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DIRECTIONAL HEISENBERG UNCERTAINTY PRODUCT

A. KRIVOSHEIN, E. LEBEDEVA, E. NEIMAN AND J. PRESTIN

(Communicated by I. Perić)

Abstract. A directional time-frequency localization measure for functions defined on the d -
dimensional Euclidean space is introduced. A connection between this measure and its periodic
counterpart is established. For a class of functions, an optimization problem for finding the
optimal direction, along which a function is best or worst localized, is solved.

1. Introduction

The paper continues the investigation of the properties of the directional uncer-
tainty product, that was recently introduced for the periodic case in [5]. This paper
deals with a non-periodic counterpart. In the framework of the standard operator ap-
proach (see, e.g., Selig in [8] or Goh, Micchelli in [4]) we introduce a pair of operators,
that are appropriate for measuring a time-frequency localization along directions for
functions defined on Rd . The corresponding uncertainty principle is valid automat-
ically, the lower bound of the directional uncertainty product is equal to 1/4 and is
attained on the class of functions, that are Gaussian exponentials up to a multiplication
on arbitrary smooth functions. Our definition, in contrast to definitions given by Goh
and Goodman in [3], Ozawa and Yuasa in [6], includes the directionality explicitly in a
natural way.

We establish a connection between the directional uncertainty products in the pe-
riodic and non-periodic case (see Subsection 3.1). Namely, for an appropriate class
of functions f , the periodic directional uncertainty product of its periodization tends to
the non-periodic directional uncertainty product of f as the period goes to infinity. This
connection is also established for the uncertainty product, that was suggested by Goh
and Goodman in [3]. We also study the dependence on the direction of the directional
uncertainty product for a fixed function (see Subsection 3.2). It is an optimization prob-
lem, one needs to find a direction along which the directional uncertainty product has
its minimum or maximum. For a class of symmetric functions the optimization problem
is solved analytically. Finally, by using the Fourier-Hermite series, we state for a class
of symmetric functions that the lower bound of the directional uncertainty product can
be improved (see Subsection 3.3). The proofs of all statements are given in Section 4.
Several examples illustrating the results of Subsection 3.2 are placed in Section 5.
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2. Basic notations and definitions

We use the standard multi-index notations. Let d ∈ N, Rd be the d -dimensional
Euclidean space, {e j,1 � j � d} be the standard basis in R

d , Z
d is the integer lat-

tice in Rd , Td = Rd/Zd be the d -dimensional torus. Let x = (x1, . . . ,xd)T and y =
(y1, . . . ,yd)T be column vectors in Rd . Then 〈x,y〉 := x1y1+ . . .+xdyd , ‖x‖ :=

√〈x,x〉 .
We say that x � y, if x j � y j for all j = 1, . . . ,d, and we say that x > y, if x � y and
x �= y. Zd

+ := {α ∈ Zd : α � 0}, where 0 = (0, . . . ,0) denotes the origin in Rd .
For α = (α1, . . . ,αd)T ∈ Zd

+ , denote |α| := α1 + . . .+ αd . �K(x) is the characteristic
(indicator) function of a set K ⊂ Rd .

For a smooth enough function f defined on Rd and a multi-index α ∈ Zd
+ ,

Dα f denotes the derivative of f of order α and Dα f = ∂ |α| f
∂xα = ∂ |α| f

∂ α1 x1...∂ αd xd
. The

directional derivative of a smooth enough function f defined on Rd along a vector
L = (L1, ...,Ld) ∈ Rd \ {0} is denoted by ∂ f

∂L = ∑d
j=1 Lj

∂ f
∂x j

.

