WEIGHTED COMPOSITION OPERATORS FROM WEIGHTED BERGMAN SPACES TO STEVIĆ-TYPE SPACES

Xiangling Zhu and Juntao Du

(Communicated by S. Stevic)

Abstract

The boundedness, compactness and essential norm of weighted composition operators from weighted Bergman spaces with a double weight to Stević-type spaces on the unit disk are investigated in this paper.

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane, and $H(\mathbb{D})$ the class of all functions analytic on \mathbb{D}. Assume that μ is a weight, that is, μ is a radial, positive and continuous function on \mathbb{D}. If $n \in \mathbb{N} \cup\{0\}$, the Stević-type space on \mathbb{D}, which he called the n-th weighted space, denoted by $W_{\mu}^{(n)}$, consists of all $f \in H(\mathbb{D})$ such that

$$
\|f\|_{W_{\mu}^{(n)}}:=\sum_{k=0}^{n-1}\left|f^{(k)}(0)\right|+\sup _{z \in \mathbb{D}} \mu(z)\left|f^{(n)}(z)\right|<\infty .
$$

The space $W_{\mu}^{(n)}$ was introduced by S. Stević in [28]. It is a Banach space with the norm $\|\cdot\|_{W_{\mu}^{(n)}}$. When $n=0, W_{\mu}^{(n)}$ becomes the weighted-type space H_{μ}^{∞}. When $n=1$ and $n=2, W_{\mu}^{(n)}$ becomes the Bloch-type space \mathscr{B}_{μ} and the Zygmund-type space \mathscr{Z}_{μ}, respectively. For some results on the spaces $H_{\mu}^{\infty}, \mathscr{B}_{\mu}, \mathscr{Z}_{\mu}$ with various weights μ, and operators acting from or to them, see, e.g., $[1,2,3,4,6,7,9,13,14,15,16,17,18,19$, $29,30,32,34,42,44,45]$, and the related references therein.

The little Stević-type space, denoted by $W_{\mu, 0}^{(n)}$, consists of all $f \in W_{\mu}^{(n)}$ such that

$$
\lim _{|z| \rightarrow 1} \mu(z)\left|f^{(n)}(z)\right|=0
$$

It is shown in a standard way that $W_{\mu, 0}^{(n)}$ is a closed subspace of $W_{\mu}^{(n)}$.

[^0]Suppose ω is an integrable weight on $(0,1)$. We say that ω is regular, and write it as $\omega \in \mathscr{R}$, if there is a constant $C>0$ determined by ω, such that

$$
\frac{1}{C}<\frac{1}{(1-r) \omega(r)} \int_{r}^{1} \omega(s) d s<C, \text { when } 0<r<1
$$

We say that ω is rapidly increasing, and write it as $\omega \in \mathscr{I}$, if

$$
\lim _{r \rightarrow 1} \frac{1}{(1-r) \omega(r)} \int_{r}^{1} \omega(s) d s=\infty
$$

Let $v_{\alpha, \beta}(r)=(1-r)^{\alpha}\left(\log \frac{e}{1-r}\right)^{\beta}$ (such weights can be found in [29, 30]). By a calculation, we have the following typical examples of regular and rapidly increasing weights, see [24], for example.
(i) When $\alpha>-1$ and $\beta \in \mathbb{R}, v_{\alpha, \beta} \in \mathscr{R}$;
(ii) When $\alpha=-1$ and $\beta<-1, v_{\alpha, \beta} \in \mathscr{I}$ and $\left|\sin \left(\log \frac{1}{1-r}\right)\right| v_{\alpha, \beta}(r)+1 \in \mathscr{I}$.

Suppose ω is an integrable weight on $(0,1)$. If there is a constant $C>0$ such that

$$
\int_{r}^{1} \omega(s) d s<C \int_{\frac{1+r}{2}}^{1} \omega(s) d s, \text { when } 0<r<1
$$

we say that ω is a double weight, and write it as $\omega \in \hat{\mathscr{D}}$. From [24, 25], we see that $\mathscr{I} \cup \mathscr{R} \subset \hat{\mathscr{D}}$. See $[24,25]$ for more details about \mathscr{I}, \mathscr{R} and $\hat{\mathscr{D}}$.

Let $0<p<\infty$ and $\omega \in \hat{\mathscr{D}}$. The weighted Bergman space A_{ω}^{p} is the space of $f \in H(\mathbb{D})$ for which

$$
\|f\|_{A_{\omega}^{p}}^{p}:=\int_{\mathbb{D}}|f(z)|^{p} \omega(z) d A(z)<\infty
$$

where $d A(z)=\frac{1}{\pi} d x d y$ is the normalized Lebesgue area measure on \mathbb{D}. When $p \geqslant 1$, A_{ω}^{p} is a Banach space. When $\omega(t)=(1-t)^{\alpha}(\alpha>-1)$, the space A_{ω}^{p} becomes the classical weighted Bergman space A_{α}^{p}. In [24,25] there are plenty of results which show that the Bergman space A_{ω}^{p} induced by a rapidly increasing weight lie "closer" to the Hardy space H^{p} than any A_{α}^{p}.

Let φ be an analytic self-map of \mathbb{D} and $u \in H(\mathbb{D})$. The weighted composition operator, denoted by $u C_{\varphi}$, is defined on $H(\mathbb{D})$ by

$$
\left(u C_{\varphi} f\right)(z)=u(z) f(\varphi(z)), \quad f \in H(\mathbb{D})
$$

It is important to give function theoretic descriptions of when u and φ induce a bounded or compact weighted composition operator on various function spaces. Recently, there has been a great interest in studying weighted composition operators on analytic function spaces on the unit disk, see, e.g., $[1,2,3,4,5,6,7,8,10,11,12,13,14,15,20$, $21,22,27,31,33,35,36,37,38,40,41,43,44,45]$.

In [28], Stević studied the boundedness and compactness of the composition operator from A_{α}^{p} to $W_{\mu}^{(n)}$ on \mathbb{D}. In [35], Stević studied the boundedness and compactness of the weighted differentiation composition operators from H^{∞} and the Bloch space to $W_{\mu}^{(n)}$ on \mathbb{D}. In [41], Zhang and Zeng generalized the results in [28] to the case of weighted differentiation composition operators. For some very general results on the essential norm of generalized composition operators between Stević-type spaces see [37].

