kq

j , kq
j ,β ,β ,1,q)

)1
q
(
A(α,α, ks

j , ks
j ,1,s)

)1
s

� 1

( kq
j −β )

2
q ( kq

j −β )

1

(α − ks
j )

2
s (α− ks

j )

⎡
⎣ (1+2 kq

j +q)1+2 kq
j +q

(1+2β +q)1+2β+q

⎤
⎦

1
q
⎡
⎣ (1+2α + s)1+2α+s

(1+2 ks
j + s)1+2 ks

j +s

⎤
⎦

1
s

� e
2
e ( 1

q + 1
s )

[
(1+2α q

s +q)1+2α q
s +q

(1+2β +q)1+2β+q

]1
q
⎡
⎣ (1+2α + s)1+2α+s

(1+2β s
q + s)1+2β s

q +s

⎤
⎦

1
s

the last inequality being a consequence of (14) and the inequality β
q � k

j � α
s . Since

1 � s
q � 1

q , we obtain 1+2α q
s +q � 1, 1+2β s

q + s � 1 and

[
(1+2α q

s +q)1+2α q
s +q

(1+2β +q)1+2β+q

]1
q
⎡
⎣ (1+2α + s)1+2α+s

(1+2β s
q + s)1+2β s

q +s

⎤
⎦

1
s

�
[
(q+2αq+q)q+2αq+q

(1+2β +1)1+2β+1

]1
q

⎡
⎣ (s+2αs+ s)s+2αs+s

( s
q +2β s

q + s
q )

s
q +2β s

q + s
q

⎤
⎦

1
s

=
(qs)2+2α(2+2α)4+4α

(s/q)
1
q (2+2β )(2+2β )

1
q (4+4β )

.

Hence and by the inequality 2+2α � 1
q(2+2α) � 1

q(2+2β ) , estimate (16) follows.
The optymality of exponent d is a consequence of the results in [3] or [11]. �

REMARK 2. In the case of 0 � α the assumption β
q � k

j �
α
s for some j∈N, k∈

N0 is always true, because β
q < α

s whenever α �= β or q �= s .
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3. Schur-type inequalities with weights

We begin this Section with inequalities concerning specific cases and then we will
present an estimate for general Jacobi weights. Two propositions below give some
bounds of the constants in inequalities regarding change of weights of type |x− x0|β
for x0 ∈ [−1,1] . Similar estimates are often called division inequalities or Schur in-
equalities and have been investigated, e.g., in [6], [9], [5], [13], [14], [1].

PROPOSITION 3. For α � β � 0 , q ∈ (0,∞) and p ∈ Pn the inequality

∫ 1

−1
|p(x)|q|x|β dx � B0(α,β ,n,q)

∫ 1

−1
|p(x)|q|x|αdx (17)

holds with B0(α,β ,n,q) satisfying

B0(α,β ,n,q) �
(

2
α−β

)α−β (1+α+nq)1+α+nq

(1+β +nq)1+β+nq
�

(
2

α−β

)α−β (1+α+q)1+α+q

(1+β +q)1+β+q
nα−β .

Moreover, the exponent α −β of n is optimal.

Proof. The proof of the first estimate of B0(α,β ,n,q) is similar to that of Propo-
sition 1. Again we have

2
∫ 1

−1
|p(x)|q|x|β dx = Jβ (1) � Jβ

(
1
r

)
for r ∈ (0,1),

Jγ(ρ) :=
∫ 2π

0
uγ(ρ eit)dt for ρ >0, γ �0

and

uγ(z) :=
∣∣∣∣znp

(
1
2

(
z+

1
z

))∣∣∣∣
q ∣∣∣∣ z2 +1

2

∣∣∣∣
γ ∣∣∣∣ z2 −1

2

∣∣∣∣ .
Since |1+ r2e2it | � 1− r2 , it follows

Jβ

(
1
r

)
=

Jβ (r)
r2+2β+2nq

� 2α−β Jα(r)
r2+2β+2nq(1− r2)α−β .

Consequently, by the monotonicity of the mean value Jα of subharmonic functions
(e.g. [10, Th. 3.2.3]), we have

Jβ

(
1
r

)
� 2α−β Jα(1)

r2+2β+2nq(1− r2)α−β =
2α−β

r2+2β+2nq(1− r2)α−β 2
∫ 1

−1
|p(x)|q|x|αdx

We now need to find the minimum value of 2α−β

r2+2β+2nq(1−r2)α−β over all r ∈ (0,1) . It is

attained at r0 =
√

1+β+nq
1+α+nq and a short computation gives the desired formula.
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The proof of the second estimate of B0(α,β ,n,q) can be derived from the first
one and (13) as in the proof of Theorem 1. The optimality of the exponent α −β is a
consequence of [9, Th. 2]. �

