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(Communicated by S. Varošanec)

Abstract. Let Ω ⊂ R
n be an unbounded open set. We consider the generalized weighted Morrey

spaces M
p(·),ϕ

ω (Ω) and the vanishing generalized weighted Morrey spaces VM
p(·),ϕ

ω (Ω) with
variable exponent p(x) and a general function ϕ(x,r) defining the Morrey-type norm. The
main result of this paper are the boundedness of Riesz potential and its commutators on the

spaces M
p(·),ϕ

ω (Ω) and VM
p(·),ϕ

ω (Ω) . This result generalizes several existing results for Riesz
potential and its commutators on Morrey type spaces. Especially, it gives a unified result for
generalized Morrey spaces and variable Morrey spaces which currently gained a lot of attentions
from researchers in theory of function spaces.

1. Introduction

The variable exponent generalized weighted Morrey spaces M
p(·),ϕ

ω (Ω) over an
open set Ω ⊂ R

n was introduced and the boundedness of the Hardy-Littlewood maxi-
mal operator, the singular integral operators and their commutators on these spaces was
proven in [28]. The main focus of this article is to prove that the Riesz potential and

its commutators are bounded on generalized weighted Morrey spaces M
p(·),ϕ

ω (Ω) and

vanishing generalized weighted Morrey spaces VM
p(·),ϕ

ω (Ω) with variable exponents.

Also some Sobolev-type inequalities for Riesz potentials on spaces M
p(·),ϕ

ω (Ω) and

VM
p(·),ϕ

ω (Ω) are proved.
The classical Morrey spaces were introduced by Morrey [38] to study the local

behavior of solutions to second-order elliptic partial differential equations. Moreover,
various Morrey-type spaces are defined in the process of study. Mizuhara [39] and
Nakai [42] introduced generalized Morrey spaces Mp,ϕ(Rn) (see, also [21]); Komori
and Shirai [33] defined weighted Morrey spaces Lp,κ(w) ; Guliyev [22] gave a con-
cept of the generalized weighted Morrey spaces Mp,ϕ

w (Rn) which could be viewed as
extension of both Mp,ϕ(Rn) and Lp,κ(w) .
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Vanishing Morrey spaces VMp,ϕ(Rn) are subspaces of functions in Morrey spaces
which were introduced by Vitanza [52] satisfying the condition

lim
r→0

sup
x∈R

n

0<t<r

r−
λ
p ‖ f χB(x,t)‖Lp(·)(B(x,t) = 0

and applied there to obtain a regularity result for elliptic partial differential equations.
Also Ragusa [44] proved a sufficient condition for commutators of fractional integral
operators to belong to vanishing Morrey spaces VMp,λ (Rn) . The vanishing generalized
Morrey spaces VMp,ϕ(Rn) were introduced and studied by Samko in [46], see also
[3, 17, 37].

As it is known, last two decades there is an increasing interest to the study of vari-
able exponent spaces and operators with variable parameters in such spaces, we refer
for instance to the surveying papers [16, 32, 47], on the progress in this field, includ-
ing topics of Harmonic Analysis and Operator Theory, see also references therein. For
mapping properties of maximal functions and Riesz potential on Lebesgue spaces with
variable exponent we refer to [9, 10, 13, 14, 15, 31, 35, 45].

Variable exponent Morrey spaces L p(·),λ (·)(Ω) , were introduced and studied in
[4] and [40] in the Euclidean setting. The boundedness of Riesz potential in vari-
able exponent Morrey spaces L p(·),λ (·)(Ω) under the log-condition on p(·),λ (·) and a
Sobolev type L p(·),λ (·) → L q(·),λ (·)–theorem for potential operators of variable order
α(x) was proved in [31]. In the case of constant α , there was also proved a bounded-

ness theorem in the limiting case p(x) = n−λ (x)
α , when the potential operator Iα acts

from L p(·),λ (·) into BMO was proved in [4]. In [40] the maximal operator and po-
tential operators were considered in a somewhat more general space, but under more
restrictive conditions on p(x) .

Generalized Morrey spaces of such a kind in the case of constant p were studied
in [18, 21, 39, 42, 50, 51]. In the case of bounded sets the boundedness of the maximal
operator, singular integral operator and the potential operators in generalized variable
exponent Morrey type spaces was proved in [24, 25, 26] and in the case of unbounded
sets in [27]. Also, in the case of bounded sets the boundedness of these operators
in generalized variable exponent weighted Morrey spaces for the power weights was
proved in [30].

In the case of constant p and λ , the results on the boundedness of potential op-
erators go back to [1] and [43], respectively, while the boundedness of the maximal
operator in the Euclidean setting was proved in [12]; for further results in the case of
constant p and λ (see, for instance, [5, 19]).

In the spaces M
p(·),ϕ

ω (Ω) over open sets Ω ⊂ R
n we consider the following oper-

ators:
1) the Hardy-Littlewood maximal operator

M f (x) = sup
r>0

|B(x,r)|−1
∫

B̃(x,r)
| f (y)|dy,
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2) Riesz potential operator

Iα f (x) =
∫

Ω
|x− y|α−n f (y)dy, 0 < α < n,

3) the fractional maximal operator

Mα f (x) = sup
r>0

|B(x,r)| α
n −1

∫
B̃(x,r)

| f (y)|dy, 0 � α < n.

We find the condition on the function ϕ(x,r) for the boundedness of the Riesz po-

tential Iα and its commutators in the generalized weighted Morrey space M
p(·),ϕ

ω (Ω)
and the vanishing generalized weighted Morrey spaces VM

p(·),ϕ
ω (Ω) with variable

p(x) under the log-condition on p(·) .
The paper is organized as follows. In Section 2 we provide necessary preliminar-

ies on variable exponent weighted Lebesgue, generalized weighted Morrey spaces and
vanishing generalized weighted Morrey spaces. In Section 3 we prove the boundedness
of Riesz potential and its commutators on the variable exponent generalized weighted
Morrey spaces. In Section 4 we prove the boundedness of Riesz potential and its com-
mutators on the variable exponent vanishing generalized weighted Morrey spaces.

