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EQUALITY CASES OF INEQUALITIES INVOLVING

GENERALIZED CSISZÁR AND TSALLIS TYPE f –DIVERGENCES

MAREK NIEZGODA

(Communicated by S. Varošanec)

Abstract. In this note, we study the problem of equality case of two inequalities involving gener-
alized Csiszár f -divergences and generalized Tsallis f -divergences, respectively, with a convex
function f . To this end we use generalized inverses of matrices and inverse-positive matrices.

1. Introduction

Throughout the paper, R+ = [0,∞) and R++ = (0,∞) . Elements of R
n will be

referred to as row n -vectors.
For a convex function f : [0,∞)→R and two nonnegative n -tuples p = (p1, . . . , pn)

and q = (q1, . . . ,qn) , the Csiszár f -divergence is defined by

Cf (p,q) =
n

∑
i=1

pi f

(
qi

pi

)
. (1)

Here 0 f
( 0

0

)
= 0 and 0 f

(
c
0

)
= c lim

t→∞
f (t)
t , c > 0 (see [1, 2, 3]).

The Csiszár-Körner inequality states that

n

∑
i=1

pi f

(
∑n

i=1 qi

∑n
i=1 pi

)
� Cf (p,q) (2)

(see [2, 11]). See [3, 4, 8] for other inequalities for f -divergence.
An extension of definition (1) is given as follows.
Let f : R+ → R be a convex function on R+ , and p = (p1, . . . , pn) ∈ R

n
+ , q =

(q1, . . . ,qn) ∈ R
n
+ , and r = (r1, . . . ,rn) ∈ R

n
+ . Then the generalized Csiszár f -diver-

gence is defined by

Cf (p,q;r) =
n

∑
i=1

ripi f

(
qi

pi

)
(3)

(see [9]).
An n×m real matrix R = (ri j) is said to be positive (entrywise), written as R � 0,

if ri j � 0 for all i = 1, . . . ,n and j = 1, . . . ,m . The symbol RT is used to denote the
transpose of a matrix R .

In [9] the authors proved the following result.
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THEOREM A. [9] Let f : R+ →R be a convex function on R+ . Let p = (p1, . . . , pn)
∈ R

n
++ , q = (q1, . . . ,qn) ∈ R

n
+ and d = (d1, . . . ,dm) ∈ R

m
+ .

Let R be an n×m positive (entrywise) matrix. Denote

p̃ = pR , q̃ = qR and c = dRT . (4)

Assume p̃ ∈ R
m
++ .

Then
Cf (p̃, q̃;d) � Cf (p,q;c) . (5)

Let f : I × [0,∞) → R be a two variables function on I × [0,∞) , where I is an
interval in R . We denote fu(t) = f (t,u) for t ∈ I and u � 0. Then { fu : u ∈ [0,∞)} is
a family of real functions on I . We use the notation

gu(t) = g(t,u) =
f (t,u)− f (t,0)

u
for t ∈ I and u > 0, (6)

g0(t) = g(t,0) = lim
u→0+

f (t,u)− f (t,0)
u

for t ∈ I (7)

(see [7, p. 854]).
For instance, in the standard case fu(t) = tu for t > 0, u � 0, one obtains gu(t) =

tu−1
u = lnu t for u > 0, and g0(t) = lim

u→0+

tu−1
u = ln t .

In what follows we also deal with the Tsallis type divergence (entropy):

Tfu (p,q;r) = Cgu (p,q;r) for u ∈ (0,∞) , (8)

with p = (p1, . . . , pn) ∈ R
n
+ , q = (q1, . . . ,qn) ∈ R

n
+ , r = (r1, . . . ,rn) ∈ R

n
+ (see [9]).

THEOREM B. [9] Let fu : R+ → R be a convex function on R+ for some u > 0 .
Let f0 : R+ →R be a constant function. Let p = (p1, . . . , pn)∈R

n
++ , q = (q1, . . . ,qn)∈

R
n
+ and d = (d1, . . . ,dm) ∈ R

m
+ .

Let R be an n×m positive (entrywise) matrix. Denote

p̃ = pR , q̃ = qR and c = dRT . (9)

Assume p̃ ∈ R
m
++ .

Then
Tfu (p̃, q̃;d) � Tfu (p,q;c) . (10)

The purpose of the present note is to discuss the equality cases of the inequalities
(5) and (10). To do so, we utilize generalized inverses of matrices and inverse-positive
matrices. In particular, we also use both left and right inverses of matrices.

