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Abstract. On the interval [−1,1] , the Gegenbauer polynomial Cλ
n (λ > 0) is greater than or

equal to its tangent line at the point z0 = 1 . We derive a lower bound for the difference of Cλ
n

and this tangent line.

1. Introduction

Our main objective is to derive estimates from below on the difference of the
Gegenbauer polynomial Cλ

n and its tangent line at the point z0 = 1. For Chebyshev
polynomials, such an inequality is proved in [2], and used to obtain error estimates
for a three-term recurrence. In this paper, we generalize that result to Gegenbauer
polynomials Cλ

n with an arbitrary λ > 0.
In Theorem 3.1, we demonstrate that if λ > 0, n � 2 and −1 � z � 1, then

Cλ
n (z)−

[
Cλ

n (1)+
(
Cλ

n

)′
(1) (z−1)

]
(1)

� 2(λ +1)
2λ +1

Cλ
n (1) min

(
n2(n+2λ )2

16(λ +1)2 (1− z)2,

(
1− cos

π
λ +2

)2
)

. (2)

For a proof of (1)–(2), we study a solution of a certain nonlinear equation involving the
Gegenbauer functions Cλ

ν with a real degree ν > 1. In Theorem 2.1, we show that the
solution is a decreasing function of ν , and thus the general case is reduced to the case
n = 2.

Setting λ = 1
2 in (1)–(2), we obtain the following inequality for Legendre polyno-

mials Pn , n � 2,

Pn(z)−
[
1+

1
2

n(n+1)(z−1)
]

� min

(
1
24

n2(n+1)2(1− z)2,
15
16

(
3−

√
5
))

. (3)

We note that the expression on the left-hand side of (3) is O(n2) as n → ∞ , while
the first argument of the minimum asymptotes to a multiple of n4 , so the inequality is
generally invalid without taking the minimum. In the limiting case λ → 0+ , we have
the following bound for Chebyshev polynomials Tn , n � 2 [2, Theorem 2],

Tn(z)−
[
1+n2(z−1)

]
� min

(
1
8

n4(1− z)2,2

)
. (4)
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2. Properties of Gegenbauer functions

The main result of this section is Theorem 2.1, which establishes monotonicity of
solutions of an equation involving Gegenbauer functions of the first kind Cλ

ν . We use
this theorem in the proof of Theorem 3.1.

The Gegenbauer function Cλ
ν can be defined in terms of the hypergeometric func-

tion [3, 15.9.15]

Cλ
ν (z) =

Γ(ν +2λ )
Γ(2λ )Γ(ν +1) 2F1

(
ν +2λ ,−ν;λ +

1
2
;
1
2
(1− z)

)
. (5)

From this representation, we deduce that

Cλ
ν (1) =

Γ(ν +2λ )
Γ(2λ )Γ(ν +1)

, (6)

(
Cλ

ν

)′
(1) =

2λ Γ(ν +2λ +1)
Γ(2λ +2)Γ(ν)

, (7)

where
(
Cλ

ν
)′

(z) = d
dzC

λ
ν (z) . The expressions in equations (5)–(7) are well-defined for

any λ ,ν ∈ C as long as ν +2λ �= 0,−1,−2, . . . .
In the next two lemmas, we derive integral representations for Cλ

ν and
(
Cλ

ν
)′

of the
Dirichlet-Mehler type. The assumption λ > 0 guarantees convergence of the integrals.

LEMMA 2.1. If λ > 0 , ν +2λ �= 0,−1, . . . , and 0 < θ < π , then

Cλ
ν (cosθ ) =

2λ Γ(λ + 1
2)(sinθ )1−2λ

√
π Γ(λ )

(8)

× Cλ
ν (1)

∫ θ

0
cos(ν + λ )t (cost− cosθ )λ−1 dt. (9)

Proof. The claim follows by substituting (6) into the following formula [1, 3.15.2
(23)]

Cλ
ν (cosθ ) =

2λ Γ(λ + 1
2 )Γ(ν +2λ )(sinθ )1−2λ

√
π Γ(λ )Γ(2λ )Γ(ν +1)

×
∫ θ

0
cos(ν + λ )t (cost− cosθ )λ−1 dt. �

In the following lemma, if ν + λ = 0, the quotient sin(ν+λ )t
ν+λ should be replaced

with t .