The main results are given in Theorems 4, 5, 8, 9, 10, 1 and 2. We emphasize that
the results we obtain for generalized Morrey spaces are new even in the case when p(x)
is constant, because we do not impose any monotonicity type condition on ϕ(r).

We use the following notation: R
n is the n -dimensional Euclidean space, Ω ⊂R

n

is an open set, χE(x) is the characteristic function of a set E ⊆ R
n , B(x,r) = {y ∈ R

n :
|x− y| < r}) , B̃(x,r) = B(x,r)∩Ω , by c , C , c1 , c2 etc, we denote various absolute
positive constants, which may have different values even in the same line.

2. Preliminaries on variable exponent weighted Lebesgue, generalized weighted
Morrey spaces and vanishing generalized weighted Morrey spaces

We refer to the book [14] for variable exponent Lebesgue spaces but give some
basic definitions and facts. Let p(·) be a measurable function on Ω with values in
(1,∞) . An open set Ω which may be unbounded throughout the whole paper. We
mainly suppose that

1 < p− � p(x) � p+ < ∞, (2.1)

where p− := ess inf
x∈Ω

p(x) , p+ := ess sup
x∈Ω

p(x) . By Lp(·)(Ω) we denote the space of all

measurable functions f (x) on Ω such that

Ip(·)( f ) =
∫

Ω
| f (x)|p(x)dx < ∞.

Equipped with the norm

‖ f‖p(·) = inf

{
η > 0 : Ip(·)

(
f
η

)
� 1

}
,
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this is a Banach function space. By p′(·) = p(x)
p(x)−1 , x ∈ Ω, we denote the conjugate

exponent.
The space Lp(·)(Ω) coincides with the space{

f (x) :

∣∣∣∣∫Ω
f (y)g(y)dy

∣∣∣∣ < ∞ for all g ∈ Lp′(·)(Ω)
}

(2.2)

up to the equivalence of the norms

‖ f‖Lp(·)(Ω) ≈ sup
‖g‖

Lp′(·)�1

∣∣∣∣∫Ω
f (y)g(y)dy

∣∣∣∣ , (2.3)

see [36, Proposition 2.2], see also [34, Theorem 2.3], or [48, Theorem 3.5].
For the basics on variable exponent Lebesgue spaces we refer to [49], [34].

P(Ω) is the set of bounded measurable functions p : Ω → [1,∞) ;
P log(Ω) is the set of exponents p ∈ P(Ω) satisfying the local log-condition

|p(x)− p(y)|� A
− ln |x− y| , |x− y|� 1

2
x,y ∈ Ω, (2.4)

where A = A(p) > 0 does not depend on x,y ;
A log(Ω) is the set of bounded exponents p : Ω → R

n satisfying the condition (2.4);
P

log(Ω) is the set of exponents p ∈ P log(Ω) with 1 < p− � p+ < ∞ ;
for Ω which may be unbounded, by P∞(Ω) , P log

∞ (Ω) , P
log
∞ (Ω) , A log

∞ (Ω) we denote
the subsets of the above sets of exponents satisfying the decay condition (when Ω is
unbounded)

|p(x)− p(∞)| � A∞

ln(2+ |x|) , x ∈ R
n, (2.5)

where p∞ = lim
x→∞

p(x) > 1.

We will also make use of the estimate provided by the following lemma (see [14],
Corollary 4.5.9).

‖χB̃(x,r)(·)‖p(·) � Crθp(x,r), x ∈ Ω, p ∈ P
log
∞ (Ω), (2.6)

where θp(x,r) =

{
n

p(x) , r � 1,
n

p(∞) , r > 1
.

By ω we always denote a weight, i.e. a positive, locally integrable function with

domain Ω . The weighted Lebesgue space Lp(·)
ω (Ω) is defined as the set of all measur-

able functions for which
‖ f‖

Lp(·)
ω (Ω)

= ‖ fω‖Lp(·)(Ω).

Let us define the class Ap(·)(Ω) (see [16], [35]) to consist of those weights ω for
which

[ω ]Ap(·) ≡ sup
B

|B|−1‖ω‖Lp(·)(B̃(x,r))‖ω−1‖Lp′(·)(B̃(x,r)) < ∞.
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A weight function ω belongs to the class Ap(·),q(·)(Ω) if

[ω ]Ap(·),q(·) ≡ sup
B

|B| 1
p(x)− 1

q(x)−1‖ω‖Lq(·)(B̃(x,r))‖ω−1‖Lp′(·)(B̃(x,r)) < ∞.

LEMMA 1. Let p,q satisfy condition (2.1) and ω ∈ Ap(·),q(·)(Ω) , then ω−1 ∈
Aq′(·),p′(·)(Ω) , with 1

p(x) + 1
p′(x) = 1 .

Proof. Let p,q satisfy condition (2.1) and ω ∈ Ap(·),q(·)(Ω) . Then ϕ = ω−1 ∈
Aq′(·),p′(·)(Ω) . Indeed,

|B|
1

q′(x)−
1

p′(x)−1 ‖ϕ‖Lp′(·)(B̃(x,r)) ‖ϕ−1‖Lq(·)(B̃(x,r))

=|B| 1
p(x)− 1

q(x)−1‖ω‖Lq(·)(B̃(x,r))‖ω−1‖Lp′(·)(B̃(x,r)). �

THEOREM 1. [29, Therem 1.1] Let Ω ⊂ R
n be an open unbounded set and p ∈

P
log
∞ (Ω) . Then M : Lp(·)

ω (Ω) → Lp(·)
ω (Ω) if and only if ω ∈ Ap(·)(Ω) .

For unbounded sets, say Ω = R
n, and constant orders a the corresponding Sobolev

theorem proved in [8, 9] runs as follows.

THEOREM 2. Let Ω⊂R
n be an open unbounded set, 0 < α < n and p∈P

log
∞ (Ω) .