In order to find an estimate for weights of the type |x− x0|β for x0 ∈ (0,1) (or
x0 ∈ (−1,0)), α � β , we can apply Proposition 3 and the following standard reasoning:

∫ 1

−1
|p(x)|q|x− x0|β dx =

∫ 2x0−1

−1
+

∫ 1

2x0−1

=
∫ 2x0−1

−1
|p(x)|q |x− x0|α

|x− x0|α−β dx+(1− x0)1+β
∫ 1

−1
|p((1− x0)t + x0)|q|t|β dt

� 1

(1− x0)α−β

∫ 2x0−1

−1
|p(x)|q|x− x0|αdx+

B0(α,β ,n,q)
(1− x0)α−β

∫ 1

2x0−1
|p(x)|q|x− x0|αdx.

By inequality (17) for the polynomial p ≡ 1, we get

1 � 1+ α
1+ β

� B0(α,β ,n,q).

We have thus proved

COROLLARY 3. For α,β ,q as in Proposition 3 and for x0 ∈ (0,1) , p ∈ Pn the
inequality

∫ 1

−1
|p(x)|q|x− x0|β dx � B0(α,β ,n,q)

(1− x0)α−β

∫ 1

−1
|p(x)|q|x− x0|αdx

holds with the constant B0(α,β ,n,q) being described in Proposition 3.

An inequality for weights of the type (1− x)β or (1 + x)β can be derived from
Theorem 2. However, a better estimate of this kind is given below.

PROPOSITION 4. For α � β � − 1
2 , q ∈ (0,∞) and p ∈ Pn the inequality

∫ 1

−1
|p(x)|q(1− x)βdx � B1(α,β ,n,q)

∫ 1

−1
|p(x)|q(1− x)αdx

holds with B1(α,β ,n,q) > 0 such that

B1(α,β ,n,q) �
(

2
(α −β )2

)α−β (1+ α +nq)2(1+α+nq)

(1+ β +nq)2(1+β+nq)

�
(

2
(α −β )2

)α−β (1+ α +q)2(1+α+q)

(1+ β +q)2(1+β+q) n2(α−β )
.

Moreover, the exponent 2(α−β) of n is optimal. An inequality with the same B1(α,β,n,q)
holds for the q norms (or metrics) with the weight (1+ x)β and (1+ x)α respectively.
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Proof. We use inequality (7) from Proposition 1 for α1 = 0, α2 = α , β1 = 0,
β2 = β and we get

A(0,α,0,β ,n,q) � 2α−β

(1− r)2(α−β ) r2(1+β+nq) .

To minimize 2α−β

(1−r)2(α−β) r2(1+β+nq) over all r ∈ (0,1) , we take r0 = 1+β+nq
1+α+nq . The opti-

mality of the exponent is a consequence of [9, Th. 2]. �
Taking into account Corollary 3 and Proposition 4, there are many different ways

to obtain a polynomial estimate for generalized Jacobi weights of type (1). We propose
below an inequality for the most general case. However, it is possible to find better
estimates for specific cases with precise values of the zeros of the weight.

THEOREM 3. Let −1 = x1 < x2 < .. . < xm−1 < xm = 1 , αi � βi � − 1
2 for

i = 1, i = m and αi � βi � 0 for i = 2, . . . ,m− 1 . The weights u and w are de-
fined by

u(x) =
m

∏
i=1

|x− xi|αi , w(x) =
m

∏
i=1

|x− xi|βi . (18)

Then for q ∈ (0,∞) and p ∈ Pn the inequality

‖p‖q
q,w � D(u,w,n,q) ‖p‖q

q,u

holds with D(u,w,n,q) satisfying

D(u,w,n,q)�max

{
K1 B1(α1,β1,n,q),Km B1(αm,βm,n,q), max

j=2,...,m−1

{
I j

J j
B0(α j,β j,n,q)

}}

where

K1 := ∏m
i=2(1+ xi)βi

∏m
i=2(1+ xi)αi

2α2+...+αm4α1−β1

(1+ x2)α1−β1
, Km :=

[
m−1

∏
i=1

(1− xi)βi

(1− xi)αi

]
2α1+...+αm−14αm−βm

(1− xm−1)αm−βm
,

I j := 2α j−1+α j+1

j−1

∏
i=1

(x j+1− xi)βi
m

∏
i= j

(xi − x j−1)βi ,

Jj :=
j−2

∏
i=1

(x j−1− xi)αi(x j − x j−1)α j−1+α j(x j+1− x j)α j+1
m

∏
i= j+2

(xi − x j+1)αi

(as usual, any product over the empty set is equal to 1) and B0 , B1 are estimated in
Propositions 3 and 4. Moreover,

