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Abstract. In this paper, we introduce two classes of new geometric constants for Banach spaces
by using the Heinz means that interpolate between the geometric and arithmetic means. One
of these constants is closely related to the modulus of convexity of the space and it seems to
represent a useful tool to estimate the exact values of the James and von Neumann-Jordan con-
stants of some Banach spaces, while the study of the other one seems to be more complicated.
Moreover, we investigate some geometric properties related to these constants and calculate the
precise values of these two constants for several Banach spaces. We also study the stability under
norm perturbations of these constants.

1. Introduction

There are various ways for constructing the means between two positive numbers
a and b . One of the most remarkable, which interpolates in a certain way between
the arithmetic and geometric means is the so-called Heinz mean Mν in the parameter
0 � ν � 1, defined by

Mν(a,b) =
aνb1−ν +a1−νbν

2
.

One can easily show that the Heinz means are “inbetween” the geometric mean and the
arithmetic mean, i.e.

√
ab = M 1

2
(a,b) � Mν (a,b) � M1(a,b) =

a+b
2

, ν ∈ [0,1].

It is easy to see that the Heinz mean is convex as a function of ν on the interval [0,1] ,
attains minimum at ν = 1

2 , and attains maximum at ν = 0 and ν = 1. Moreover,
Mν(a,b) is symmetric with respect to ν = 1

2 , i.e.

Mν (a,b) = M1−ν(a,b), ν ∈ [0,1].

Throughout the paper, we shall assume that X is a Banach space with the dual
space X∗ . As usual, we will use SX = {x ∈ X : ‖x‖ = 1} and BX = {x ∈ X : ‖x‖ � 1}
to denote the unit sphere and the closed unit ball of X , respectively.
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Recently many investigations have been devoted to geometric constants of a Ba-
nach space X , which enable us to make precise descriptions on various geometric prop-
erties of X . It should be noted that if y and −y are antipodal points on the unit sphere
SX , then ‖x+y‖ , ‖x−y‖ and 2 can be regarded as the lengths of the sides of the trian-
gle Txy with vertices x , y and −y lying on SX . Therefore, many geometric constants
of Banach spaces can be regarded as the result of some kind of estimation of the lengths
of the sides of these triangles when x and y move on SX . For instance, if we consider
the arithmetic mean of the lengths of the non-constant sides of Txy , we get the constants

A1(X) = inf
x∈SX

sup
y∈SX

M1
(‖x+ y‖,‖x− y‖)

and
A2(X) = sup

x,y∈SX

M1
(‖x+ y‖,‖x− y‖),

introduced by Baronti, Casini and Papini [4] in 2000.
Moreover, if we consider the geometric mean of the lengths of the non-constant

sides of Txy , we get the constants

t(X) = inf
x∈SX

sup
y∈SX

M 1
2

(‖x+ y‖,‖x− y‖)

and
T (X) = sup

x,y∈SX

M 1
2

(‖x+ y‖,‖x− y‖),
introduced by Alonso and Llorens-Fuster [1] in 2008.

Following this line of research, we will introduce two classes of new geometric
constants based on averaging the lengths of the sides of Txy by considering the Heinz
means, which are more general than the above constants. These constants are also
proved to be connected with the well known modulus of convexity and other geometric
constants which allow us to compute the precise values of these two constants for some
interesting spaces. The results presented in this work are more general than the known
results about the constants mentioned above.

2. Preliminaries

We start by reviewing some notions and definitions which will be needed in the
sequel.

The Clarkson modulus of convexity of X [10] is the function δX : [0,2] → [0,1]
given by

δX (ε) = inf

{
1− ‖x+ y‖

2
: x,y ∈ BX , ‖x− y‖� ε

}

= inf

{
1− ‖x+ y‖

2
: x,y ∈ SX , ‖x− y‖= ε

}
.
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The function δX is continuous on [0,2) , increasing on [0,2] and strictly increasing on
[ε0(X),2] , where ε0(X) = sup{ε ∈ [0,2] : δX (ε) = 0} is the so-called the characteristic
of convexity of X . A Banach space X is said to be uniformly convex if δX (ε) > 0 for
0 < ε
� 2, or equivalently, if ε0(X) = 0.