Let also p+ < n
α . Then the operators Mα and Iα are bounded from Lp(·)(Ω) to

Lq(·)(Ω) with 1
q(x) = 1

p(x) − α
n .

Let λ (x) be a measurable function on Ω with values in [0,n] . The variable Morrey

space L p(·),λ (·)(Ω) and variable weighted Morrey space L
p(·),λ (·)

ω (Ω) is defined as the
set of integrable functions f on Ω with the finite norms

‖ f‖L p(·),λ(·)(Ω) = sup
x∈Ω, t>0

t
− λ(x)

p(x) ‖ f χB̃(x,t)‖Lp(·)(Ω),

‖ f‖
L

p(·),λ(·)
ω (Ω)

= sup
x∈Ω, t>0

t
− λ(x)

p(x) ‖ f χB̃(x,t)‖Lp(·)
ω (Ω)

.

Let ω be a nonnegative measurable function on R
n such that ω p is locally in-

tegrable on R
n . Then a Radon measure μ is canonically associated with the weight

ω(·)p(·) , that is,

μ(E) =
∫

E
ω(y)p(y)dy.

We denote by L p(·),λ (Rn,dμ) the set of all measurable functions f with finite
norm

‖ f‖L p(·),λ (Rn,dμ) = inf

{
η > 0 : sup

x∈Ω, t>0

tλ

μ(B(x,t))

∫
B(x,t)

( | f (y)|
η

)p(y)

dμ(y) � 1

}
.
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THEOREM 3. [41] Let 0 < α < n, 0 � λ < n, p ∈ P
log
∞ (Rn) , p+ < λ

α , 1
q(x) =

1
p(x) − α

λ , ω ∈ Ap(·)(Rn) . Then the operator Iα is bounded from L p(·),λ (Rn,dμ) to

L q(·),λ (Rn,dμ) .

In view of the well known pointwise estimate Mα f (x) � C(Iα | f |)(x) , it suffices
to treat only the case of the operator Iα .

COROLLARY 1. ([11], [41]) Let Ω ⊂ R
n be an open unbounded set, 0 < α < n,

p ∈ P
log
∞ (Ω) , p+ < n

α , 1
q(x) = 1

p(x) − α
n , ω ∈ Ap(·),q(·)(Ω) . Then the operators Mα and

Iα are bounded from Lp(·)
ω (Ω) to Lq(·)

ω (Ω) .

Let M� be the sharp maximal function defined by

M� f (x) = sup
r>0

|B(x,r)|−1
∫

B̃(x,r)
| f (y)− fB̃(x,r)|dy,

where fB̃(x,t)(x) = |B̃(x,t)|−1 ∫
B̃(x,t) f (y)dy .

DEFINITION 1. We define the BMO(Ω) space as the set of all locally integrable
functions f with finite norm

‖ f‖BMO = sup
x∈Ω

M� f (x) = sup
x∈Ω, r>0

|B(x,r)|−1
∫

B̃(x,r)
| f (y)− fB̃(x,r)|dy.

DEFINITION 2. We define the BMOp(·),ω(Ω) space as the set of all locally inte-
grable functions f with finite norm

‖ f‖BMOp(·),ω = sup
x∈Ω, r>0

‖( f (·)− fB̃(x,r))χB̃(x,r)‖L
p(·)
ω (Ω)

‖χB̃(x,r)‖L
p(·)
ω (Ω)

.

THEOREM 4. [36] Let Ω ⊂ R
n be an open unbounded set, p ∈ P

log
∞ (Ω) and ω

be a Lebesgue measurable function. If ω ∈ Ap(·)(Ω) , then the norms ‖ · ‖BMOp(·),ω and
‖ · ‖BMO are mutually equivalent.

Everywhere in the sequel the functions ϕ(x,r), ϕ1(x,r) and ϕ2(x,r) used in the
body of the paper, are non-negative measurable function on Ω× (0,∞) . We find it
convenient to define the variable exponent generalized weighted Morrey spaces in the
form as follows.

DEFINITION 3. Let 1 � p(x) < ∞ , x ∈ Ω . The variable exponent generalized
Morrey space M p(·),ϕ(Ω) and variable exponent generalized weighted Morrey space

M
p(·),ϕ

ω (Ω) are defined by the norms

‖ f‖M p(·),ϕ = sup
x∈Ω,r>0

1

ϕ(x,r)rθp(x,r) ‖ f‖Lp(·)(B̃(x,r)),
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‖ f‖
M

p(·),ϕ
ω

= sup
x∈Ω,r>0

1
ϕ(x,r)‖ω‖Lp(·)(B̃(x,r))

‖ f‖
L

p(·)
ω (B̃(x,r))

.

According to this definition, we recover the space L p(·),λ (·)(Ω) under the choice

ϕ(x,r) = r
θp(x,r)− λ(x)

p(x) :

L p(·),λ (·)(Ω) = M p(·),ϕ(·)(Ω)

∣∣∣∣∣
ϕ(x,r)=r

θp(x,r)− λ(x)
p(x)

.

DEFINITION 4. (Vanishing generalized weighted Morrey space) The vanishing

generalized weighted Morrey space VM
p(·),ϕ

ω (Ω) is defined as the space of functions

f ∈ M
p(·),ϕ

ω (Ω) such that

lim
r→0

sup
x∈Ω

1
ϕ1(x,t)‖ω‖Lp(·)(B̃(x,t))

‖ f χB̃(x,t)‖L
p(·)
ω (Ω)

= 0.

Everywhere in the sequel we assume that

lim
r→0

1
‖ω‖Lp(·)(B̃(x,t)) inf

x∈Ω
ϕ(x,t)

= 0 (2.7)

and

sup
0<r<∞

1
‖ω‖Lp(·)(B̃(x,t)) inf

x∈Ω
ϕ(x, t)

= 0, (2.8)

which makes the spaces VM
p(·),ϕ

ω (Ω) non-trivial, because bounded functions with
compact support belong then to this space.