D(u,w,n,q)�max

{
K1 B1(α1,β1,1,q),Km B1(αm,βm,1,q), max

j=2,...,m−1

{
I j

J j
B0(α j,β j,1,q)

}}
nd

and the exponent d := max{2(α1−β1),α2−β2, . . . ,αm−1−βm−1,2(αm−βm)} of n is
optimal.
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Proof. We divide the interval [−1,1] into m subintervals and integrate separately
on each of them:

∫ 1

−1
|p(x)|q w(x)dx =

∫ x2−1
2

−1
+

∫ x2+x3
2

x2−1
2

+ . . . +
∫ xm−1+1

2

xm−2+xm−1
2

+
∫ 1

xm−1+1
2

.

On the first interval we have

w(x)
(1+ x)β1

�
m

∏
i=2

(1+ xi)βi and
u(x)

(1+ x)α1
�

m

∏
i=2

(
1+ xi

2

)αi

and by Proposition 4,

∫ x2−1
2

−1
|p(x)|q w(x)dx �

m

∏
i=2

(1+ xi)βi

∫ x2−1
2

−1
|p(x)|q (1+ x)β1dx

=
m

∏
i=2

(1+ xi)βi

(
1+ x2

4

)1+β1 ∫ 1

−1

∣∣∣∣p
(

1+ x2

4
t +

x2−3
4

)∣∣∣∣
q

(1+ t)β1dt

�
m

∏
i=2

(1+ xi)βi

(
1+ x2

4

)1+β1

B1(α1,β1,n,q)
∫ 1

−1

∣∣∣∣p
(

1+ x2

4
t +

x2−3
4

)∣∣∣∣
q

(1+ t)α1dt.

Therefore,

∫ x2−1
2

−1
|p(x)|q w(x)dx � K1 B1(α1,β1,n,q)

∫ x2−1
2

−1
|p(x)|q u(x)dx.

Analogously, for the integral over the last segment we get an inequality as above with

the constant Km instead of K1 . If x ∈
(

x j−1+x j
2 ,

x j+x j+1
2

)
for j ∈ {2, . . . ,m−1} then

w(x)
|x− x j|β j

�
j−1

∏
i=1

(x j+1− xi)βi
m

∏
i= j+1

(xi − x j−1)βi

=
I j

2α j−1+α j+1(x j − x j−1)β j
,

u(x)
|x−x j|α j

�
j−2

∏
i=1

(xj−1− xi)αi

(
xj−xj−1

2

)α j−1
(
x j+1−x j

2

)α j+1 m

∏
i= j+2

(xi−x j+1)αi

=
Jj

2α j−1+α j+1(xj−xj−1)α j
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and by Corollary 3,

∫ x j+x j+1
2

x j−1+x j
2

|p(x)|q w(x)dx

� I j

2α j−1+α j+1(x j − x j−1)β j

∫ x j+x j+1
2

x j−1+x j
2

|p(x)|q |x− x j|β j dx

=
(x j+1− x j−1)1+β j I j

2α j−1+α j+1+1+β j(x j − x j−1)β j

×
∫ 1

−1

∣∣∣∣p
(

x j+1− x j−1

4
t +

2x j + x j+1 + x j−1

4

)∣∣∣∣
q ∣∣∣∣t + x j−1−2x j + x j+1

x j+1− x j−1

∣∣∣∣
β j

dt

� (x j+1− x j−1)1+β j I j

2α j−1+α j+1+1+β j(xj−xj−1)β j

(x j+1− x j−1)α j−β j B0(α j,β j,n,q)
[2(x j − x j−1)]α j−β j

∫ 1

−1
|p(. . .)|q |. . .|α j dt

=
2α j−β j I j

2α j−1+α j+1(x j − x j−1)β j

B0(α j,β j,n,q)
[2(x j − x j−1)]α j−β j

∫ x j+x j+1
2

x j−1+x j
2

|p(x)|q ∣∣x− x j
∣∣α j dx.

Taking into account the estimate for u(x)
|x−x j |α j we obtain the inequality

∫ x j+x j+1
2

x j−1+x j
2

|p(x)|q w(x)dx � I j

J j
B0(α j,β j,n,q)

∫ x j+x j+1
2

x j−1+x j
2

|p(x)|q u(x)dx.

The optimality of the exponent d has been proved in [9, Th. 2]. �

An analogue of Theorem 3 can be easily proved also for weights of form (1).
We can also obtain similar estimates to these in Proposition 2 for generalized Ja-

cobi weights (18). It is sufficient to take ji ∈N, ki ∈N0 such that βi
q � ki

ji
� αi

s for
i = 1, . . . ,m. Then we can apply Theorem 3) and use analogous arguments as in the
proof of Proposition 2.
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