Recall that a Banach space X is called to be uniformly non-square (see [11]) if
there exists δ ∈ (0,1) such that either ‖x+y‖� 2(1−δ ) or ‖x−y‖� 2(1−δ ) when-
ever x,y ∈ SX , a property which in its turn implies that X is reflexive. It is easy to
check that X is uniformly non-square if and only if ε0(X) < 2.

In order to measure the degree of uniform non-squareness of X , Gao [8] in 1982
defined the constant

J(X) = sup
x,y∈SX

min
{‖x+ y‖,‖x− y‖}

usually called the non-square or James constant. It is related to the Clarkson modulus
by the equality

J(X) = sup
{

ε ∈ (0,2) : δX (ε) < 1− ε
2

}
.

Gao [8] also introduced the constant

j(X) = inf
x∈SX

sup
y∈SX

max
{‖x+ y‖,‖x− y‖}.

In connection with the celebrated work of Jordan and von Neumann concerning in-
ner products [12], the von Neumann-Jordan constant of X was introduced by Clarkson
[5] as the smallest constant C for which

1
C

� ‖x+ y‖2 +‖x− y‖2

2(‖x2‖+‖y2‖) � C

holds for all x,y ∈ X with (x,y) �= (0,0) . If C is the best possible constant on the right-
hand side of the above inequality, then so is 1

C on the left-hand one. An equivalent
definition of the NJ constant is found in [13] as

CNJ(X) = sup

{‖x+ y‖2 +‖x− y‖2

2(‖x2‖+‖y2‖) : x ∈ SX , y ∈ BX

}
.

As regards the above constants, we collect some basic properties of them (see
[1, 4, 14]):

(i)
√

2 � J(X) � T (X) � A2(X) � 2 and 1 � CNJ(X) � 2;

(ii) max
{
J(X),

√
2ε0(X)

}
� T (X) � A2(X) �

√
2CNJ(X) ;

(iii) X is a Hilbert space if and only if CNJ(X) = 1;

(iv) If X is a Hilbert space, then J(X) =
√

2, T (X) =
√

2, A2(X) =
√

2 and the
converse is not true for each condition;
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(v) CNJ(X) = CNJ(X∗) and A2(X) = A2(X∗) , whereas J(X) �= J(X∗) and T (X) �=
T (X∗) in general;

(vi) X is uniformly non-square if and only if one of the following is true:

(a) J(X) < 2, (b)CNJ(X) < 2, (c)T (X) < 2, (d)A2(X) < 2.

Now, let us introduce the constants based on the Heinz means of the lengths of the
sides of Txy .

DEFINITION 1. For a given Banach space X , let

Hν(X) = sup
x,y∈SX

Mν
(‖x+ y‖,‖x− y‖)

= sup
x,y∈SX

‖x+ y‖ν‖x− y‖1−ν +‖x+ y‖1−ν‖x− y‖ν

2

and

hν(X) = inf
x∈SX

sup
y∈SX

Mν
(‖x+ y‖,‖x− y‖)

= inf
x∈SX

sup
y∈SX

‖x+ y‖ν‖x− y‖1−ν +‖x+ y‖1−ν‖x− y‖ν

2
,

where 0 � ν � 1.

REMARK 1. Obviously,
√

2 � Hν(X) � 2 for 0 � ν � 1.

3. Properties of Hν(X) and hν(X)

From the definitions, it is clear that hν(X) � Hν(X) for any space X . Since

min
{‖x+ y‖,‖x− y‖}�

√
‖x+ y‖‖x− y‖

� ‖x+ y‖ν‖x− y‖1−ν +‖x+ y‖1−ν‖x− y‖ν

2

� ‖x+ y‖+‖x− y‖
2

,

it follows that

j(X) � t(X) � hν(X) � A1(X) � 2 (3.1)

and

J(X) � T (X) � Hν(X) � A2(X) � 2. (3.2)
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EXAMPLE 1. It is well known (see [1, 4]) that t(�p) = A1(�p) = 2
1
p for 1 �

p � 2. Hence, from (3.1) it follows that also hν(X) = 2
1
p . Moreover, T (�p) =

A2(�p) = max{2 1
p ,21− 1

p } for all 1 � p < ∞ . Consequently, (3.2) gives Hν(�p) =

max{2 1
p ,21− 1

p } .