THEOREM 5. [28] Let Ω ⊂ R
n be an open unbounded set, p ∈ P

log
∞ (Ω) , ω ∈

Ap(·)(Ω) and the function ϕ1(x,r) and ϕ2(x,r) satisfy the condition

sup
t>r

ess inf
t<s<∞

ϕ1(x,s)‖ω‖Lp(·)(B̃(x,s))

‖ω‖Lp(·)(B̃(x,t))
� Cϕ2(x,r). (2.9)

Then the maximal operator M is bounded from the space M
p(·),ϕ1

ω (Ω) the space

M
p(·),ϕ2

ω (Ω) .

3. Riesz potential and its commutators in the spaces M
p(·),ϕ

ω (Ω)

It is well-known that the commutator is an important integral operator and it plays
a key role in harmonic analysis. Let b∈BMO(Rn) . A well known result of Chanillo [7]
states that the commutator operator [b, Iα ] f = Iα(b f )−bIα f is bounded from Lp(Rn)
to Lq(Rn) with 1/q = 1/p−α/n , 1 < p < n/α .
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Let L∞(R+,v) be the weighted L∞ -space with the norm

‖g‖L∞(R+,v) = ess sup
t>0

v(t)g(t).

In the sequel M(R+), M+(R+) and M+(R+;↑) stand for the set of Lebesgue-
measurable functions on R+ , and its subspaces of nonnegative and nonnegative non-
decreasing functions, respectively. We also denote

A =
{

ϕ ∈ M+(R+;↑) : lim
t→0+

ϕ(t) = 0

}
.

Let u be a continuous and non-negative function on R+ . We define the supremal
operator Su by

(Sug)(t) := ‖ug‖Lı(0,t), t ∈ (0,∞).

In the following theorem proved in [6], we use the notation

ṽ1(t) = sup
0<ξ<t

v1(ξ ).

THEOREM 1. Suppose that v1 and v2 are nonnegative measurable functions such
that 0 < ‖v1‖L∞(0,t) < ∞ for every t > 0 . Let u be a continuous nonnegative function
on R . Then the operator Su is bounded from L∞(R+,v1) to L∞(R+,v2) on the cone A

if and only if ∥∥∥v2Su

(
‖v1‖−1

L∞(0,·)
)∥∥∥

L∞(R+)
< ∞.

We will use the following statement on the boundedness of the weighted Hardy
operator

Hwg(t) :=
∫ ı

t
g(s)w(s)ds, H∗

wg(t) :=
∫ ı

t

(
1+ ln

s
t

)
g(s)w(s)ds, 0 < t < ∞,

where w is a weight.
The following theorem was proved in [23].

THEOREM 2. [23] Let v1,v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)Hwg(t) � C sup
t>0

v1(t)g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := sup
t>0

v2(t)
∫ ı

t

w(s)ds
sups<τ<∞ v1(τ)

< ∞.
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THEOREM 3. [22] Let v1 , v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)H∗
wg(t) � C sup

t>0
v1(t)g(t) (3.1)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := sup
t>0

v2(t)
∫ ı

t

(
1+ ln

s
t

) w(s)ds
sup0<τ<s v1(τ)

< ∞.

Moreover, the value C = B is the best constant for (3.1).

The following weighted local estimates are valid.

THEOREM 4. Let Ω ⊂ R
n be an open unbounded set, 0 < α < n, p ∈ P

log
∞ (Ω) ,

p+ < n
α , 1

q(x) = 1
p(x) − α

n , ω ∈ Ap(·),q(·)(Ω) . Then

‖Iα f‖
L

q(·)
ω (B̃(x,t))

� C‖ω‖Lq(·)(B̃(x,t))

∫ ∞

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

, (3.2)

where C does not depend on f , x and t.

Proof. We represent f as

f = f1 + f2, f1(y) = f (y)χB̃(x,2t)(y), f2(y) = f (y)χΩ\B̃(x,2t)(y), t > 0, (3.3)

and have
Iα f (x) = Iα f1(x)+ Iα f2(x).

By Corollary 1 we obtain

‖Iα f1‖L
q(·)
ω (B̃(x,t))

� ‖Iα f1‖L
q(·)
ω (Ω)

� C‖ f1‖L
p(·)
ω (Ω)

= C‖ f‖
L

p(·)
ω (B̃(x,2t))

.

Then

‖Iα f1‖Lq(·)
ω (B̃(x,t))

� C‖ f‖
Lp(·)

ω (B̃(x,2t))
,

where the constant C is independent of f .
On the other hand,

‖ f‖
L

p(·)
ω (B̃(x,2t))

≈ |B|1− α
n ‖ f‖

L
p(·)
ω (B̃(x,2t))

∫ ı

2t

ds
sn+1−α

� |B|1− α
n

∫ ı

2t
‖ f‖

Lp(·)
ω (B̃(x,s))

ds
sn+1−α (3.4)

� ‖ω‖Lq(·)(B̃(x,t))‖w−1‖Lp′(·)(B̃(x,t))

∫ ı

t
‖ f‖

L
p(·)
ω (B̃(x,s))

ds
sn+1−α

� ‖ω‖Lq(·)(B̃(x,t))

∫ ı

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω−1‖Lp′(·)(B̃(x,s))
ds

sn+1−α

� [ω ]Ap(·),q(·) ‖ω‖Lq(·)(B̃(x,t))

∫ ı

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

.
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Taking into account that

‖ f‖
L

p(·)
ω (B̃(x,t))

� C‖ω‖Lq(·)(B̃(x,t))

∫ ∞

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

,

we get

‖Iα f1‖L
q(·)
ω (B̃(x,t))

� C‖ω‖Lq(·)(B̃(x,t))

∫ ∞

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

. (3.5)

When |x− z|� t , |z−y|� 2t, we have 1
2 |z−y|� |x−y|� 3

2 |z−y| , and therefore

|Iα f2(x)| �
∫

Ω\B̃(x,2t)
|z− y|α−n| f (y)|dy

� 2n−α
∫

Ω\B̃(x,2t)
|x− y|α−n| f (y)|dy.