LEMMA 2.2. If λ > 0 , ν +2λ �= 0,−1, . . . , and 0 < θ < π , then(
Cλ

ν

)′
(cosθ ) =

2λ+1 Γ(λ + 3
2 )(sinθ )−1−2λ

√
π Γ(λ )(ν + λ )

(10)

×
(
Cλ

ν

)′
(1)

∫ θ

0
sin t sin(ν + λ )t (cost− cosθ )λ−1 dt. (11)
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Proof. If ν = 0,−1, . . . , then by (5) and (7) both sides of (10)–(11) vanish. Thus
we may assume that ν �= 0,−1, . . . , which implies that

(
Cλ

ν
)′

(1) �= 0. The derivative(
Cλ

ν
)′

(z) can be expressed through the Gegenbauer function of order λ +1 as follows
[1, 3.15.2 (30)] (

Cλ
ν

)′
(z) = 2λ Cλ+1

ν−1 (z). (12)

Consequently, (
Cλ

ν
)′

(z)(
Cλ

ν
)′

(1)
=

Cλ+1
ν−1 (z)

Cλ+1
ν−1 (1)

. (13)

An integral representation of Cλ+1
ν−1 can be obtained by using (8)–(9) with parameters

λ +1 and ν −1. Substituting this representation into (13), we obtain

(
Cλ

ν

)′
(cosθ ) =

2λ+1 Γ(λ + 3
2 )(sinθ )−1−2λ

√
π Γ(λ +1)

(14)

×
(
Cλ

ν

)′
(1)

∫ θ

0
cos(ν + λ )t (cost− cosθ )λ dt. (15)

Integrating by parts gives

∫ θ

0
cos(ν + λ )t (cost− cosθ )λ dt (16)

=
λ

ν + λ

∫ θ

0
sin t sin(ν + λ )t (cost− cosθ )λ−1 dt. (17)

Substituting (16)–(17) into (14)–(15) , we arrive at (10)–(11). �

LEMMA 2.3. If λ > 0 , ν > 1 and 0 < θ � π
ν+λ , then

(
Cλ

ν

)′
(cosθ ) <

(
Cλ

ν

)′
(1).

Proof. We deduce from (5) that for every z ∈ C

Cλ
1 (z) = 2λ z,

which implies that (
Cλ

1

)′
(z) = 2λ . (18)

It follows from (7) that
(
Cλ

ν
)′

(1) > 0 and
(
Cλ

1

)′
(1) > 0. For 0 < t < π

ν+λ , we have

sin(ν + λ )t <
ν + λ
1+ λ

sin(1+ λ )t,
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because the function sinz
z is decreasing on the interval (0,π) . Substituting this into

(10)–(11) and using Lemma 2.2 with ν = 1 gives

(
Cλ

ν

)′
(cosθ ) <

2λ+1 Γ(λ + 3
2 )(sinθ )−1−2λ

√
π Γ(λ )(1+ λ )

×
(
Cλ

ν

)′
(1)

∫ θ

0
sin t sin(1+ λ )t (cost− cosθ )λ−1 dt

=
(
Cλ

ν

)′
(1)

(
Cλ

1

)′
(cosθ )(

Cλ
1

)′
(1)

=
(
Cλ

ν

)′
(1).

In the last step, we have used (18). �
From (6) and (7), we infer that(

Cλ
ν
)′

(1)

Cλ
ν (1)

=
ν(ν +2λ )

2λ +1
. (19)

We define the function τλ as follows

τλ (ν) =

(
Cλ

ν
)′

(1)

Cλ
ν (1)

(
1− cos

π
ν + λ

)
=

ν(ν +2λ )
2λ +1

(
1− cos

π
ν + λ

)
. (20)

LEMMA 2.4. For a fixed λ > 0 , the function

σλ (ν) =
1

Cλ
ν (1)

Cλ
ν

(
cos

π
ν + λ

)
−1+ τλ(ν) (21)

increases on the interval ν > 1 .

Proof. Substituting (8)–(9) into (21), differentiating with respect to ν and setting
θ = π

ν+λ , we obtain

σ ′
λ (ν) =

2(ν + λ )
2λ +1

(1− cosθ )− ν(ν +2λ )
(2λ +1)(ν + λ )

θ sinθ (22)

+
∂

∂ν

(
1

Cλ
ν (1)

Cλ
ν

)
(cosθ )+

1

Cλ
ν (1)

(
Cλ

ν

)′
(cosθ )

∂ cosθ
∂ν

. (23)

From (19), we deduce that

1

Cλ
ν (1)

(
Cλ

ν

)′
(cosθ )

∂ cosθ
∂ν

=
ν(ν +2λ )

2λ +1
1

(Cλ
ν )′(1)

(
Cλ

ν

)′
(cosθ )

θ sinθ
ν + λ

. (24)

Since tan θ
2 > θ

2 , we have 2(1− cosθ ) > θ sinθ . Consequently,

2(ν + λ )
2λ +1

(1− cosθ )− ν(ν +2λ )
(2λ +1)(ν + λ )