Motivated by [28], we study the boundedness and compactness of $u C_{\varphi}$ from weighted Bergman spaces A_{ω}^{p} to $W_{\mu}^{(n)}$ and $W_{\mu, 0}^{(n)}$ in this paper. Moreover, we give some estimates of the essential norm of $u C_{\varphi}$ from A_{ω}^{p} to $W_{\mu}^{(n)}$ and $W_{\mu, 0}^{(n)}$.

Let X and Y be Banach spaces. Recall that the essential norm of linear operator $T: X \rightarrow Y$ is defined by

$$
\|T\|_{e, X \rightarrow Y}=\inf \left\{\|T-K\|_{X \rightarrow Y}: K \text { is compact from } X \text { to } Y\right\}
$$

Obviously $T: X \rightarrow Y$ is compact if and only if $\|T\|_{e, X \rightarrow Y}=0$.
Throughout this paper, the letter C will denote constants and may differ from one occurrence to the other. The notation $A \lesssim B$ means that there is a positive constant C such that $A \leqslant C B$. The notation $A \approx B$ means $A \lesssim B$ and $B \lesssim A$.

2. Auxiliary results

Lemma 1. Assume that $\omega \in \hat{\mathscr{D}}, r \in[0,1]$ and $\omega_{*}(r)=\int_{r}^{1} s \omega(s) \log \frac{s}{r} d s$. Then the following statements hold.
(i) $\omega_{*} \in \mathscr{R}$ and $\omega_{*}(r) \approx(1-r) \int_{r}^{1} \omega(t) d t$;
(ii) There are $0<a<b<+\infty$ and $\delta \in[0,1)$, such that

$$
\begin{aligned}
& \frac{\omega_{*}(r)}{(1-r)^{a}} \text { is decreasing on }[\delta, 1) \text { and } \lim _{r \rightarrow 1} \frac{\omega_{*}(r)}{(1-r)^{a}}=0 ; \\
& \frac{\omega_{*}(r)}{(1-r)^{b}} \text { is increasing on }[\delta, 1) \text { and } \lim _{r \rightarrow 1} \frac{\omega_{*}(r)}{(1-r)^{b}}=\infty
\end{aligned}
$$

(iii) $\omega_{*}(r)$ is decreasing on $[\boldsymbol{\delta}, 1)$ and $\lim _{r \rightarrow 1} \omega_{*}(r)=0$.

Proof. By [26, Lemmas A and 9], (i) holds. By (1.19) in [24], (ii) holds. From (ii) and the fact that $\omega_{*}(r)=\frac{\omega_{*}(r)}{(1-r)^{a}}(1-r)^{a}$, we see that (iii) holds.

REMARK 1. Without loss of generality, we can assume δ related to ω_{*} in Lemma 1 is 0 . We assume that ω_{*} is radial, that is, $\omega_{*}(z)=\omega_{*}(|z|)$ for all $z \in \mathbb{D}$.

Let $\gamma_{0}>0$ be one of the admissible constants in [24, Lemma 2.3]. It follows by Lemma 1, [23, Lemma 3.1] and [24, Lemma 2.4] we have the following result.

Lemma 2. Let $\omega \in \hat{\mathscr{D}}, p>0$ and $k \in \mathbb{N} \cup\{0\}$. Set

$$
g_{a, k}(z)=\left(\frac{1-|a|^{2}}{1-\bar{a} z}\right)^{k+\gamma_{0}} \frac{1}{\omega_{*}^{1 / p}(a)}, \quad z \in \mathbb{D}
$$

Then

$$
\left\|g_{a, k}\right\|_{A_{\omega}^{p}} \approx 1, \text { when } a \in \mathbb{D}
$$

and

$$
\lim _{|a| \rightarrow 1} \sup _{|z| \leqslant r}\left|g_{a, k}(z)\right|=0 \text {, when } r \in(0,1) \text {. }
$$

For $f \in H(\mathbb{D})$ and $0<r<1$, set

$$
M_{p}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{p} d t\right)^{1 / p}, 0<p<\infty
$$

and

$$
M_{\infty}(r, f)=\sup _{|z|=r}|f(z)| .
$$

Then we have the following lemma.
Lemma 3. Suppose $\omega \in \hat{\mathscr{D}}, 0<p<\infty$ and $N \in \mathbb{N} \cup\{0\}$. Then there exists $C=C(p, \omega, N)$ such that

$$
\begin{equation*}
(1-|z|)^{k} \omega_{*}^{1 / p}(z)\left|f^{(k)}(z)\right| \leqslant C\|f\|_{A_{\omega}^{p}} \tag{1}
\end{equation*}
$$

for all $f \in H(\mathbb{D})$ and $k=0,1, \cdots, N+1$.
Proof. Let $s_{k}(r)=1-\frac{1-r}{2^{k}}$. Then $\frac{1+s_{k}(r)}{2}=s_{k+1}(r)$. By well-known estimates, there is a $C_{1}=C(p)<\infty$, such that

$$
M_{\infty}(r, f) \leqslant C_{1} \frac{M_{p}\left(\frac{1+r}{2}, f\right)}{(1-r)^{1 / p}}, \text { and } M_{p}\left(r, f^{\prime}\right) \leqslant C_{1} \frac{M_{p}\left(\frac{1+r}{2}, f\right)}{1-r}
$$

Hence,

$$
M_{\infty}\left(r, f^{(k)}\right) \leqslant C_{1} \frac{M_{p}\left(s_{1}(r), f^{(k)}\right)}{(1-r)^{1 / p}} \leqslant 2^{\frac{k(k+1)}{2}} C_{1}^{k+1} \frac{M_{p}\left(s_{k+1}(r), f\right)}{(1-r)^{k+1 / p}}
$$

Then

$$
\begin{aligned}
(1-r)^{p k+1} M_{\infty}^{p}\left(r, f^{(k)}\right) \int_{s_{k+1}(r)}^{1} \omega(t) d t & \leqslant 2^{\frac{p k(k+1)}{2}} C_{1}^{p(k+1)} M_{p}^{p}\left(s_{k+1}(r), f\right) \int_{s_{k+1}(r)}^{1} 2 \omega(t) t d t \\
& \leqslant 2^{\frac{p k(k+1)}{2}+1} C_{1}^{p(k+1)}\|f\|_{A_{\omega}^{p}}^{p}
\end{aligned}
$$

By Lemma 1, there exist $C_{2}=C(\omega)>0$ and $b>0$, such that $\frac{\omega_{*}(t)}{(1-t)^{b}}$ is increasing on $[0,1)$ and

$$
\frac{1}{C_{2}}(1-t) \int_{t}^{1} \omega(s) d s \leqslant \omega_{*}(t) \leqslant C_{2}(1-t) \int_{t}^{1} \omega(s) d s, t \in[0,1]
$$