We obtain∫
Ω\B̃(x,2t)

| f (y)|dy =
∫

Ω\B̃(x,2t)
| f (y)|

(∫ ∞

|x−y|
sα−n−1ds

)
dy

�
∫ ∞

2t
sα−n−1

(∫
{y∈Ω:2t�|x−y|�s}

| f (y)|dy

)
ds

�
∫ ∞

t
sα−n−1‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω−1‖Lp′(·)(B̃(x,s))ds

�
∫ ∞

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

.

Hence

‖Iα f2‖Lq(·)
ω (B̃(x,t))

� ‖ω‖Lq(·)(B̃(x,t))

∫ ∞

t
‖ f‖

Lp(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

,

which together with (3.5) yields (3.2). �

THEOREM 5. Let Ω ⊂ R
n be an open unbounded set, 0 < α < n, p ∈ P

log
∞ (Ω) ,

p+ < n
α , 1

q(x) = 1
p(x) − α

n , ω ∈ Ap(·),q(·)(Ω) and the functions ϕ1(x,t) and ϕ2(x,t)
fulfill the condition

∫ ∞

t

ess inf
s<r<∞

ϕ1(x,r)‖ω‖Lp(·)(B̃(x,r))

‖ω‖Lq(·)(B̃(x,s))

ds
s

� ϕ2(x,t). (3.6)

Then the operator Iα is bounded from M
p(·),ϕ1

ω (Ω) to M
q(·),ϕ2
ω (Ω) .

Proof. Let ω ∈ Ap(·),q(·)(Ω) , by condition (3.6) and Theorems 4, 2 with

v2(r) = ϕ2(x,r)−1 , v1(r) = ϕ1(x,r)−1‖ω‖−1
Lp(·)(B̃(x,r))

, g(r) = ‖ f‖
L

p(·)
ω (B̃(x,r))

and
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w(r) = ‖ω‖−1
Lp(·)(B̃(x,r))

r−1 we obtain

‖Iα f‖
M

q(·),ϕ2
ω (Ω)

� sup
x∈Ω, t>0

1
ϕ2(x,t)

∫ ∞

t
‖ f‖

Lp(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

� sup
x∈Ω, t>0

1
ϕ1(x,t)‖ω‖Lp(·)(B̃(x,t))

‖ f‖
Lp(·)

ω (B̃(x,t))
= ‖ f‖

M
p(·),ϕ1

ω (Ω)
. �

Now we consider the commutators Riesz potential defined by

[b, Iα ] f (x) =
∫

Rn
[b(x)−b(y)] f (y)|x− y|α−ndy.

The commutator generated by M and a suitable function b is formally defined by

[M,b] f = M(b f )−bM( f ).

Given a measurable function b the maximal commutator is defined by

Mb( f )(x) := sup
r>0

|B(x,r)|−1
∫

B(x,r)
|b(x)−b(y)|| f (y)|dy

for all x ∈ R
n .

LEMMA 2. [20] Let b ∈ BMO(Rn) , 1 < s < ∞ . Then

M�([b, Iα ] f (x)) � C‖b‖BMO

[
(M|Iα f (x)|s) 1

s +(Msα | f (x)|s) 1
s

]
,

where C > 0 is independed of f and x .

LEMMA 3. [11] Let Ω ⊂ R
n be an open unbounded set, p ∈ P

log
∞ (Ω) and ω ∈

Ap(·)(Ω) . Then

‖ fω‖Lp(·) � C‖ωM� f‖Lp(·)

with a constant C > 0 not depending on f .

THEOREM 6. [2, Theorem 1.13] Let b∈ BMO(Rn) . Suppose that X is a Banach
space of measurable functions defined on R

n . Assume that M is bounded on X . Then
the operator Mb is bounded on X , and the inequality

‖Mb f‖X � C‖b‖∗‖ f‖X

holds with constant C independent of f .

COROLLARY 2. Let b ∈ BMO(Ω) , p ∈ P
log
∞ (Ω) and ω ∈ Ap(·)(Ω) , then the op-

erator Mb is bounded on Lp(·)
ω (Rn) .
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THEOREM 7. [28] Let Ω ⊂ R
n be an open unbounded set, p ∈ P

log
∞ (Ω) , ω ∈

Ap(·)(Ω) , b ∈ BMO(Ω) and the function ϕ1(x,r) and ϕ2(x,r) satisfy the condition

sup
t>r

(
1+ ln

t
r

) ess inf
t<s<∞

ϕ1(x,s)‖ω‖Lp(·)(B̃(x,s))

‖ω‖Lp(·)(B̃(x,t))
� Cϕ2(x,r), (3.7)

where C does not depend on x ∈ Ω and t . Then the operator Mb is bounded from the

space M
p(·),ϕ1

ω (Ω) to the space M
p(·),ϕ2

ω (Ω) .

THEOREM 8. Let Ω⊂R
n be an open unbounded set, 0 < α < n and p∈P

log
∞ (Ω) ,

p+ < n
α , 1

q(x) = 1
p(x) − α

n , ω ∈ Ap(·),q(·)(Ω) . The following assertions are equivalent:

(i) The operator [b, Iα ] is bounded from Lp(·)
ω (Ω) to Lq(·)

ω (Ω) .
(ii) b ∈ BMO(Ω) .

Proof. (ii) ⇒ (i) Let f ∈ Lp(·)
ω (Ω) and b ∈ BMO(Ω) . By the Lemma 3, we have

‖[b, Iα ] f‖
L

q(·)
ω (Ω)

� ‖M�([b, Iα ] f )‖
L

q(·)
ω (Ω)

.

From Lemma 2, we have

‖M�([b, Iα ] f )‖
L

q(·)
ω (Ω)

� ‖b‖∗
∥∥∥(M|Iα f |s) 1

s +(Mαs| f |s) 1
s

∥∥∥
L

q(·)
ω (Ω)

� ‖b‖∗
[∥∥∥(M|Iα f |s) 1

s

∥∥∥
Lq(·)

ω (Ω)
+

∥∥∥(Mαs| f |s) 1
s

∥∥∥
Lq(·)

ω (Ω)

]
.