θ sinθ >
λ 2

(2λ +1)(ν + λ )
θ sinθ . (25)
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Differentiating (8)–(9) under the integral sign, we obtain

∂
∂ν

(
1

Cλ
ν (1)

Cλ
ν

)
(cosθ ) = −2λ Γ(λ + 1

2 )(sinθ )1−2λ
√

π Γ(λ )
(26)

×
∫ θ

0
t sin(ν + λ )t (cost− cosθ )λ−1 dt. (27)

If 0 < t < θ , then sinθ
θ < sint

t . Substituting this into (26)–(27) and using (10)–(11), we
obtain

∂
∂ν

(
1

Cλ
ν (1)

Cλ
ν

)
(cosθ ) > −2λ Γ(λ + 1

2 )(sinθ )−2λ θ√
π Γ(λ )

(28)

×
∫ θ

0
sin t sin(ν + λ )t (cost− cosθ )λ−1 dt (29)

= − ν + λ
2λ +1

θ sinθ
(Cλ

ν )′(1)

(
Cλ

ν

)′
(cosθ ). (30)

Substituting (25), (28)–(30) and (24) into (22)–(23) gives

σ ′
λ (ν) >

λ 2 θ sinθ
(2λ +1)(ν + λ )

− ν + λ
2λ +1

θ sinθ
(Cλ

ν )′(1)

(
Cλ

ν

)′
(cosθ )

+
ν(ν +2λ )

(2λ +1)(ν + λ )
θ sinθ

(Cλ
ν )′(1)

(
Cλ

ν

)′
(cosθ )

=
λ 2 θ sinθ

(2λ +1)(ν + λ )

(
1− 1

(Cλ
ν )′(1)

(
Cλ

ν

)′
(cosθ )

)
.

If follows from Lemma 2.3 that σ ′
λ (ν) > 0. �

THEOREM 2.1. If λ > 0 , ν > 1 and

0 � w � σλ (ν), (31)

then there exists a unique μ in the interval [0,τλ (ν)] such that

1

Cλ
ν (1)

Cλ
ν

(
1− 2λ +1

ν(ν +2λ )
μ
)
−1+ μ = w. (32)

Moreover, if ν0 > 1 and

0 < w � σλ (ν0), (33)

then μ = μ(ν) exists for every ν � ν0 , and is a decreasing function of ν .

Proof. For a fixed λ > 0 and ν > 1, we define the function fν on the interval
[0,τλ (ν)] by the formula

fν(μ) =
1

Cλ
ν (1)

Cλ
ν

(
1− 2λ +1

ν(ν +2λ )
μ
)
−1+ μ .
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Differentiating with respect to μ and using (19) gives

f ′ν (μ) = 1− 2λ +1
ν(ν +2λ )

1

Cλ
ν (1)

(
Cλ

ν

)′(
1− 2λ +1

ν(ν +2λ )
μ
)

= 1− 1

(Cλ
ν )′(1)

(
Cλ

ν

)′(
1− 2λ +1

ν(ν +2λ )
μ
)

.

We define a variable θ ∈
[
0, π

ν+λ

]
, by the formula

cosθ = 1− 2λ +1
ν(ν +2λ )

μ . (34)

In view of (20), the interval 0 � θ � π
ν+λ corresponds to the interval 0 � μ � τλ (ν) .

From Lemma 2.3, we have f ′ν (μ) > 0 for 0 < θ < π
ν+λ , so the function fν is increas-

ing. Therefore, equation (32) has a unique solution whenever fν (0) � w � fν (τλ (ν)) .
We note that fν (0) = 0 and fν (τλ (ν)) = σλ (ν) .

Let ν0 > 1, let w satify (33), and let ν � ν0 . From Lemma 2.4, we deduce that
fν (τλ (ν)) � fν0(τλ (ν0)) , so the solution μ = μ(ν) of (32) exists. Differentiating (32)
with respect to ν , collecting the terms and using (19), we obtain

−
[
1− 1

(Cλ
ν )′(1)

(
Cλ

ν

)′
(cosθ )

]
dμ
dν

(35)

=
2(2λ +1)(ν + λ )

ν2(ν +2λ )2

μ
Cλ

ν (1)

(
Cλ

ν

)′
(cosθ )+

∂
∂ν

(
1

Cλ
ν (1)

Cλ
ν

)
(cosθ ) . (36)

The assumption w > 0 implies that θ > 0. In view of Lemma 2.3, the bracketed
expression in (35) is positive. Substituting (19), (34), (10)–(11) and (26)–(27) into
(36), we obtain