Hence,

$$
\frac{\omega_{*}(r)}{(1-r)^{b}} \leqslant \frac{\omega_{*}\left(s_{k+1}(r)\right)}{\left(1-s_{k+1}(r)\right)^{b}}=\frac{2^{(k+1) b} \omega_{*}\left(s_{k+1}(r)\right)}{(1-r)^{b}}
$$

Therefore,

$$
\begin{aligned}
M_{\infty}^{p}\left(r, f^{(k)}\right) & \leqslant \frac{2^{\frac{p k(k+1)}{2}+1} C_{1}^{p(k+1)} C_{2}\left(1-s_{k+1}(r)\right)\|f\|_{A_{\omega}^{p}}^{p}}{(1-r)^{k p+1} \omega_{*}\left(s_{k+1}(r)\right)} \\
& \leqslant \frac{2^{\frac{p k(k+1)}{2}+(b-1)(k+1)+1} C_{1}^{p(k+1)} C_{2}\|f\|_{A_{\omega}^{p}}^{p}}{(1-r)^{k p} \omega_{*}(r)} .
\end{aligned}
$$

So, there exists $C=C(p, \omega, N)$ such that (1) always holds. The proof is complete.
The next two lemmas can be found in [35].
Lemma 4. [35] Fix $n \in \mathbb{N} \cup\{0\}, a>0$. Let matrix $D_{n+1}(a)=\left(\beta_{i j}(a)\right)_{i, j=1,2, \cdots, n+1}$, where

$$
\beta_{i j}(a)=\left\{\begin{array}{cl}
1, & i=1 \\
\prod_{k=1}^{i-1}(a+k+j-2), & i=2,3, \cdots, n+1
\end{array}\right.
$$

Then

$$
\operatorname{det}\left(D_{n+1}(a)\right)=\left\{\begin{array}{cc}
1, & n=0 \\
\prod_{k=1}^{n} k!, & n \in \mathbb{N}
\end{array}\right.
$$

Here $\operatorname{det}\left(D_{n+1}(a)\right)$ is the determinant of $D_{n+1}(a)$.
Lemma 5. [35] Suppose $n \in \mathbb{N} \cup\{0\}, u \in H(\mathbb{D})$, and φ is an analytic self-map of \mathbb{D}. For all $f \in H(\mathbb{D})$, we have

$$
\begin{equation*}
\left(u C_{\varphi} f\right)^{(n)}(z)=\sum_{k=0}^{n} f^{(k)}(\varphi(z)) \sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}\left(\varphi^{\prime}(z), \varphi^{\prime \prime}(z), \cdots, \varphi^{(l-k+1)}(z)\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{l, k}\left(\varphi^{\prime}(z), \varphi^{\prime \prime}(z), \cdots, \varphi^{(l-k+1)}(z)\right)=\sum_{k_{1}, \cdots, k_{l}} \frac{l!}{k_{1}!k_{2}!\cdots k_{l}!} \prod_{j=1}^{l}\left(\frac{\varphi^{(j)}(z)}{j!}\right)^{k_{j}} \tag{3}
\end{equation*}
$$

and the sum in (3) is over all non-negative integers $k_{1}, k_{2}, \cdots, k_{l}$ satisfying

$$
k_{1}+k_{2}+\cdots+k_{l}=k \text { and } k_{1}+2 k_{2}+\cdots+l k_{l}=l
$$

For brief, we will write $B_{l, k}\left(\varphi^{\prime}(z), \varphi^{\prime \prime}(z), \cdots, \varphi^{(l-k+1)}(z)\right)$ as $B_{l, k}(\varphi(z))$, that is

$$
B_{l, k}(\varphi(z))=B_{l, k}\left(\varphi^{\prime}(z), \varphi^{\prime \prime}(z), \cdots, \varphi^{(l-k+1)}(z)\right)
$$

To study the compactness, we need the following well known lemma.

Lemma 6. [39, Lemma 2.10] Suppose $p \geqslant 1, \omega \in \hat{\mathscr{D}}$ and μ is a weight. If $T: A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}\left(W_{\mu, 0}^{(n)}\right)$ is linear and bounded, then T is compact if and only if whenever $\left\{f_{k}\right\}$ is bounded in A_{ω}^{p} and $f_{k} \rightarrow 0$ uniformly on compact subsets of \mathbb{D}, $\lim _{k \rightarrow \infty}\left\|T f_{k}\right\|_{W_{\mu}^{(n)}}=0$.

3. Main results and proofs

THEOREM 1. Assume that $p \geqslant 1, n \in \mathbb{N} \cup\{0\}, u \in H(\mathbb{D}), \varphi$ is an analytic selfmap of $\mathbb{D}, \omega \in \hat{\mathscr{D}}$, and μ is a weight. Then $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}$ is bounded if and only if

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))}<\infty, k=0,1, \cdots, n \tag{4}
\end{equation*}
$$

Proof. Suppose that (4) holds. For any $f \in A_{\omega}^{p}$, from Lemmas 3 and 5, there exists $C=C(\omega, p, n)$, such that

$$
\begin{aligned}
\mu(z)\left|\left(u C_{\varphi} f\right)^{(n)}(z)\right| & =\mu(z)\left|\sum_{k=0}^{n} f^{(k)}(\varphi(z)) \sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right| \\
& \leqslant C\|f\|_{A_{\omega}^{p}} \sum_{k=0}^{n} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))}
\end{aligned}
$$

For $j=0,1, \cdots, n-1$, the following inequality holds obviously,

$$
\begin{aligned}
\left|\left(u C_{\varphi} f\right)^{(j)}(0)\right| & =\left|\sum_{k=0}^{j} f^{(k)}(\varphi(0)) \sum_{l=k}^{j} C_{j}^{l} u^{(j-l)}(0) B_{l, k}(\varphi(0))\right| \\
& \leqslant C\|f\|_{A_{\omega}^{p}} \sum_{k=0}^{j} \frac{\left|\sum_{l=k}^{j} C_{j}^{l} u^{(j-l)}(0) B_{l, k}(\varphi(0))\right|}{(1-|\varphi(0)|)^{k} \omega_{*}^{1 / p}(\varphi(0))}
\end{aligned}
$$