By Theorem 1 and Corollary 1, we have∥∥∥(M|Iα f |s) 1
s

∥∥∥
Lq(·)

ω (Ω)
� ‖|Iα f |s‖

1
s

L
q(·)
s

ωsq(·) (Ω)
= ‖Iα f‖

L
q(·)
ω (Ω)

� ‖ f‖
L

p(·)
ω (Ω)

.

By Corollary 1, we have∥∥∥(Mαs| f |s) 1
s

∥∥∥
L

q(·)
ω (Ω)

� ‖ f‖
Lp(·)

ω (Ω)
.

Therefore

‖[b, Iα ] f‖
Lq(·)

ω (Ω)
� ‖b‖∗ ‖ f‖

Lp(·)
ω (Ω)

.

(i) ⇒ (ii) Now, let us prove the “only if” part. Let [b, Iα ] be bounded from
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Lp(·)
ω (Ω) to Lq(·)

ω (Ω) , 1 < p+ < n
α . Then

|B(x, t)|
∫

B̃(x,t)
|b(z)−bB(x,t)|dz

=
1

|B(x,t)|
∫

B̃(x,t)

∣∣∣b(z)− 1
|B(x,t)|

∫
B̃(x,t)

b(y)dy
∣∣∣dz

� 1

|B(x,t)|1+ α
n

∫
B̃(x,t)

1

|B(x,t)|1− α
n

∣∣∣ ∫
B̃(x,t)

(b(z)−b(y))dy
∣∣∣dz

� 1

|B(x,t)|1+ α
n

∫
B̃(x,t)

∣∣∣ ∫
B̃(x,t)

(b(z)−b(y)) |x− y|α−ndy
∣∣∣dz

� 1

|B(x,t)|1+ α
n

∫
B̃(x,t)

∣∣[b, Iα ]χB(x,t)(z)
∣∣dz

� Ct−n−α‖[b, Iα ]χB(x,t)‖L
q(·)
ω

‖χB(x,t)‖L
q′(·)
ω−1

� Ct−n−α‖ω‖Lp(·)(B(x,t))‖ω−1‖Lq′(·)(B(x,t)) � C.

Hence we get

|B(x,t)|−1
∫

B̃(x,t)
|b(y)−bB(x,t)|dy � C.

This shows that b ∈ BMO(Ω) .
The theorem has been proved. �

THEOREM 9. Let Ω ⊂ R
n be an open unbounded set, 0 < α < n, p ∈ P

log
∞ (Ω) ,

p+ < n
α , 1

q(x) = 1
p(x) − α

n , ω ∈ Ap(·),q(·)(Ω) , b ∈ BMO(Ω) . Then

‖[b, Iα ] f‖
L

q(·)
ω (B̃(x,t))

� C‖b‖∗‖ω‖Lq(·)(B̃(x,t))

×
∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

, (3.8)

where C does not depend on f , x and t.

Proof. We represent f as

f = f1 + f2, f1(y) = f (y)χB̃(x,2t)(y), f2(y) = f (y)χΩ\B̃(x,2t)(y), t > 0, (3.9)

and have
[b, Iα ] f (x) = [b, Iα ] f1(x)+ [b, Iα ] f2(x).

By Theorem 8 we obtain

‖[b, Iα ] f1‖L
q(·)
ω (B̃(x,t))

� ‖[b, Iα ] f1‖L
q(·)
ω (Ω)

� ‖b‖∗‖ f1‖L
p(·)
ω (Ω)

= ‖b‖∗‖ f‖
Lp(·)

ω (B̃(x,2t))
.
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Then

‖[b, Iα ] f1‖L
q(·)
ω (B̃(x,t))

� C‖b‖∗‖ f‖
L

p(·)
ω (B̃(x,2t))

,

where the constant C is independent of f .
Taking into account that from the inequality (3.4) we have

‖ f‖
L

p(·)
ω (B̃(x,t))

� C‖b‖∗‖ω‖Lq(·)(B̃(x,t))

∫ ∞

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

,

and then

‖[b, Iα ] f1‖Lq(·)
ω (B̃(x,t))

� C‖b‖∗‖ω‖Lq(·)(B̃(x,t))

∫ ∞

t
‖ f‖

Lp(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

.

(3.10)
When |x− z|� t , |z−y|� 2t, we have 1

2 |z−y|� |x−y|� 3
2 |z−y| , and therefore

|[b, Iα ] f2(x)| �
∫

Ω\B̃(x,2t)
|b(y)−b(z)||z− y|α−n| f (y)|dy

� C
∫

Ω\B̃(x,2t)
|b(y)−b(z)||x− y|α−n| f (y)|dy.

We obtain∫
Ω\B̃(x,2t)

|b(y)−b(z)||x− y|α−n| f (y)|dy

=
∫

Ω\B̃(x,2t)
|b(y)−b(z)|| f (y)|

(∫ ∞

|x−y|
sα−n−1ds

)
dy

� C
∫ ∞

2t
sα−n−1

(∫
{y∈Ω:2t�|x−y|�s}

|b(y)−bB̃(x,t)|| f (y)|dy

)
ds

+C|b(z)−bB̃(x,t)|
∫ ∞

2t
sα−n−1

(∫
{y∈Ω:2t�|x−y|�s}

| f (y)|dy

)
ds = V1 +V2.