2(2λ +1)(ν + λ )
ν2(ν +2λ )2

μ
Cλ

ν (1)

(
Cλ

ν

)′
(cosθ )+

∂
∂ν

(
1

Cλ
ν (1)

Cλ
ν

)
(cosθ ) (37)

=
2(ν + λ )
2λ +1

1− cosθ
(Cλ

ν )′(1)

(
Cλ

ν

)′
(cosθ )+

∂
∂ν

(
1

Cλ
ν (1)

Cλ
ν

)
(cosθ ) (38)

=
2λ Γ(λ + 1

2 )(sinθ )−1−2λ
√

π Γ(λ )
(39)

×
[
2(1− cosθ )

∫ θ

0
sin t sin(ν + λ )t (cost− cosθ )λ−1 dt (40)

− sin2 θ
∫ θ

0
t sin(ν + λ )t (cost− cosθ )λ−1 dt

]
. (41)

By definition, 0 � θ � π
ν+λ < π . Therefore, if 0 < t < θ , then sin(ν + λ )t > 0 and

sint
t > sinθ

θ . Consequently,

2(1− cosθ )sin t > 4sin2 θ
2

sinθ
θ

t =
tan θ

2
θ
2

t sin2 θ > t sin2 θ .
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Thus the bracketed expression in lines (40)–(41) is positive. From (35)–(36), we infer
that dμ

dν < 0. �

3. Inequalities involving Gegenbauer polynomials

The following theorem is our main result.

THEOREM 3.1. If λ > 0 , n � 2 is an integer and −1 � z � 1 , then (1)–(2) holds.

The minimum function appearing in (2) is easy to evaluate. For λ > 0 and n � 2,
we set

zn,λ = 1− 4(λ +1)
n(n+2λ )

(
1− cos

π
λ +2

)
.

If zn,λ � z � 1, then the minimum in (2) is attained at the first term. If −1 � z � zn,λ ,
then the minimum in (2) is attained at the second term.

From (5), we deduce that

1

Cλ
2 (1)

Cλ
2 (z) =

2(λ +1)
2λ +1

z2 − 1
2λ +1

. (42)

We note that z2,λ = cos π
λ+2 . Comparing the coefficients at z2 , we see that if n = 2 and

cos π
λ+2 � z � 1, then we have equality in (1)–(2).
From (20), (21) and (42), we derive an explicit form of σλ (2)

σλ (2) =
1

Cλ
2 (1)

Cλ
2

(
cos

π
λ +2

)
−1+

4(λ +1)
2λ +1

(
1− cos

π
λ +2

)
(43)

=
2(λ +1)
2λ +1

(
1− cos

π
λ +2

)2

. (44)

Proof of Theorem 3.1. For n � 2, we define the function gn on the interval
[−1,1] by the formula

gn(z) =
1

Cλ
n (1)

Cλ
n (z)−

[
1+

n(n+2λ )
2λ +1

(z−1)
]
. (45)

It is known [3, 18.14.1] that the maximum value of Cλ
n on the interval [−1,1] is attained

at z = 1. By (12), the same is true for the derivative
(
Cλ

ν
)′

. In view of (19), we have

g′n(z) =
1

Cλ
n (1)

(
Cλ

n

)′
(z)− n(n+2λ )

2λ +1

=
1

Cλ
n (1)

((
Cλ

n

)′
(z)−

(
Cλ

n

)′
(1)
)

� 0.

This implies that gn is strictly decreasing, since gn is a non-constant polynomial.
Consequently, gn(z) � gn(1) = 0. If gn(z) = 0, then z = 1 and (1)–(2) holds. If
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gn(z) � σλ (2) , then (1)–(2) is trivially true in view of (43)–(44). It remains to consider
the case when 0 < gn(z) < σλ (2) . We apply Theorem 2.1 with w = gn(z) and ν0 = 2
to the equation

1

Cλ
k (1)

Cλ
k

(
1− 2λ +1

k(k+2λ )
μ
)
−1+ μ = gn(z). (46)

It follows that for k = 2,3, . . . this equation has a unique solution μk in the interval
[0,τλ (k)] , and this solution is a decreasing function of k . It follows from (45) that

μn = n(n+2λ )
2λ+1 (1− z) . From (42) and (46), we deduce that μ2

2 = 8 λ+1
2λ+1 gn(z) . Since the

sequence μk is non-negative and decreasing, we have

8
λ +1
2λ +1

gn(z) = μ2
2 � μ2

n =
n2(n+2λ )2

(2λ +1)2 (1− z)2.

This implies (1)–(2). �
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