So $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}$ is bounded.
Conversely, suppose that $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}$ is bounded. For $a \in \mathbb{D}$ and $\vec{c}=$ $\left(c_{1}, c_{2}, \cdots, c_{n+1}\right)^{T}$, set

$$
\begin{equation*}
g_{a}(z)=\sum_{j=1}^{n+1} c_{j} g_{a, j}(z) \tag{5}
\end{equation*}
$$

where $g_{a, j}$ are defined in Lemma 2. We get

$$
g_{a, j}^{(t)}(z)=\frac{\left(\bar{a}^{t}\right)\left(j+\gamma_{0}\right)\left(j+\gamma_{0}+1\right) \cdots\left(j+\gamma_{0}+t-1\right)}{(1-\bar{a} z)^{j+\gamma_{0}+t}} \frac{\left(1-|a|^{2}\right)^{j+\gamma_{0}}}{\omega_{*}^{1 / p}(a)}
$$

So,

$$
g_{a, j}^{(t)}(a)=\frac{\left(\bar{a}^{t}\right)\left(j+\gamma_{0}\right)\left(j+\gamma_{0}+1\right) \cdots\left(j+\gamma_{0}+t-1\right)}{\left(1-|a|^{2}\right)^{t} \omega_{*}^{1 / p}(a)}
$$

Therefore,

$$
\begin{aligned}
& g_{a}^{(t)}(a)=\left(g_{a, 1}^{(t)}(a), g_{a, 2}^{(t)}(a), \cdots, g_{a, n}^{(t)}(a), g_{a, n+1}^{(t)}(a)\right) \circ \vec{c}, \\
= & \frac{\overline{a^{t}}}{\left(1-|a|^{2}\right)^{t} \omega_{*}^{1 / p}(a)}\left(\prod_{i=1}^{t}\left(i+\gamma_{0}\right), \prod_{i=2}^{t+1}\left(i+\gamma_{0}\right), \cdots, \prod_{i=n}^{t+n-1}\left(i+\gamma_{0}\right), \prod_{i=n+1}^{t+n}\left(i+\gamma_{0}\right)\right) \circ \vec{c} .
\end{aligned}
$$

Fix $k=0,1, \cdots, n$, we will choose \vec{c}, such that

$$
g_{a}^{(t)}(a)=\left\{\begin{array}{cl}
\frac{\left(\overline{a^{k}}\right)}{\left(1-|a|^{2}\right)^{k} \omega_{*}^{1 / p}(a)}, & t=k, \tag{6}\\
0, & t \neq k \text { and } 0 \leqslant t \leqslant n
\end{array}\right.
$$

That is to say,

$$
\left(\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
\gamma_{0}+1 & \gamma_{0}+2 & \cdots & \gamma_{0}+n & \gamma_{0}+n+1 \\
\left(\gamma_{0}+1\right)\left(\gamma_{0}+2\right) & \left(\gamma_{0}+2\right)\left(\gamma_{0}+3\right) & \cdots & \left(\gamma_{0}+n\right)\left(\gamma_{0}+n+1\right) & \left(\gamma_{0}+n+1\right)\left(\gamma_{0}+2\right) \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\prod_{i=1}^{n}\left(\gamma_{0}+i\right) & \prod_{i=1}^{n}\left(\gamma_{0}+i+1\right) & \cdots & \prod_{i=1}^{n}\left(\gamma_{0}+n+i-1\right) & \prod_{i=1}^{n}\left(\gamma_{0}+n+i\right)
\end{array}\right) \vec{c}=A
$$

or

$$
D_{n+1}\left(\gamma_{0}+1\right) \vec{c}=A
$$

where A is a column vector, in which the $k+1$-st element is 1 and the others are 0 . By Lemma 4, \vec{c} exists and depends on γ_{0}, k and n. By Lemma 2, there exists $C=C(\omega, p, k, n)$, such that $\left\|g_{a}\right\|_{A_{\omega}^{p}} \leqslant C$, for all $a \in \mathbb{D}$.

When $|\varphi(z)| \geqslant \frac{1}{2}$, by Lemma 5 and (6), we get

$$
\begin{align*}
\frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} & =\frac{1}{|\varphi(z)|^{k}} \mu(z)\left|\left(u C_{\varphi} g_{\varphi(z)}\right)^{(n)}(z)\right| \\
& \leqslant 2^{k}\left\|u C_{\varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}\left\|g_{\varphi(z)}\right\|_{A_{\omega}^{p}} \tag{7}
\end{align*}
$$

So, for $k=0,1, \cdots, n$, there exists $C=C(\omega, p, n)$ such that

$$
\sup _{|\varphi(z)| \geqslant \frac{1}{2}} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} \leqslant 2^{k} C\left\|u C_{\varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}<\infty .
$$

When $|\varphi(z)| \leqslant \frac{1}{2}$, let $k=0,1, \cdots, n$. Define the test function $h_{k}(z)=z^{k}$, then $\left\|h_{k}\right\|_{A_{\omega}^{p}}^{p} \lesssim \omega(\mathbb{D})$. Here $\omega(\mathbb{D})=\int_{\mathbb{D}} \omega(z) d A(z)$. Obviously, we have

$$
\begin{aligned}
\mu(z)\left|\sum_{l=0}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, 0}(\varphi(z))\right| & =\mu(z)\left|\left(u C_{\varphi} h_{0}\right)^{(n)}(z)\right| \leqslant\left\|u C_{\varphi} h_{0}\right\|_{W_{\mu}^{(n)}} \\
& \leqslant\left\|u C_{\varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}\left\|h_{0}\right\|_{A_{\omega}^{p}}=\left\|u C_{\varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}} \omega^{1 / p}(\mathbb{D})
\end{aligned}
$$

So, when $k=0$, we have

$$
\mu(z)\left|\sum_{l=0}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right| \leqslant \omega^{1 / p}(\mathbb{D})\left\|u C_{\varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}
$$

Suppose $k \geqslant 1$. Then we have

$$
\begin{aligned}
& k!\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right| \\
= & \mu(z)\left|\left(u C_{\varphi} h_{k}\right)^{(n)}(z)-\sum_{i=0}^{k-1} h_{k}^{(i)}(\varphi(z)) \sum_{l=i}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, i}(\varphi(z))\right| \\
\leqslant & \mu(z)\left|\left(u C_{\varphi} h_{k}\right)^{(n)}(z)\right|+\mu(z) \sum_{i=0}^{k-1} \frac{k!}{(k-i)!}\left|\sum_{l=i}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, i}(\varphi(z))\right| \\
\leqslant & \left\|u C_{\varphi}\right\|_{A_{\omega}^{p} W_{\mu}^{(n)}}\left\|h_{k}\right\|_{A_{\omega}^{p}}+\sum_{i=0}^{k-1} \frac{k!}{(k-i)!} \mu(z)\left|\sum_{l=i}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, i}(\varphi(z))\right| .
\end{aligned}
$$