To estimate V1 :

V1 = C
∫ ∞

2t
sα−n−1

(∫
{y∈Ω:2t�|x−y|�s}

|b(y)−bB̃(x,t)|| f (y)|dy

)
ds

� C
∫ ∞

t
sα−n−1‖b(·)−bB̃(x,s)‖L

p′(·)
ω−1 (B̃(x,s))

‖ f‖
Lp(·)

ω (B̃(x,s))
ds

+C
∫ ∞

t
sα−n−1|bB̃(x,t) −bB̃(x,s)|

(∫
B̃(x,s)

| f (y)|dy

)
ds

� C‖b‖∗
∫ ∞

t
sα−n−1‖ω−1‖Lp′(·)(B̃(x,s))‖ f‖

Lp(·)
ω (B̃(x,s))

ds

+C‖b‖∗
∫ ∞

t
sα−n−1 ln

s
t
‖ω−1‖Lp′(·)(B̃(x,s))‖ f‖

L
p(·)
ω (B̃(x,s))

ds

� C‖b‖∗
∫ ∞

t

(
1+ ln

s
t

)
‖ω‖−1

Lp(·)(B̃(x,s))
‖ f‖

L
p(·)
ω (B̃(x,s))

ds
s

. (3.11)
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To estimate V2 :

V2 = C|b(z)−bB̃(x,t)|
∫ ∞

2t
sα−n−1

(∫
{y∈Ω:2t�|x−y|�s}

| f (y)|dy

)
ds

� C|B(x, t)|−1
∫

B̃(x,t)
|b(z)−b(y)|dy

∫ ∞

2t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

� CMbχB(x,t)(z)
∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

, (3.12)

where C does not depend on x,t . Then by Corollary 2 and (3.11), (3.12) we have

‖[b, Iα ] f2‖L
q(·)
ω (B̃(x,t))

� ‖V1‖Lq(·)
ω (B̃(x,t))

+‖V2‖Lq(·)
ω (B̃(x,t))

� C‖b‖∗‖ω‖Lq(·)(B̃(x,t))

∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

+C‖MbχB(x,t)‖Lq(·)
ω (B̃(x,t))

∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

Lp(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

� C‖b‖∗‖ω‖Lq(·)(B̃(x,t))

∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

+C‖b‖∗‖ω‖Lq(·)(B̃(x,t))

∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

Lp(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

� C‖b‖∗‖ω‖Lq(·)(B̃(x,t))

∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

.

Hence

‖[b, Iα ] f2‖L
q(·)
ω (B̃(x,t))

�C‖b‖∗‖ω‖Lq(·)(B̃(x,t))

∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

Lp(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

,

which together with (3.10) yields (3.8). �

THEOREM 10. Let Ω ⊂ R
n be an open unbounded set, 0 < α < n, p ∈ P

log
∞ (Ω) ,

p+ < n
α , 1

q(x) = 1
p(x) − α

n , ω ∈ Ap(·),q(·)(Ω) , b ∈ BMO(Ω) and the functions ϕ1(x,t)
and ϕ2(x, t) fulfill the condition

∫ ∞

t

(
1+ ln

s
t

) ess inf
s<r<ı

ϕ1(x,r)‖ω‖Lp(·)(B̃(x,r))

‖ω‖Lq(·)(B̃(x,s))

ds
s

� Cϕ2(x,t). (3.13)

Then the operators [b, Iα ] is bounded from M
p(·),ϕ1

ω (Ω) to M
q(·),ϕ2
ω (Ω) .

Proof. Let ω ∈ Ap(·),q(·)(Ω) , by condition (3.13) and Theorems 9, 3 with

v2(r) = ϕ2(x,r)−1 , v1(r) = ϕ1(x,r)−1‖ω‖−1
Lp(·)(B̃(x,r))

, g(r) = ‖ f‖
L

p(·)
ω (B̃(x,r))

and
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w(r) = ‖ω‖−1
Lp(·)(B̃(x,r))

r−1 we obtain

‖[b, Iα ] f‖
M

q(·),ϕ2
ω (Ω)

� ‖b‖∗‖ sup
x∈Ω,t>0

1
ϕ2(x,t)

∫ ∞

t

(
1+ ln

s
t

)
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

� ‖b‖∗ sup
x∈Ω,t>0

1
ϕ1(x,t)‖ω‖Lp(·)(B̃(x,t))

‖ f‖
L

p(·)
ω (B̃(x,t))

= ‖b‖∗‖‖ f‖
M

p(·),ϕ1
ω (Ω)

. �

4. Riesz potential and its commutators in the spaces VM
p(·),ϕ

ω (Ω)

THEOREM 1. Let Ω ⊂ R
n be an open unbounded set, 0 < α < n, p ∈ P

log
∞ (Ω) ,

p+ < n
α , 1

q(x) = 1
p(x) − α

n , ω ∈ Ap(·),q(·)(Ω) and the functions ϕ1(x,t) and ϕ2(x,t)
fulfill the conditions

Cγ0 :=
∫ ı

γ0

ess inf
s<r<∞

ϕ1(x,r)‖ω‖Lq(·)(B̃(x,r))

‖ω‖Lq(·)(B̃(x,s))

ds
s

< ∞ (4.1)

for every γ0 > 0 , and

∫ ∞

t

ess inf
s<r<∞

ϕ1(x,r)‖ω‖Lq(·)(B̃(x,r))

‖ω‖Lq(·)(B̃(x,s))

ds
s

� Cϕ2(x,t). (4.2)

Then the operators Iα is bounded from VM
p(·),ϕ1

ω (Ω) to VM
q(·),ϕ2
ω (Ω) .