EXAMPLE 2. For X = (R2,‖ · ‖∞) , it is shown in [1] that T (X) = 2 and in [4, 9]
that A2(X) = J(X) = T (X) . Hence, from (3.2) it follows that Hν(X) = 2. Furthermore,
it is well known (see [1, 4, 9]) that t(X) =

√
2, A1(X) = 3

2 and j(X) = 1. Therefore,
thanks to (3.1), we have

√
2 � hν(X) � 3

2 . Note that this is a space for which j(X) <
hν(X) .

EXAMPLE 3. Let Xo be the space R
2 endowed with a norm whose unit sphere

is a regular octagon. In [1, 4] it has been shown that t(Xo) = T (Xo) = A1(Xo) =
A2(Xo) =

√
2. Therefore, by applying the inequalities (3.1) and (3.2), we obtain that

also hν(Xo) = Hν(Xo) =
√

2.

We shall see that the constant Hν(X) allows to characterize uniformly non-square
spaces. It was shown that a Banach space X is uniformly non-square if and only if either
A2(X) < 2 or T (X) < 2. So bearing in mind inequalities (3.2), we get the following
proposition.

PROPOSITION 1. A Banach space X is uniformly non-square if and only if Hν(X)
< 2 for 0 � ν � 1 .

PROPOSITION 2. A Banach space X is not uniformly non-square if and only if
any of the following properties hold:

(i) Hν(X) = 2 ;

(ii) J(X) = 2 .

Proof. It is known that both A2(X) = 2 and J(X) = 2 characterize the spaces
which are not uniformly non-square (see [4, 9]). From (3.2) it follows that the same is
the case for Hν (X) = 2. �

With respect to the other bound of Hν(X) in item (i) of Remark 1, the follow-
ing proposition shows that it is attained in Hilbert spaces, but Example 3 tells us that
Hν(X) =

√
2 is not characteristic of such spaces when dim(X) = 2.

PROPOSITION 3. If X is a Hilbert space, then Hν(X) =
√

2 for 0 � ν � 1 and
the converse does not hold in general.

It is natural to ask which necessary and sufficient conditions hold for Banach
spaces X satisfying Hν(X) =

√
2 for 0 � ν � 1. It is shown in [14] that, for a Ba-

nach space of three or more dimensions, the James constant becomes
√

2 if and only
if X is a Hilbert space. Using the same method in [14], we can get the following
proposition, which answers a question posed by Alonso and Llorens-Fuster [1].
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PROPOSITION 4. If dim(X) � 3 , then Hν(X) =
√

2 for 0 � ν � 1 if and only if
X is a Hilbert space.

With respect to the bounds of hν(X) , it is obvious that hν(X) � 2. The following
proposition provides some information about the extreme value 2.

PROPOSITION 5. Let 0 � ν � 1 . For a Banach space X the following properties
are equivalent:

(i) j(X) = 2 ;

(ii) hν(X) = 2 .

Moreover, any of the above properties implies that X is a not-uniformly non-square in-
finite dimensional space. Consequently, in finite-dimensional spaces the two constants
are less than 2 .

Proof. From the inequality

j(X) � hν(X) � 2,

the above conditions are equivalent. In [1, Proposition 9] it is proved that X is a not-
uniformly non-square infinite-dimensional space whenever j(X) = 2, which completes
the proof. �

In [4] it is shown that if X is any of the spaces c0 , c , or l∞ , then A1(X) = 3
2 . This

proves that for such spaces hν(X) � 3
2 and that the reciprocal result to the one in the

second part of Proposition 5 is not true. Moreover, if X is any of the spaces C[0,1] ,
C0[0,1] , or L1[0,1] , then A1(X) = 2 which implies that hν(X) = 2. Also it is proved in
[23] that if dim(X) = 2, then A1(X) � 3

2 , and then the same bound is valid for hν(X) .
Notice that this estimate is an improvement of a result given by Baronti, Casini and
Papini [4].