So, we have

$$
\begin{aligned}
& \mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right| \\
\leqslant & \frac{1}{k!} \omega^{1 / p}(\mathbb{D})\left\|u C_{\varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}+\sum_{i=0}^{k-1} \frac{1}{(k-i)!} \mu(z)\left|\sum_{l=i}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, i}(\varphi(z))\right| .
\end{aligned}
$$

Using the last inequality $k=1,2, \cdots, n$ repeatedly, we can find a $C>0$, such that

$$
\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right| \leqslant C \omega^{1 / p}(\mathbb{D})\left\|u C_{\varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}
$$

Since $\sup _{0 \leqslant r \leqslant \frac{1}{2}} \frac{1}{(1-r)^{p k} \omega_{*}(r)}<\infty$, for $k=0,1, \cdots, n$, we get

$$
\sup _{|\varphi(z)| \leqslant \frac{1}{2}} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))}<\infty
$$

Therefore (4) holds. The proof is complete.

THEOREM 2. Assume that $p \geqslant 1, n \in \mathbb{N} \cup\{0\}, u \in H(\mathbb{D}), \varphi$ is an analytic selfmap of $\mathbb{D}, \omega \in \hat{\mathscr{D}}$, and μ is a weight. If $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}$ is bounded, then

$$
\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}} \approx \sum_{k=0}^{n} \limsup _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))}
$$

Proof. The lower estimate of $\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}$.
Suppose $\left\{w_{m}\right\}_{m=1}^{\infty} \subset \mathbb{D}$ such that $\lim _{m \rightarrow \infty}\left|\varphi\left(w_{m}\right)\right|=1$ and $K: A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}$ is compact. For a given $k=0,1, \cdots, n$, let $g_{\varphi\left(w_{m}\right)}$ be defined as in (5) and satisfy (6). By Lemma 2, there exists $C=C(\omega, p, n)$, such that $\left\|g_{\varphi\left(w_{m}\right)}\right\|_{A_{\omega}^{p}} \leqslant C$ and $\left\{g_{\varphi\left(w_{m}\right)}\right\}$ converges to 0 uniformly on compact subsets of \mathbb{D}. By Lemma $6, \lim _{m \rightarrow \infty}\left\|K g_{\varphi\left(w_{m}\right)}\right\|_{W_{\mu}^{(n)}}=0$. Therefore,

$$
\begin{aligned}
\left\|u C_{\varphi}-K\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}} & \gtrsim \limsup _{m \rightarrow \infty}\left\|\left(u C_{\varphi}-K\right) g_{\varphi\left(w_{m}\right)}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}} \\
& \geqslant \limsup _{m \rightarrow \infty}\left(\left\|u C_{\varphi} g_{\varphi\left(w_{m}\right)}\left(w_{m}\right)\right\|_{W_{\mu}^{(n)}}-\left\|K g_{\varphi\left(w_{m}\right)}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}\right) \\
& \gtrsim \limsup _{m \rightarrow \infty} \frac{\mu\left(w_{m}\right)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}\left(w_{m}\right) B_{l, k}\left(\varphi\left(w_{m}\right)\right)\right|}{\left(1-\left|\varphi\left(w_{m}\right)\right|\right)^{k} \omega_{*}^{1 / p}\left(\varphi\left(w_{m}\right)\right)} .
\end{aligned}
$$

Since k, K and $\left\{w_{m}\right\}$ are arbitrary, we have

$$
\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}} \gtrsim \sum_{k=0}^{n} \limsup _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k}\left(\omega_{*}(\varphi(z))\right)^{1 / p}}
$$

The upper estimate of $\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}$.
Suppose $\frac{1}{2}<\rho<1$ and $0<r<1$. For all $f \in A_{\omega}^{p}$, let $f_{\rho}(z)=f(\rho z)$. Then

$$
\left\|u C_{\rho \varphi} f\right\|_{W_{\mu}^{(n)}}=\left\|u C_{\varphi} f_{\rho}\right\|_{W_{\mu}^{(n)}} \leqslant\left\|u C_{\varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}\left\|f_{\rho}\right\|_{A_{\omega}^{p}} \leqslant\left\|u C_{\varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}\|f\|_{A_{\omega}^{p}} .
$$

So, $u C_{\rho \varphi}$ is bounded. By Lemma 6, (4), as well as the Cauchy estimate for the derivatives of analytic functions on compacts, we see that $u C_{\rho \varphi}$ is compact.

When $|\varphi(z)| \leqslant r<1$ and $k=0,1, \cdots, n$, by Lemma 3 we have

$$
\left|f^{(k)}(\rho(\varphi(z)))\right| \leqslant \frac{C\|f\|_{A_{\omega}^{p}}}{\left(1-(\rho|\varphi(z)|)^{2}\right)^{k} \omega_{*}^{1 / p}(\rho|\varphi(z)|)} \leqslant \frac{C\|f\|_{A_{\omega}^{p}}}{\left(1-|\varphi(z)|^{2}\right)^{k} \omega_{*}^{1 / p}(\rho \varphi(z))}
$$

By Remark 1, we assume that $\omega_{*}(t)$ is decreasing on $[0,1)$. So

$$
\omega_{*}(\rho \varphi(z)) \geqslant \omega_{*}(\varphi(z))
$$

Hence,

$$
\left|f^{(k)}(\rho(\varphi(z)))\right| \leqslant \frac{C\|f\|_{A_{\omega}^{p}}}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} .
$$

Therefore, there exists $C=C(\omega, p, n)$ such that

$$
\begin{aligned}
& \left|f^{(k)}(\varphi(z))-\rho^{k} f^{(k)}(\rho \varphi(z))\right| \\
\leqslant & \left|f^{(k)}(\varphi(z))-f^{(k)}(\rho \varphi(z))\right|+\left(1-\rho^{k}\right)\left|f^{(k)}(\rho \varphi(z))\right| \\
\leqslant & \left|\int_{\rho \varphi(z)}^{\varphi(z)} f^{(k+1)}(\eta) d \eta\right|+\frac{k C(1-\rho)\|f\|_{A_{\omega}^{p}}^{p}}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} \\
\leqslant & \frac{C(1-\rho)|\varphi(z)|\left|\mid f \|_{A_{\omega}^{p}}^{p}\right.}{(1-|\varphi(z)|)^{(k+1)} \omega_{*}^{1 / p}(\varphi(z))}+\frac{k C(1-\rho)\|f\|_{A_{\omega}^{p}}}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} .
\end{aligned}
$$