2. Results for Csiszár type f -divergence

Let S be a given m×n real matrix.
We say that n×m real matrix S− is a generalized inverse of S if SS−S = S (see

[13]). When m = n and S is invertible, then S− is unique and S− = S−1 .
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We say that n×m real matrix S+ is a Moore-Penrose inverse of S if SS+S =
S , S+SS+ = S+ , (SS+)T = SS+ and (S+S)T = S+S (see [13]). The Moore-Penrose
inverse of S is unique.

Remind that elements of R
n and of R

m are row vectors. Therefore, in the sequel,
we also treat S as a linear map S : (Rn)T → (Rm)T via vT → S ·vT for v ∈ R

n , where
(Rk)T = {aT : a ∈ R

k} . Analogously, ST can be viewed as a linear map ST : (Rm)T →
(Rn)T via uT → ST ·uT for u ∈ R

m .
The symbols ranS and ranST stand for the ranges (i.e., column spaces) of S and

ST , respectively. That is, ranS = {SvT : v ∈ R
n} and ranST = {STuT : u ∈ R

m} .
An equality case of inequality (5) in Theorem A is described in the following.

THEOREM 1. Let f : R+ →R be a convex function on R+ . Let p = (p1, . . . , pn)∈
R

n
++ , q = (q1, . . . ,qn) ∈ R

n
+ and d = (d1, . . . ,dm) ∈ R

m
+ .

Let S and R be positive (entrywise) real matrices of sizes m× n and n×m,
respectively, such that R = S− . Denote

p̃ = pR , q̃ = qR and c = dRT . (11)

Assume p̃ ∈ R
m
++ .

If
pT ∈ ranST , qT ∈ ranST and dT ∈ ranS, (12)

then
Cf (p̃, q̃;d) = Cf (p,q;c) . (13)

Proof. In light of Theorem A in Section 1 we obtain

Cf (p̃, q̃;d) � Cf (p,q;c) . (14)

On the other hand, it follows from (12) that

pT = STuT , qT = STwT , dT = SvT

for some u,w ∈ R
m and v ∈ R

n . Thus we get p = uS , q = wS and d = vST . So, (11)
implies that p̃ = uSR and q̃ = wSR . Furthermore, by SS−S = S and R = S− , we have

p̃S = uSRS = uS = p

and analogously,
q̃S = wSRS = wS = q.

Now, recall that d = vST . Moreover, (11) gives c = dS−T . Hence c = vSTS−T

and therefore cST = vSTS−T ST = v(SS−S)T = vST = d .
In summary, we have

p = p̃S , q = q̃S and d = cST . (15)
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Simultaneously the matrix S is positive (entrywise). So, by (15) and Theorem A applied
to S , p̃ , q̃ and c , we derive the inequality

Cf (p,q;c) � Cf (p̃, q̃;d) . (16)

By combining (14) and (16) we get (13), as required. �
If rankS = n then there exists an n×m real matrix S−1

l , called a left inverse of S ,
such that S−1

l S = In , where In denotes the n×n identity matrix [13].
If rankS = m then there exists an n×m real matrix S−1

r , called a right inverse of
S , such that SS−1

r = Im , where Im denotes the m×m identity matrix [13].
It is not hard to verify that left- and right-inverses S−1

l and S−1
r are generalized

inverses of S .
For one-sided inverses of S condition (12) simplifies.

COROLLARY 1. Let f : R+ →R be a convex function on R+ . Let p = (p1, . . . , pn)∈
R

n
++ , q = (q1, . . . ,qn) ∈ R

n
+ and d = (d1, . . . ,dm) ∈ R

m
+ .

Let S and R be positive (entrywise) real matrices of sizes m× n and n×m,
respectively. Denote

p̃ = pR , q̃ = qR and c = dRT . (17)

Assume p̃ ∈ R
m
++ .

(i) If rankS = n and R = S−1
l and

dT ∈ ranS, (18)

then
Cf (p̃, q̃;d) = Cf (p,q;c) . (19)

(ii) If rankS = m and R = S−1
r and

pT ∈ ranST and qT ∈ ranST , (20)

then
Cf (p̃, q̃;d) = Cf (p,q;c) . (21)

Proof. (i). Since rankS = n , we have rankST = n . For this reason, ST : (Rm)T →
(Rn)T , where (Rk)T = {aT : a ∈ R

k} , and ranST = (Rn)T . But p ∈ R
n
+ and q ∈ R

n
+ ,

so pT ∈ ranST and qT ∈ ranST . In addition, (18) holds. Thus condition (12) is met, as
wanted.