PROPOSITION 6. Let 0 � ν � 1 . For any Banach space X , hν(X) � Mν
(
1, 3

2

)
.

Proof. Suppose that x ∈ SX . In any two-dimensional subspace of X that contains
x we can find z∈ SX such that ‖x−z‖= 1. Let w = x−z . Thus, 3x = (x+w)+(x+z)
which gives 3 � ‖x +w‖+ ‖x + z‖ . Hence, either ‖x +w‖ � 3

2 or ‖x + z‖ � 3
2 with

‖x−w‖= ‖x− z‖ = 1. Therefore, we have

sup
y∈SX

Mν
(‖x+ y‖,‖x− y‖) � Mν

(
1,

3
2

)
.

Since x is arbitrary, so we obtain the desired inequality. �

According to Proposition 19 of [1], we get the following result.
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PROPOSITION 7. For every Banach space X ,

2 � j(X)J(X) � hν(X)J(X) � hν(X)Hν(X).

REMARK 2. With regards the inequalities in Proposition 7 all the situations are

possible. Gao [9] showed that j(�p) = J(�p) = 2
1
p for 1 � p < 2, whereas j(�p) = 2

1
p

and J(�p) = 21− 1
p for 2 � p < ∞ . Therefore, j(�p)J(�p) > 2 for 1 � p < 2 and

j(�p)J(�p) = 2 for 2 � p < ∞ . Example 1 shows that j(�p)J(�p) = hν(�p)J(�p) =

hν(�p)Hν(�p) = 2
2
p > 2 for 1 � p < 2. Example 2 shows that for X = (R2,‖ ·‖∞) , we

have hν(X) =
√

2 and Hν(X) = 2 and from [9] we know that j(X) = 1 and J(X) = 2.
Therefore for this space we deduce that 2 = j(X)J(X) < hν(X)J(X) < Hν(X)J(X) .
Example 3 shows that all the inequalities can be identities.

Now, let us state an identity between the modulus of convexity and Hν(X) which
is motivated by [6].

THEOREM 1. For any Banach space X ,

Hν(X) = sup
{

Mν
(
ε,2(1− δX(ε))

)
: 0 � ε � 2

}
,

where 0 � ν � 1 .

Proof. Suppose that 0 � ν � 1 and

sup
{

Mν
(
ε,2(1− δX(ε))

)
: 0 � ε � 2

}
= K.

From the definition of δX(ε) , we have δX (‖x− y‖) � 1− 1
2‖x+ y‖ for x,y ∈ SX . Then

‖x+ y‖ν‖x− y‖1−ν +‖x+ y‖1−ν‖x− y‖ν

2

� εν21−ν(1− δX(ε))1−ν + ε1−ν2ν(1− δX(ε))ν

2
= K,

from which it follows that Hν (X) � K . On the other hand, let 0 � ε � 2. Then, for any

η > 0 there exist x,y ∈ SX such that ‖x− y‖ = ε and 1− ‖x+y‖
2 � δX (ε)+ η . Hence,

we have

Hν(X) � ‖x+ y‖ν‖x− y‖1−ν +‖x+ y‖1−ν‖x− y‖ν

2

� εν21−ν(1− δX(ε))1−ν + ε1−ν2ν(1− δX(ε))ν

2
.

Since η is arbitrary, it follows that Hν(X) � K and hence the desired equality. �
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COROLLARY 1. For any Banach space X ,

max
(
J(X),Mν(ε0,2)

)
� Hν(X),

where 0 � ν � 1 .

The following example shows a space for which the modulus of convexity is
known and for which we can compute Hν(X) by applying Theorem 1.

EXAMPLE 4. Let W be the space R
2 endowed with the norm

∥∥(x1,x2)
∥∥

W = max
{

2|x1|,
√

x2
1 + x2

2

}
.

Hence, due to [3], we know that

δW (ε) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, 0 � ε �
√

3,

1−2
√

1− ε2

4 ,
√

3 � ε �
√

16
5 ,

1−
√

1− ε2

16 ,
√

16
5 � ε � 2.