By Lemma 5,

$$
\begin{aligned}
& \sup _{|\varphi(z)| \leqslant r} \mu(z)\left|\left(u C_{\varphi} f-u C_{\rho \varphi} f\right)^{(n)}(z)\right| \\
\leqslant & \sup _{|\varphi(z)| \leqslant r} \mu(z) \sum_{k=0}^{n}\left|f^{(k)}(\varphi(z))-\rho^{k} f^{(k)}(\rho \varphi(z))\right| \cdot\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right| \\
\leqslant & C(1-\rho)\|f\|_{A_{\omega}^{p}} \sum_{k=0}^{n}\left(\frac{1}{1-r}+k\right) \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} .
\end{aligned}
$$

Since $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}$ is bounded, (4) holds. So,

$$
\begin{equation*}
\lim _{\rho \rightarrow 1} \sup _{|\varphi(z)| \leqslant r\|f\|_{A_{\omega}^{p}} \leqslant 1} \sup \mu(z)\left|\left(u C_{\varphi} f-u C_{\rho \varphi} f\right)^{(n)}(z)\right|=0 \tag{8}
\end{equation*}
$$

In a similar way, we have

$$
\begin{equation*}
\lim _{\rho \rightarrow 1} \sup _{\|f\|_{A_{\omega}^{p}}^{p} \leqslant 1}\left|\left(u C_{\varphi} f-u C_{\rho \varphi} f\right)^{(k)}(0)\right|=0, k=0,1, \cdots, n-1 \tag{9}
\end{equation*}
$$

When $r<|\varphi(z)|<1$ and $k=0,1, \cdots, n$, by Lemma 3 we have

$$
\sup _{|\eta|=|\varphi(z)|}\left|f^{(k)}(\eta)-\rho^{k} f^{(k)}(\rho \eta)\right| \leqslant 2 \sup _{|\eta|=|\varphi(z)|}\left|f^{(k)}(\eta)\right| \leqslant \frac{C\|f\|_{A_{\omega}^{p}}}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))}
$$

By Lemma 5,

$$
\begin{align*}
& \sup _{r<|\varphi(z)|<1\|f\|_{A_{\omega}^{p}}^{p}} \sup \mu(z)\left|\left(u C_{\varphi} f-u C_{\rho \varphi} f\right)^{(n)}(z)\right| \\
\leqslant & C \sum_{k=0}^{n} \sup _{r<|\varphi(z)|<1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} \tag{10}
\end{align*}
$$

From (8), (9) and (10), we have

$$
\begin{equation*}
\limsup _{\rho \rightarrow 1}\left\|u C_{\varphi}-u C_{\rho \varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}} \lesssim \sum_{k=0}^{n} \sup _{r<|\varphi(z)|<1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} \tag{11}
\end{equation*}
$$

Since $u C_{\rho \varphi}$ is compact, by letting $r \rightarrow 1$, we have

$$
\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}} \lesssim \sum_{k=0}^{n} \limsup _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))}
$$

The proof is complete.
THEOREM 3. Assume that $p \geqslant 1, n \in \mathbb{N} \cup\{0\}, u \in H(\mathbb{D}), \varphi$ is an analytic selfmap of $\mathbb{D}, \omega \in \hat{\mathscr{D}}$, and μ is a weight. Then $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}$ is bounded if and only if $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}$ is bounded and

$$
\begin{equation*}
\lim _{|z| \rightarrow 1} \mu(z) \sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))=0, \quad k=0,1, \cdots, n \tag{12}
\end{equation*}
$$

Proof. Suppose that $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}$ is bounded and (12) holds. Let $P(z)$ be a polynomial. Then there is constant $C=C(P)$ such that $\sup _{z \in \mathbb{D}}\left|P^{(k)}(z)\right| \leqslant C$ when $k=$ $0,1, \cdots, n$. Therefore,

$$
\lim _{|z| \rightarrow 1} \mu(z)\left|\left(u C_{\varphi} P\right)^{(n)}(z)\right| \leqslant \lim _{|z| \rightarrow 1} \mu(z) \sum_{k=0}^{n}\left|P^{(k)}(\varphi(z)) \sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|=0 .
$$

Thus $u C_{\varphi} P \in W_{\mu, 0}^{(n)}$. By [24, p. 16], the set of polynomials is dense in A_{ω}^{p}. Then for any $f \in A_{\omega}^{p}$, there is a sequence of polynomials p_{n} such that $\lim _{n \rightarrow \infty}\left\|f-p_{n}\right\|_{A_{\omega}^{p}}=0$. Therefore

$$
\lim _{n \rightarrow \infty} u C_{\varphi} p_{n}=u C_{\varphi} f
$$

Since $W_{\mu, 0}^{(n)}$ is closed in $W_{\mu}^{(n)}, u C_{\varphi} f \in W_{\mu, 0}^{(n)}$. So, $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}$ is bounded.
Conversely, suppose that $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}$ is bounded. Obviously, $u C_{\varphi}: A_{\omega}^{p} \rightarrow$ $W_{\mu}^{(n)}$ is bounded. Suppose $h_{s}(z)=z^{s}(s \in \mathbb{N} \cup\{0\})$. Then $u C_{\varphi} h_{s} \in W_{\mu, 0}^{(n)}$, that is

$$
\lim _{|z| \rightarrow 1} \mu(z)\left|\left(u C_{\varphi} h_{s}\right)^{(n)}(z)\right|=0
$$

Let $s=0,1, \cdots, n$ in order. By Lemma 5 and triangle inequality, (12) holds. The proof is complete.