Now, in order to get (19), it is sufficient to apply Theorem 1.
(ii). Since rankS = m and S : (Rn)T → (Rm)T , therefore ranS = (Rm)T . But

d ∈ R
m
+ , so dT ∈ ranS . Moreover, (20) is fulfilled. Thus condition (12) is satisfied.

Now, by making use of Theorem 1 we get (21). �
An n× n invertible real matrix R is said to be inverse-positive if the matrix R−1

is positive [12].
A consequence of Corollary 1 is the following result for an invertible matrix R .
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COROLLARY 2. Let f : R+ →R be a convex function on R+ . Let p = (p1, . . . , pn)
∈ R

n
++ , q = (q1, . . . ,qn) ∈ R

n
+ and d = (d1, . . . ,dn) ∈ R

n
+ .

Let R be an n×n real matrix such that

(i) R is invertible,

(ii) R is positive (entrywise),

(iii) R is inverse-positive (entrywise).

Denote
p̃ = pR , q̃ = qR and c = dRT . (22)

Assume p̃ ∈ R
n
++ .

Then
Cf (p̃, q̃;d) = Cf (p,q;c) . (23)

Proof. By putting S = R−1 and employing (22) we see that S is invertible and
R = S−1 = S−1

l , rankS = n and ranS = (Rn)T . Therefore (18) holds true.
It is now sufficient to apply Corollary 1, item (i). �

REMARK 1. The class of the n× n matrices R satisfying conditions (i), (ii) and
(iii) in Corollary 2 is not empty, since the n×n identity matrix In is so.

In the next example we show that there are matrices R satisfying the conditions (i)
and (ii) but not (iii). Thus, in general, the inequality (5) need not be an equality.

EXAMPLE 1. Take n = 2 and

R =
(

5 2
2 1

)
. (24)

Then R is positive (entrywise), and detR = 1 �= 0, so R is invertible. Additionally, R
is not inverse-positive (entrywise), since

R−1 =
(

1 −2
−2 5

)
.

We end this section by quoting some definitions and results from Peris’ paper [12]
(with only minor modifications).

For a matrix R , we say that the splitting R = B−A is positive if A � 0 and B � 0
(positive entrywise) (see [12, p. 47]).

A positive splitting R = B−A of a square matrix R is said to be a B-splitting if B
is nonsingular and

(a) for all x ∈ R
n , BxT � 0 implies AxT � 0,

(b) for all x ∈ R
n , (

R
B

)
xT � 0 implies x � 0
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(see [12, p. 52]).
A criterion for the inverse-positivity of a matrix is incorporated in the following

result of Peris [12].

THEOREM C. ( [12, Theorems 1 and 5] ) For a square nonsingular matrix R, the
following conditions are equivalent:

(a) R is inverse-positive.

(b) For all positive splittings of R,

R = B−A, B � 0, A � 0,

there exist a vector v � 0 with v �= 0 and scalar μ ∈ [0,1) such that AvT =
μBvT .

(c) R allows a B-splitting R = B−A such that μ < 1 .

By making use of Theorem C and Corollary 2 we obtain the following.

COROLLARY 3. Under the assumptions of Corollary 2 with condition (iii) re-
placed by condition (b) or (c) in Theorem C, then equality (23) is satisfied.

Proof. Combine Corollary 2 and Theorem C. �

3. Results for Tsallis type fu -divergence

Throughout this section f : I× [0,∞)→R is a two variables function on I× [0,∞) ,
where I is an interval in R . We also use the notation fu(t) = f (t,u) for t ∈ I and u � 0.
In addition, the functions gu(t) = g(t,u) for t ∈ I and u > 0, and g0(t) = g(t,0) for
t ∈ I are defined by (6)-(7).

It is easily seen that the convexity of fu implies the convexity of gu (see (6)).
An equality case of inequality (10) in Theorem B for the Tsallis type fu -divergence

is given below.

THEOREM 2. Let fu : R+ → R be a convex function on R+ for some u > 0 . Let
f0 : R+ →R be a constant function. Let p = (p1, . . . , pn)∈R

n
++ , q = (q1, . . . ,qn)∈R

n
+

and d = (d1, . . . ,dm) ∈ R
m
+ .