By virtue of Theorem 1, we obtain

Hν(W ) = Mν
(√

3,2(1− δW (
√

3))
)

= 3
ν
2 ·2−ν +3

1−ν
2 ·2ν−1.

In particular, it is elementary to check that T (W ) =
√

2
√

3 ≈ 1.8612 and A2(W ) =
1 +

√
3

2 ≈ 1.8660. Therefore,
√

2
√

3 � Hν(W ) � 1 +
√

3
2 . It is easy to check that

J(W ) = 4√
5
≈ 1.7888. Consequently, for this space W , we have J(W ) < Hν(W ) .

It is clear that for all Banach spaces X ,

max
{
J(X),

√
2ε0(X)

}
� Hν (X) �

√
2CNJ(X), (3.3)

where all the terms coincide if X is not uniformly non-square.
The inequalities (3.3) allows us to obtain Hν(X) for some spaces for which J(X)

and CNJ(X) are well known.

EXAMPLE 5. Let V be the space R
2 endowed with the norm

∥∥(x1,x2)
∥∥

V = max
{√

x2
1 +2x2

2,
√

2x2
1 + x2

2

}
.

The closed unit ball of V is just the set

BV = max
{
(x1,x2) ∈ R

2 : x2
1 +2x2

2 � 1, 2x2
1 + x2

2 � 1
}
.
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Notice that ε0(V ) = 0. In [16] it was shown that

CNJ(V ) =
4
3

and J(V ) =

√
8
3
.

Therefore, J(V ) =
√

2CNJ(V ) and from (3.3), we get

Hν(V ) =

√
8
3
.

EXAMPLE 6. For β � 1, let Xβ be the space �2 endowed with the norm

|x|β = max
{‖x‖2,β‖x‖∞

}
.

The spaces Xβ have been extensively studied because they play a major role in Metric
Fixed Point Theory. It is shown in [13] that

CNJ(Xβ ) = min{2,β 2} and J(Xβ ) = min{2,β
√

2}.

In particular, if 1 < β <
√

2, CNJ(Xβ ) = β 2 and J(Xβ ) = β
√

2 >
√

2ε0(Xβ ) =√
2
√

β 2 −1. Therefore, thanks to (3.3), we obtain

Hν(Xβ ) = β
√

2.

EXAMPLE 7. For λ > 0, let Zλ be the space R
2 endowed with the norm

|x|λ =
(‖x‖2

p + λ‖x‖2
q

) 1
2 .

It is shown in [24] that

(i) if 2 � p � q � ∞ , then J(Zλ ) = 2
√

λ+1

2
2
p +λ2

2
q

and CNJ(Zλ ) = 2(λ+1)

2
2
p +λ2

2
q

.

Thus, J(Zλ ) =
√

2CNJ(Zλ ) and from (3.3), we get

Hν
(
Zλ

)
= 2

√
λ +1

2
2
p + λ2

2
q

.

(ii) if 1 � p � q � 2, then J(Zλ ) =

√
2

2
p +λ2

2
q

λ+1 and CNJ(Zλ ) = 2
2
p +λ2

2
q

2(λ+1) .

Hence, J(Zλ ) =
√

2CNJ(Zλ ) and (3.3) gives

Hν
(
Zλ

)
=

√
2

2
p + λ2

2
q

λ +1
.

Moreover, it is proved in [25] that
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(iii) if 1 � p � 2 � q � ∞ , then CNJ(Zλ ) � 2
2
p +2λ

2
2
q λ+2

.

Thus, by applying (3.3), we have

Hν
(
Zλ

)
�

√
2CNJ

(
Zλ

)
�

√√√√2
(
2

2
p +2λ

)
2

2
q λ +2

.

On the one hand, let x1 = (a,a) and y1 = (a,−a) , where a = 1√
2

2
p +λ2

2
q

. Then ‖x1‖λ =

‖y1‖λ = 1, x1 + y1 = (2a,0) and x1− y1 = (0,2a) . Hence, we obtain

Hν
(
Zλ

)
� 2

√
λ +1

2
2
p + λ2

2
q

.