Theorem 4. Assume $p \geqslant 1, n \in \mathbb{N} \cup\{0\}, u \in H(\mathbb{D}), \varphi$ is an analytic self-map of $\mathbb{D}, \omega \in \hat{\mathscr{D}}$, and μ is a weight. If $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}$ is bounded, then

$$
\begin{aligned}
\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}} & \approx \sum_{k=0}^{n} \limsup _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} \\
& \approx \sum_{k=0}^{n} \limsup _{|z| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} .
\end{aligned}
$$

Proof. The lower estimate of $\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}}$.
Let $k=0,1, \cdots, n$. There is $\left\{z_{j}\right\} \subset \mathbb{D}$ satisfying $\lim _{j \rightarrow \infty}\left|z_{j}\right|=1, \lim _{j \rightarrow \infty}\left|\varphi\left(z_{j}\right)\right|=a$ and

$$
\begin{equation*}
\underset{|z| \rightarrow 1}{\limsup } \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))}=\lim _{j \rightarrow \infty} \frac{\mu\left(z_{j}\right)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}\left(z_{j}\right) B_{l, k}\left(\varphi\left(z_{j}\right)\right)\right|}{\left(1-\left|\varphi\left(z_{j}\right)\right|\right)^{k} \omega_{*}^{1 / p}\left(\varphi\left(z_{j}\right)\right)} . \tag{13}
\end{equation*}
$$

If $a<1$, suppose $\left|\varphi\left(z_{j}\right)\right|<\frac{1+a}{2}$ holds for all j. Then

$$
\begin{aligned}
& \frac{\mu\left(z_{j}\right)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}\left(z_{j}\right) B_{l, k}\left(\varphi\left(z_{j}\right)\right)\right|}{\left(1-\left|\varphi\left(z_{j}\right)\right|\right)^{k} \omega_{*}^{1 / p}\left(\varphi\left(z_{j}\right)\right)} \\
\leqslant & \sup _{0 \leqslant r \leqslant \frac{1+a}{2}}\left(\frac{1}{(1-r)^{k}\left(\omega_{*}(r)\right)^{1 / p}}\right) \mu\left(z_{j}\right)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}\left(z_{j}\right) B_{l, k}\left(\varphi\left(z_{j}\right)\right)\right| .
\end{aligned}
$$

By Theorem 3 and (13), we have

$$
0=\underset{|z| \rightarrow 1}{\limsup } \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} \lesssim \limsup _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} .
$$

If $a=1$, by (13) and $\left|\varphi\left(z_{j}\right)\right| \rightarrow a$, we have

$$
\underset{\limsup }{|z| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} \lesssim \limsup _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} .
$$

Since $\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}} \geqslant\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}$, by Theorem 2 we get

$$
\begin{aligned}
\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}} & \gtrsim \sum_{k=0}^{n} \limsup _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} \\
& \geqslant \sum_{k=0}^{n} \limsup _{|z| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} .
\end{aligned}
$$

The upper estimate of $\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}}$.
For $0<\rho<0$, let $f_{\rho}(z)=f(\rho z)$. Then $u C_{\rho \varphi} f=u C_{\varphi} f_{\rho}$. Therefore $u C_{\rho \varphi}$ is an operator from A_{ω}^{p} to $W_{\mu, 0}^{(n)}$. By the proof of Theorem 2, $u C_{\rho \varphi}: A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}$ is compact. Therefore, (11) holds. By Theorem 2 and

$$
\left\|u C_{\varphi}-u C_{\rho \varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}}=\left\|u C_{\varphi}-u C_{\rho \varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}},
$$

we have

$$
\begin{aligned}
\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}} & \leqslant \limsup _{\rho \rightarrow 1}\left\|u C_{\varphi}-u C_{\rho \varphi}\right\|_{A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}} \\
& \lesssim \sum_{k=0}^{n} \sup _{r<|\varphi(z)|<1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} .
\end{aligned}
$$

By letting $r \rightarrow 1$, we have

$$
\begin{aligned}
\left\|u C_{\varphi}\right\|_{e, A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}} & \lesssim \sum_{k=0}^{n} \limsup _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} \\
& \lesssim \sum_{k=0}^{n} \limsup _{|z| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))} .
\end{aligned}
$$

The proof is complete.
From Theorems 2 and 4, we can easily get the following two corollaries.
Corollary 5. Assume that $p \geqslant 1, n \in \mathbb{N} \cup\{0\}, u \in H(\mathbb{D}), \varphi$ is an analytic self-map of $\mathbb{D}, \omega \in \hat{\mathscr{D}}$, and μ is a weight. If $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu}^{(n)}$ is bounded, then $u C_{\varphi}$ is compact if and only if

$$
\limsup _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))}=0, \text { for } k=0,1, \cdots, n
$$

Corollary 6. Assume that $p \geqslant 1, n \in \mathbb{N} \cup\{0\}, u \in H(\mathbb{D}), \varphi$ is an analytic self-map of $\mathbb{D}, \omega \in \hat{\mathscr{D}}$, and μ is a weight. If $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}$ is bounded, then the following statements are equivalent.
(i) $u C_{\varphi}: A_{\omega}^{p} \rightarrow W_{\mu, 0}^{(n)}$ is compact.
(ii) For $k=0,1, \cdots, n$,

$$
\underset{|z| \rightarrow 1}{\limsup } \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))}=0
$$

(iii) For $k=0,1, \cdots, n$,

$$
\limsup _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)\left|\sum_{l=k}^{n} C_{n}^{l} u^{(n-l)}(z) B_{l, k}(\varphi(z))\right|}{(1-|\varphi(z)|)^{k} \omega_{*}^{1 / p}(\varphi(z))}=0
$$