Let S and R be positive (entrywise) real matrices of sizes m× n and n×m,
respectively, such that R = S− . Denote

p̃ = pR , q̃ = qR and c = dRT . (25)

Assume p̃ ∈ R
m
++ .

If
pT ∈ ranST , qT ∈ ranST and dT ∈ ranS ,

then
Tfu (p̃, q̃;d) = Tfu (p,q;c) . (26)



EQUALITY CASES OF INEQUALITIES 303

Proof. Apply Theorem 1 for the convex function gu (see (6) and (8)). �

COROLLARY 4. Let fu : R+ →R be a convex function on R+ for some u> 0 . Let
f0 : R+ →R be a constant function. Let p = (p1, . . . , pn)∈R

n
++ , q = (q1, . . . ,qn)∈R

n
+

and d = (d1, . . . ,dm) ∈ R
m
+ .

Let S and R be positive (entrywise) real matrices of sizes m× n and n×m,
respectively. Denote

p̃ = pR , q̃ = qR and c = dRT . (27)

Assume p̃ ∈ R
m
++ .

(i) If rankS = n and R = S−1
l and

dT ∈ ranS, (28)

then
Tfu (p̃, q̃;d) = Tfu (p,q;c) . (29)

(ii) If rankS = m and R = S−1
r and

pT ∈ ranST and qT ∈ ranST , (30)

then
Tfu (p̃, q̃;d) = Tfu (p,q;c) . (31)

Proof. Apply Corollary 1 for the convex function gu and use (8). �

COROLLARY 5. Let fu : R+ →R be a convex function on R+ for some u> 0 . Let
f0 : R+ →R be a constant function. Let p = (p1, . . . , pn)∈R

n
++ , q = (q1, . . . ,qn)∈R

n
+

and d = (d1, . . . ,dn) ∈ R
n
+ .

Let R be an n×n real matrix such that

(i) R is invertible,

(ii) R is positive (entrywise),

(iii) R is inverse-positive (entrywise).

Denote
p̃ = pR , q̃ = qR and c = dRT . (32)

Assume p̃ ∈ R
n
++ .

Then
Tfu (p̃, q̃;d) = Tfu (p,q;c) . (33)

Proof. It is enough to employ Corollary 2 for the convex function gu , and next
use (8). �

COROLLARY 6. Under the assumptions of Corollary 5 with condition (iii) re-
placed by condition (b) or (c) in Theorem C, then equality (33) is satisfied.

Proof. Combine Theorem C in Section 2 and Corollary 5. �
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4. Examples

In this section we present some examples illustrating the results of the previous
sections.

Let f be a convex function on I = (0,∞) . Remind that the generalized Csiszár
f -divergence of p and q with respect to r is

Cf (p,q;r) =
n

∑
i=1

ripi f

(
qi

pi

)
, (34)

where
p = (p1, . . . , pn) , q = (q1, . . . ,qn) and r = (r1, . . . ,rn)

with positive numbers pi and qi , and nonnegative ri for i = 1, . . . ,n .
We now give definitions of some relative entropies corresponding to the functions

logt , tu logt , lnu t = tu−1
u and [1−s+stu]1/u−1

s , as follows

S(p,q) =
n

∑
i=1

pi log
qi

pi
, (35)

Su(p,q) =
n

∑
i=1

pi

(
qi

pi

)u

log

(
qi

pi

)
, (36)

Tu(p,q) =
n

∑
i=1

pi lnu

(
qi

pi

)
, (37)

where u ∈ (0,1] , and

Ts,u(p,q) =
n

∑
i=1

pi

[
1− s+ s

(
qi
pi

)u]1/u
−1

s
, (38)

where s ∈ (0,1] and u ∈ [−1,1] , u �= 0 (see [5, 6, 10, 14]).
In the sequel we use the following notation and assumptions.
Let p = (p1, . . . , pn) ∈ R

n
++ , q = (q1, . . . ,qn) ∈ R

n
++ and d = (d1, . . . ,dm) ∈ R

m
+ .

Let R be an n×m positive (entrywise) matrix. We denote p̃ = pR , q̃ =qR and c =dRT

with p̃ = (p̃1, . . . , p̃m) , q̃ = (q̃1, . . . , q̃m) and c = (c1, . . . ,cn) .