On the other hand, let x2 = (b,0) and y2 = (0,−b) , where b = 1√
λ+1

. Then ‖x2‖λ =
‖y2‖λ = 1, x2 + y2 = (b,−b) and x2− y2 = (b,b) . Hence, we get

Hν
(
Zλ

)
�

√
2

2
p + λ2

2
q

λ +1
.

Therefore, we have

max

{
2

√
λ +1

2
2
p + λ2

2
q

,

√
2

2
p + λ2

2
q

λ +1

}
� Hν

(
Zλ

)
�

√√√√2
(
2

2
p +2λ

)
2

2
q λ +2

.

In the next example, we calculate the constant Hν(X) for two-dimensional Lorentz
sequence space X = d(2)(w,q) where 2 � q < ∞ . For more detailed discussion and
some results concerning Lorentz sequence spaces, we refer the reader to [7, 18, 22].

EXAMPLE 8. (Lorentz sequence space). Let w = (w1,w2) with w1 � w2 > 0.
For 2 � q < ∞ , the two-dimensional Lorentz sequence space d(2)(w,q) is defined as
the space R

2 endowed with the norm

‖(x,y)‖w,q =
{

w1|x|∗q +w2|y|∗q
} 1

q
,

where (|x|∗, |y|∗) is the rearrangement of (|x|, |y|) satisfying |x|∗ � |y|∗ . One has that

J
(
d(2)(w,q)

)
= 2

(
w1

w1 +w2

) 1
q

and CNJ
(
d(2)(w,q)

)
= 2

(
w1

w1 +w2

) 2
q

.

Therefore, J
(
d(2)(w,q)

)
=

√
2CNJ

(
d(2)(w,q)

)
and due to (3.3), we get

Hν
(
d(2)(w,q)

)
= 2

(
w1

w1 +w2

) 1
q

.
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We now compute the constant Hν(X) in the case when X is a two-dimensional

Cesàro sequence space ces(2)
2 . The Cesàro sequence space was defined by Shue [21] in

1970. It is very useful in the theory of matrix operators and others.
Let � be the space of real sequences. For 1 < p < ∞ , the Cesàro sequence space

cesp is defined by

cesp =
{

x ∈ � : ‖x‖ =
∥∥(

x(i)
)∥∥ =

( ∞

∑
n=1

(
1
n

n

∑
i=1

∣∣x(i)|)p) 1
p

< ∞
}

.

The geometry of Cesàro sequence spaces and their generalizations have been exten-
sively studied in [7, 17, 19, 20, 21]. Let us restrict ourselves to the two-dimensional

Cesàro sequence space ces(2)
p which is just R

2 equipped with the norm defined by

∥∥(x,y)
∥∥ =

(
|x|p +

( |x|+ |y|
2

)p) 1
p

for all (x,y) ∈ R
2 .

EXAMPLE 9. (Cesàro sequence space). The two-dimensional Cesàro sequence

space ces(2)
2 is defined as the space R

2 endowed with the norm

∥∥(x,y)
∥∥ =

(
|x|2 +

( |x|+ |y|
2

)2) 1
2

.

It is shown in [19] that

CNJ
(
ces(2)

2

)
= 1+

1√
5

and J
(
ces(2)

2

)
=

√
2+

2√
5
.

Therefore, J
(
ces(2)

p
)

=
√

2CNJ
(
ces(2)

p
)

and thanks to (3.3), we obtain

Hν
(
ces(2)

2

)
=

√
2+

2√
5
.

The equality J(X) =
√

2CNJ(X) holds in the above examples. Although it seems
to suggest some kind of symmetry, it is untrue in general, as the following example
shows.

EXAMPLE 10. (Day-James �∞ − �1 space). Let �∞ − �1 be R
2 endowed with the

norm defined by

‖(x1,x2)‖ =

{
‖(x1,x2)‖∞, x1x2 � 0,

‖(x1,x2)‖1, x1x2 � 0.
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Thus, δ�∞−�1(ε) = max
{
0, ε−1

2

}
. In [13] it was shown that J(�∞ − �1) = 3

2 . From
Theorem 1 it immediately follows that Hν(�∞ − �1) = 3

2 . The calculation of the von
Neumann-Jordan constant of this space was a part of Problem 2 in [13]. It was solved
independently in two recent papers, namely [26] and [2], and the value is CNJ(�∞ −
�1) = 3+

√
5

4 . Therefore, we have

J(�∞ − �1) = Hν(�∞ − �1) =
3
2

<
√

2CNJ(�∞ − �1) ≈ 1.618.