Proof. The norm inequalities follow from Theorem 5, so we only have to prove
that if

lim
r→0

sup
x∈Rn

1
ϕ1(x,t)‖ω‖Lq(·)(B̃(x,t))

‖ f χB̃(x,t)‖L
p(·)
ω (Ω)

= 0,

then

lim
r→0

sup
x∈Rn

1
ϕ2(x,t)‖ω‖Lq(·)(B̃(x,t))

‖Iα f χB̃(x,t)‖L
q(·)
ω (Ω)

= 0 (4.3)

otherwise.
To show that sup

x∈Rn

1
ϕ2(x,t)‖ω‖

Lq(·)(B̃(x,t))
‖Iα f χB̃(x,t)‖L

q(·)
ω (Ω)

< ε for small r , we split

the right-hand side of (3.2):

sup
x∈Rn

1
ϕ2(x, t)‖ω‖Lq(·)(B̃(x,t))

‖Iα f χB̃(x,t)‖L
p(·)
ω (Ω)

� C0
(
I1,γ0(x,t)+ I2,γ0(x, t)

)
, (4.4)

where γ0 > 0 will be chosen as shown below (we may take γ0 < 1),

I1,γ0(x, t) := ‖ω‖Lq(·)(B̃(x,t))

∫ γ0

t
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

,
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I2,γ0(x, t) := ‖ω‖Lq(·)(B̃(x,t))

∫ ∞

γ0

‖ f‖
Lp(·)

ω (B̃(x,s))
‖ω‖−1

Lq(·)(B̃(x,s))

ds
s

,

and it is supposed that t < γ0 . Now we choose any fixed γ0 > 0 such that

sup
x∈Rn

1
ϕ1(x, t)‖ω‖Lq(·)(B̃(x,t))

‖ f χB̃(x,t)‖L
p(·)
ω (Ω)

<
ε

2CC0
, for all 0 < t < γ0,

where C and C0 are constants from (4.2) and (4.4), which is possible since f ∈
VM

p(·),ϕ1
ω (Ω) . Then

sup
x∈Rn

CI1,γ0(x,t) <
ε
2
, 0 < t < γ0,

by (4.2).
The estimation of the second term now may be made already by the choice of t

sufficiently small thanks to the condition (4.1). We have

I2,γ0(x,t) � Cγ0

ϕ2(x,t)
‖ω‖Lq(·)(B̃(x,t))

‖ f‖
VM

q(·),ϕ2
ω (Ω)

,

where Cγ0 is the constant from (4.1). Then, by (4.1) it suffices to choose r small enough
such that

ϕ2(x,t)
‖ω‖Lq(·)(B̃(x,t))

<
ε

2CCγ0‖ f‖
VM

q(·),ϕ2
ω (Ω)

,

which completes the proof of (4.3). �

THEOREM 2. Let Ω ⊂ R
n be an open unbounded set, 0 < α < n, p ∈ P

log
∞ (Ω) ,

p+ < n
α , 1

q(x) = 1
p(x) − α

n , ω ∈ Ap(·),q(·)(Ω) and the functions ϕ1(x,t) and ϕ2(x,t)
fulfill the conditions

Cγ :=
∫ ∞

γ

(
1+ ln

s
t

) ess inf
s<r<∞

ϕ1(x,r)‖ω‖Lq(·)(B̃(x,r))

‖ω‖Lq(·)(B̃(x,s))

ds
s

< ∞ (4.5)

for every γ , and

∫ ∞

t

(
1+ ln

s
t

) ess inf
s<r<∞

ϕ1(x,r)‖ω‖Lq(·)(B̃(x,r))

‖ω‖Lq(·)(B̃(x,s))

ds
s

� Cϕ2(x, t). (4.6)

Then the operators [b, Iα ] is bounded from VM
p(·),ϕ1

ω (Ω) to VM
q(·),ϕ2
ω (Ω) .

Proof. The norm inequalities follow from Theorem 10, so we only have to prove
that

lim
r→0

sup
x∈Rn

1
ϕ1(x,t)‖ω‖Lq(·)(B̃(x,t))

‖ f χB̃(x,t)‖L
p(·)
ω (Ω)

= 0 ⇒

lim
r→0

sup
x∈Rn

1
ϕ2(x,t)‖ω‖Lq(·)(B̃(x,t))

‖[b, Iα ] f χB̃(x,t)‖L
q(·)
ω (Ω)

= 0 (4.7)
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otherwise.
To show that sup

x∈Rn

1
ϕ2(x,t)‖ω‖

Lq(·)(B̃(x,t))
‖[b, Iα ] f χB̃(x,t)‖L

q(·)
ω (Ω)

< ε for small r , we

split the right-hand side of (3.8):

sup
x∈Rn

1
ϕ2(x, t)‖ω‖Lq(·)(B̃(x,t))

‖[b, Iα ] f χB̃(x,t)‖L
q(·)
ω (Ω)

� C0
(
I1,γ(x,r)+ I2,γ(x,r)

)
, (4.8)

where γ > 0 will be chosen as shown below (we may take γ < 1),

I1,γ(x, t) := ‖b‖∗‖ω‖Lq(·)(B̃(x,t))

∫ γ

t

(
1+ ln

s
t

)
‖ f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

,

I2,γ(x, t) := ‖b‖∗‖ω‖Lq(·)(B̃(x,t))

∫ ∞

γ

(
1+ ln

s
t

)
‖ f‖

Lp(·)
ω (B̃(x,s))

‖ω‖−1
Lq(·)(B̃(x,s))

ds
s

and it is supposed that t < γ . Now we choose any fixed γ > 0 such that

sup
x∈Rn

1
ϕ1(x, t)‖ω‖Lq(·)(B̃(x,t))

‖ f χB̃(x,t)‖Lp(·)
ω (Ω)

<
ε

2CC0‖b‖∗ , for all 0 < t < γ,

where C and C0 are constants from (4.6) and (4.8), which is possible since f ∈
VM

p(·),ϕ1
ω (Ω) . Then

sup
x∈Rn

CI1,γ(x,t) <
ε
2
, 0 < t < γ,

by (4.6).
The estimation of the second term now may be made already by the choice of r

sufficiently small thanks to the condition (4.5). We have

I2,γ(x,t) � Cγ‖b‖∗ ϕ2(x,t)
‖ω‖Lq(·)(B̃(x,t))

‖ f‖
VM

q(·),ϕ2
ω (Ω)

,

where Cγ is the constant from (4.5). Then, by (4.5) it suffices to choose r small enough
such that

ϕ2(x,t)
‖ω‖Lq(·)(B̃(x,t))

<
ε

2CCγ‖b‖∗‖ f‖
VM

q(·),ϕ2
ω (Ω)

,

which completes the proof of (4.6). �
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