EXAMPLE 2. We are now ready to illustrate Theorem A and Theorem 1 in the
context of the convex function f1(t) = − logt , t > 0 (see [5, 10]).

By Theorem A, we get the inequality

m

∑
i=1

di p̃i log

(
p̃i

q̃i

)
= C− log (p̃, q̃;d) � C− log (p,q;c) =

n

∑
i=1

cipi log

(
pi

qi

)
. (39)

According to Theorem 1, equality holds in inequality (39) whenever R = S− for
some positive (entrywise) real matrix S of size m×n such that

pT ∈ ranST , qT ∈ ranST and dT ∈ ranS. (40)
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EXAMPLE 3. We now verify our previous results for the convex function f2(t) =
− lnu t = − tu−1

u , t > 0 (see [10, 14]).
By virtue of Theorem A, we find that

−
m

∑
i=1

di p̃i lnu

(
q̃i

p̃i

)
= C− lnu (p̃, q̃;d) � C− lnu (p,q;c) = −

n

∑
i=1

cipi lnu

(
qi

pi

)
. (41)

On account of Theorem 1, equality is met in inequality (41) provided that R = S−
for some positive (entrywise) real matrix S of size m×n such that (40) holds.

EXAMPLE 4. In this example we show some applications for the convex function
f3(t) = t logt , t > 0 (see [5, 10]).

Thanks to Theorem A, we establish the inequality

m

∑
i=1

diq̃i log

(
q̃i

p̃i

)
= Cf3 (p̃, q̃;d) � Cf3 (p,q;c) =

n

∑
i=1

ciqi log

(
qi

pi

)
. (42)

In light of Theorem 1, equality is satisfied in inequality (42) if R = S− for some
positive (entrywise) real matrix S of size m×n such that (40) is fulfilled.

EXAMPLE 5. We now deal with the parametric Tsallis relative entropy Ts,u(p,q)
generated by the concave function

f4(t) =
(1− s+ stu)1/u−1

s
, t > 0

(see [6, 10]).
It follows from Theorem A that

m

∑
i=1

di p̃i

[
1− s+ s

(
q̃i
p̃i

)u]1/u
−1

s
= Cf4 (p̃, q̃;d)

� Cf4 (p,q;c) =
n

∑
i=1

cipi

[
1− s+ s

(
qi
pi

)u]1/u
−1

s
. (43)

By making use Theorem 1, we conclude that equality appears in inequality (43) if
R = S− for some positive (entrywise) real matrix S of size m×n such that (40) is met.
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non inequality based on Tsallis and Rényi relative entropies, Linear Algebra Appl. 439 (10) (2013),
3148–3155.

[7] P. A. KLUZA AND M. NIEZGODA, Inequalities for relative operator entropies, Electron. J. Linear
Algebra 27 (2014), 851–864.

[8] P. KLUZA AND M. NIEZGODA, Generalizations of Crooks and Lin’s results on Jeffreys–Csiszár and
Jensen–Csiszár f -divergences, Physica A, 463 (2016), 383–393.

[9] P. KLUZA AND M. NIEZGODA,On Csiszár and Tsallis type f -divergences induced by superquadratic
and convex functions, Math. Inequal. Appl. 21 (2018), 455–467.

[10] M. NIEZGODA, On Shannon like inequalities for f -connections of positive linear maps and positive
operators, Linear Algebra Appl. 481 (2015), 186–201.

[11] M. NIEZGODA, Vector joint majorization and generalization of Csiszár–Körner’s inequality for f -
divergence, Discrete Applied Math. 198 (2016), 195–205.

[12] J. E. PERIS, A new characterization of inverse-positive matrices, Linear Algebra Appl. 154–156
(1991), 45–58.

[13] C. R. RAO AND S. K. MITRA, Generalized Inverse of Matrices and its Applications, John Wiley and
Sons, New York, 1971.

[14] K. YANAGI, K. KURIYAMA AND S. FURUICHI, Generalized Shannon inequalities based on Tsallis
relative operator entropy, Linear Algebra Appl. 394 (2005), 109–118.

(Received November 29, 2017) Marek Niezgoda
Department of Applied Mathematics and Computer Science

University of Life Sciences in Lublin
Akademicka 13, 20-950 Lublin, Poland

e-mail: bniezgoda@wp.pl; marek.niezgoda@up.lublin.pl

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