REFERENCES

[1] F. Colonna, New criteria for boundedness and compactness of weighted composition operators mapping into the Bloch space, Cent. Eur. J. Math. 11 (2013), 55-73.
[2] F. Colonna and M. Tuani, Weighted composition operators from the Besov spaces into the weighted-type space H_{μ}^{∞}, J. Math. Anal. Appl. 402 (2013), 594-611.
[3] F. Colonna and M. Tjani, Operator norms and essential norms of weighted composition operators between Banach spaces of analytic functions, J. Math. Anal. Appl. 434 (2016), 93-124.
[4] M. Contreras and A. Hernandez-Diaz, Weighted composition operators in weighted Banach spaces of analytic functions, J. Aust. Math. Soc. A 6 (2000), 41-60.
[5] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.
[6] J. Du, S. Li and Y. Zhang, Essential norm of generalized composition operators on Zygmund type spaces and Bloch type spaces, Ann. Polon. Math. 119 (2017), 107-119.
[7] J. DU, S. Li And Y. Zhang, Essential norm of weighted composition operators on Zygmund-type spaces with normal weight, Math. Ineq. Appl. 21 (2018), 701-714.
[8] P. Galindo, J. Laitila and M. Lindström, Essential norm estimates for composition operators on BMOA, J. Funct. Anal. 265 (2013), 629-643.
[9] P. Galindo, M. Lindström and S. Stević, Essential norm of operators into weighted-type spaces on the unit ball, Abstr. Appl. Anal., vol. 2011, Article ID 939873, (2011), 13 pages.
[10] Q. Hu and X. Zhu, Essential norm of weighted composition operators from the Lipschtiz space to the Zygmund space, Bull. Malays. Math. Sci. Soc. 41 (2018), 1293-1307.
[11] T. Hosokawa, Differences of weighted composition operators on the Bloch spaces, Complex Anal. Oper. Theory 3 (2009), 847-866.
[12] T. Hosokawa and S. Ohno, Differences of weighted composition operators acting from Bloch space to H^{∞}, Trans. Amer. Math. Soc. 363 (2011), 5321-5340.
[13] S. Li and S. Stević, Weighted composition operators from Bergman-type spaces into Bloch spaces, Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 371-385.
[14] S. Li and S. Stević, Weighted composition operators between H^{∞} and α-Bloch spaces in the unit ball, Taiwanese J. Math. 12 (2008), 1625-1639.
[15] S. Li And S. STEVIĆ, Weighted composition operators from Zygmund spaces into Bloch spaces, Appl. Math. Comput. 206 (2008), 825-831.
[16] S. Li and S. Stević, Composition followed by differentiation between H^{∞} and α-Bloch spaces, Houston J. Math. 35 (2009), 327-340.
[17] S. Li and S. STEVIĆ, Products of integral-type operators and composition operators between Blochtype spaces, J. Math. Anal. Appl. 349 (2009), 596-610.
[18] S. Li and S. Stević, Generalized weighted composition operators from α-Bloch spaces into weighted-type spaces, J. Ineq. Appl. 2015 (2015), 1-12.
[19] S. Li and S. Stević, Weighted differentiation composition operators from the logarithmic Bloch space to the weighted-type space, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 24 (2017), 223240.
[20] B. MACCLUER AND R. ZHAO, Essential norm of weighted composition operators between Bloch-type spaces, Rocky. Mountain J. Math. 33 (2003), 1437-1458.
[21] A. Montes-Rodriguez, Weighed composition operators on weighted Banach spaces of analytic functions, J. London Math. Soc. 61 (2000), 872-884.
[22] S. Ohno, Weighted composition operators between H^{∞} and the Bloch space, Taiwanese J. Math. 5 (2001), 555-563.
[23] J. PeláEZ, Small weighted Bergman spaces, arXiv:1507. 07182 [math. CV], 2015.
[24] J. Peláez and J. RÄttyä, Weighted Bergman spaces induced by rapidly increasing weights, Mem. Amer. Math. Soc. 227 (1066) (2014).
[25] J. Peláez and J. RÄttyÄ, Embedding thorems for Bergman spaces via harmonic analysis, Math. Ann. 362 (2015), 205-239.
[26] J. Peláez and J. Rättyä, Trace class criteria for Toeplitz and composition operators on small Bergman space, Adv. Math. 293 (2016), 606-643.
[27] B. Sehba and S. Stević, On some product-type operators from Hardy-Orlicz and Bergman-Orlicz spaces to weighted-type spaces, Appl. Math. Comput. 233 (2014), 565-581.
[28] S. Stević, Composition operators from weighted Bergman space to n-th weighted space on the unit disk, Discrete Dyn. Nat. Soc. Vol. 2009 (2009), Article ID 742019, 11 pages.
[29] S. STEVIĆ, On an integral-type operator from logarithmic Bloch-type and mixed-norm spaces to Bloch-type spaces, Nonlinear Anal. TMA 71 (2009), 6323-6342.
[30] S. Stević, On new Bloch-type spaces, Appl. Math. Comput. 215 (2009), 841-849.
[31] S. Stević, Products of composition and differentiation operators on the weighted Bergman space, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 623-635.
[32] S. STEVIĆ, Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces, Appl. Math. Comput. 211 (2009), 222-233.
[33] S. Stević, Composition followed by differentiation from H^{∞} and the Bloch space to n-th weightedtype spaces on the unit disk, Appl. Math. Comput. 216 (2010), 3450-3458.
[34] S. STEVIĆ, On operator P_{φ}^{g} from the logarithmic Bloch-type space to the mixed-norm space on unit ball, Appl. Math. Comput. 215 (2010), 4248-4255.
[35] S. Stević, Weighted differentiation composition operators from H^{∞} and Bloch spaces to n-th weighted-type spaces on the unit disk, Appl. Math. Comput. 216 (2010), 3634-3641.
[36] S. Stević, Weighted differentiation composition operators from the mixed-norm space to the n-th weigthed-type space on the unit disk, Abstr. Appl. Anal., vol. 2010 (2010), Article ID 246287, 15 pages.
[37] S. STEVIĆ, Essential norm of some extensions of the generalized composition operators between k-th weighted-type spaces, J. Ineq. Appl. 2017 (2017), 220.
[38] S. Stević, A. K. Sharma and A. Bhat, Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput. 217 (2011), 8115-8125.
[39] M. Tjani, Compact composition operators on some Möbius invariant Banach spaces, PhD dissertation, Michigan State University, 1996.
[40] M. Zhang and H. Chen, Weighted composition operators of H^{∞} into α-Bloch spaces on the unit ball, Acta Math. Sin. (Engl. Ser.) 25 (2009), 265-278.
[41] L. ZHANG AND H. ZENG, Weighted differentiation composition operators from weighted Bergman space to n-th weighted space on the unit disk, J. Ineq. Appl. 2011 (2011), 10 pages.
[42] K. ZHU, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), 1143-1177.
[43] K. ZHu, Operator Theory in Function Spaces, 2ed edition, Math. Surveys and Monographs, vol. 138, American Mathematical Society: Providence, Rhode Island, 2007.
[44] X. ZHU, Generalized weighted composition operators on Bloch-type spaces, J. Ineq. Appl. 2015 (2015), 59-68.
[45] X. ZHU, Essential norm of generalized weighted composition operators on Bloch-type spaces, Appl. Math. Comput. 274 (2016), 133-142.
(Received June 17, 2018)
Xiangling Zhu
Zhongshan Institute
University of Electronic Science and Technology of China 528402, Zhongshan, Guangdong, P. R. China
e-mail: jyuzx1@163.com
Juntao Du
Faculty of Information Technology Macau University of Science and Technology

Avenida Wai Long, Taipa, Macau
e-mail: jtdu007@163.com

[^0]: Mathematics subject classification (2010): 30H10, 47B33.
 Keywords and phrases: Weighted composition operator, weighted Bergman space, Stević-type space, double weight.

 This project was partially supported by the Macao Science and Technology Development Fund (No. 186/2017/A3) and NNSF of China (No. 11471143).