EXAMPLE 11. (Day-James �2− �1 space). Let �2− �1 be R
2 endowed with the

norm defined by

‖(x1,x2)‖ =

{
‖(x1,x2)‖2, x1x2 � 0,

‖(x1,x2)‖1, x1x2 < 0.

In [13] it was shown that J(�2 − �1) =
√

8
3 ≈ 1.633. Moreover, from [2] and [26] we

know that CNJ(�2 − �1) = 3
2 . It is well known [10] that ε0(�2 − �1) =

√
2 and that the

modulus of convexity δ�2−�1 is the function

δ�2−�1(ε) =

{
0, 0 � ε �

√
2,

min
{
1−

√
2− ε2

2 ,1−
√

1− ε2

8

}
,

√
2 � ε � 2.

Owing to Theorem 1 it is easy to derive that

Hν(�2− �1) = Mν
(√

2,2(1− δ�2−�1(
√

2))
)

= 2−
ν
2 +2

ν−1
2 .

In particular, we have T (�2 − �1) =
√

2
√

2 (see [1]) and A2(�2 − �1) = 1 +
√

2
2 (see

[1]). Thus,
√

2
√

2 � Hν(�2− �1) � 1+
√

2
2 . Note that T (�2− �1) < A2(�2− �1) . With

the help of inequalities (3.3), for this space one has

J(�2− �1) <
√

2ε0(�2− �1) � Hν(�2− �1) <
√

2CNJ(�2− �1).

On the other hand, it is easy to check that, in fact, the dual space (�2− �1)∗ is just
R

2 endowed with the �2− �∞ norm defined by

‖(x1,x2)‖ =

{
‖(x1,x2)‖2, x1x2 � 0,

‖(x1,x2)‖∞, x1x2 < 0.

Again from [13] we know that J((�2− �1)∗) � 1+ 1√
2
≈ 1.7071 > J(�2− �1) . It is easy

to see that CNJ(�2−�1) =CNJ((�2−�1)∗) = 3
2 and ε0((�2−�1)∗) = 1. Bearing in mind

inequalities (3.3), we deduce that

1+
1√
2

� J((�2− �1)∗) � T ((�2− �1)∗) � Hν((�2 − �1)∗)

� A2((�2− �1)∗) = A2(�2− �1) = 1+
1√
2
.
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Hence, J((�2− �1)∗) = Hν((�2− �1)∗) = 1+ 1√
2

� Hν(�2− �1) . In particular, we have

T ((�2− �1)∗) = 1+ 1√
2

>
√

2
√

2 = T (�2− �1) and A2((�2− �1)∗) = A2(�2− �1) = 1+
1√
2
. Note that the space �2− �1 is an example for which Hν (�2− �1) �= Hν((�2− �1)∗)

in general.

4. Stability under norm perturbations

THEOREM 2. For any Banach space X ,

Hν(X) = sup
x,y∈BX

Mν
(‖x+ y‖,‖x− y‖)

and

hν(X) = inf
x∈SX

sup
y∈BX

Mν
(‖x+ y‖,‖x− y‖),

where 0 � ν � 1 .

Proof. Suppose that u ∈ SX and v ∈ BX . It follows from [15, p. 60] that there
exist x,y ∈ SX such that

‖u− v‖= ‖x− y‖ and ‖u+ v‖� ‖x+ y‖.
Hence, we have

Mν
(‖u− v‖,‖u+ v‖)� Mν

(‖x+ y‖,‖x− y‖)
� sup

x,y∈SX

Mν
(‖x+ y‖,‖x− y‖)

= Hν(X),

from which it follows that

Hν(X) � sup
x∈SX ,y∈BX

Mν
(‖x+ y‖,‖x− y‖).

On the other hand, let u,v ∈ BX assume without loss of generality that ‖u‖ � ‖v‖ > 0.
Thus, we have

Mν
(‖u− v‖,‖u+ v‖)= ‖u‖Mν

(∥∥∥∥ u
‖u‖ −

v
‖u‖

∥∥∥∥,

∥∥∥∥ u
‖u‖ +

v
‖u‖

∥∥∥∥
)

� sup
x∈SX ,y∈BX

Mν
(‖x+ y‖,‖x− y‖).

This implies that

sup
x∈SX ,y∈BX

Mν
(‖x+ y‖,‖x− y‖) � sup

x,y∈BX

Mν
(‖x+ y‖,‖x− y‖)
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and so the first identity follows. Similarly, we get the second identity. �
Recall the Banach-Mazur distance between isomorphic Banach spaces X and Y

is defined as

d(X ,Y ) = inf
{‖T‖‖T−1‖},

where the infimum is taken over all bicontinuous linear operators T from X onto Y .

THEOREM 3. Let X and Y be isomorphic Banach spaces. Then for 0 � ν � 1 ,

Hν(X)
d(X ,Y )

� Hν(Y ) � Hν(X)d(X ,Y ).

In particular, Hν(X) = Hν(Y ) if X and Y are isometric.

Proof. Suppose that x,y ∈ SX . By the definition of Banach-Mazur distance, for
each ε > 0, there exists an operator T from X onto Y such that

‖T‖‖T−1‖ � d(X ,Y )(1+ ε).

Consider

y1 =
Tx1

‖T‖ ∈ BY and y2 =
Tx2

‖T‖ ∈ BY .

According to Theorem 2, we obtain

Mν
(‖x1 + x2‖,‖x1− x2‖

)
= ‖T‖Mν

(‖T−1(y1 + y2)‖,‖T−1(y1− y2)‖
)

� d(X ,Y )(1+ ε)Mν
(‖y1 + y2‖,‖y1− y2‖

)
� d(X ,Y )(1+ ε)Hν(Y ),

which implies that

Hν (X) � d(X ,Y )(1+ ε)Hν(Y ).

The last inequality is true for every ε > 0, so we obtain the left-hand side of our as-
sertion. The right-hand side of our assertion follows by simply interchanging X and
Y . �

COROLLARY 2. Let X1 = (X ,‖ · ‖1) and X2 = (X ,‖ · ‖2) , where ‖ · ‖1 and ‖ · ‖2

are two equivalent norms in X such that

α‖ · ‖1 � ‖ · ‖2 � β‖ · ‖1 (0 < α � β ).

Then

α
β

Hν(X1) � Hν(X2) � β
α

Hν(X1),

where 0 � ν � 1 .
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Proof. This follows from Theorem 3 and the fact that d(X1,X2) � β
α . �

A Banach space X is finitely representable in a Banach space Y if for every ε > 0
and for every finite-dimensional subspace X0 of X , there exists a finite-dimensional
subspace Y0 of Y with dim(X0) = dim(Y0) such that d(X0,Y0) � 1+ ε .

COROLLARY 3. Let X be a Banach space which is finitely representable in Y .
Then for 0 � ν � 1 ,

(i) Hν(X) � Hν(Y ) .

(ii) Hν(X∗∗) = Hν(X) .

Proof. (i) For any x,y ∈ SX , let X0 be a two-dimensional subspace that contains
x and y . For every ε > 0, since X is finitely representable in Y , there exists a two-
dimensional subspace Y0 of Y such that d(X0,Y0) � 1+ ε . By virtue of Theorem 3 to
the pair of X0 and Y0 , we obtain

Hν(X) � (1+ ε)Hν(Y ).

The last inequality is true for every ε > 0, so we obtain the desired inequality.
(ii) For any Banach space X , by using the principle of local reflexivity, X∗∗ is

always finitely representable in X . Hence, due to (i), we have Hν(X∗∗) � Hν(X) . On
the other hand, X is isometric to a subspace of X∗∗ and so Hν (X) � Hν(X∗∗) . �
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[16] E. LLORENS-FUSTER, E. M. MAZCUÑÁN-NAVARRO AND S. REICH, The Ptolemy and Zbăganu
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