For a function f ∈ L2(Td) its norm is denoted by ‖ f‖2
Td =

∫
Td | f (x)|2dx . The

Fourier coefficients of a function f ∈ L2(Td) are given by ck( f ) =
∫
Td f (x)e−2π i〈k,x〉dx ,

k ∈ Zd . For a function f ∈ L2(Rd) its norm is denoted by ‖ f‖2
2 =
∫
Rd | f (x)|2dx. The

Fourier transform of a function f ∈ L1(Rd)
⋂

L2(Rd) is f̂ (ξ ) =
∫
Rd f (x)e−2π i〈x,ξ 〉dx

and can be naturally extended to L2(Rd) . The Sobolev space H1(Rd) consists of func-
tions in L2(Rd) such that all its derivatives of the first order are also in L2(Rd) . Anal-
ogously we define H1(Td) . Note that

H1(Rd) =
{

f ∈ L2(Rd) :
∫

Rd
‖ξ‖2| f̂ (ξ )|2dξ < ∞

}
.

Let H be a Hilbert space with inner product 〈·, ·〉 and with norm ‖ ·‖ := 〈·, ·〉1/2 .
Let A , B be two linear operators with domains D(A ) , D(B) ⊆ H and ranges in
H . The variance of non-zero f ∈ D(A ) with respect to the operator A is defined to
be

Δ(A , f ) = ‖A f‖2− |〈A f , f 〉|2
‖ f‖2 .

The commutator of A and B is defined by [A ,B] := A B−BA with domain
D(A B)

⋂
D(BA ) .

An operator approach for the definition of the uncertainty principle for self-adjoint
operators was established by Folland in [2]. This approach was extended to two normal
or symmetric operators by Selig in [8] and Goh, Micchelli in [4]. For several operators
this approach was generalized by Goh and Goodman in [3].

THEOREM 1. [3, Theorem 4.1] Let A1, . . .An, B1, . . .Bn be symmetric or nor-
mal operators with domain and range in the same Hilbert space H . Then for any
non-zero f in D(A jB j)

⋂
D(B jA j) , j = 1, . . . ,n,

1
4

(
n

∑
j=1

|〈[A j,B j] f , f 〉|
)2

�
(

n

∑
j=1

Δ(A j, f )

)(
n

∑
j=1

Δ(B j, f )

)
.
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If the commutator 〈[A j,B j] f , f 〉 is non-zero for all j = 1, . . . ,n , then the uncer-
tainty product for f is defined as

UPH ( f ) :=

(
n

∑
j=1

Δ(A j, f )

)(
n

∑
j=1

Δ(B j, f )

)(
n

∑
j=1

|〈[A j,B j] f , f 〉|
)−2

.

The well-known Heisenberg uncertainty product for functions in L2(R) fits in this
operator approach, if n = 1 and the two operators are as follows A f (x) = 2πx f (x) ,
B f (x) = i

2π
d f
dx (x) . Their commutator is [A ,B] = −iI , where I is the identity

operator. Both operators are self-adjoint on their domains. The Heisenberg uncertainty
product characterizes the time-frequency localization of a function and the uncertainty
principle states that any function cannot have arbitrary good localization in both time
and frequency domain. It is known that the Heisenberg uncertainty product attains its
minimum when f is the Gaussian function.

The Breitenberger uncertainty product is defined for the space of periodic func-
tions L2(T) . In this case, A T f (x) = e2π ix f (x) , BT f (x) = i

2π
d f
dx (x) .

There were several attempts to define the uncertainty product for the multivari-
ate periodic and non-periodic cases. For instance, Goh and Goodman in [3] suggested
to take a collection of operators, where each operator is responsible for one coordi-
nate (or variable). For the non-periodic case, these operators are A j f (x) = 2πx j f (x) ,
B j f (x) = i

2π
∂ f
∂x j

(x) , the commutator is [A j,B j] = −iI j = 1, . . . ,d , x ∈ Rd . The

corresponding uncertainty product is defined as

UPGG( f ) :=
1

d2‖ f‖4
2

d

∑
j=1

Δ(A j, f )
d

∑
k=1

Δ(Bk, f ) (1)

and it attains its minimum at the multivariate Gaussian function f (x) = ae−‖bx−c‖2
,

a,b ∈ Rd \ {0}, c ∈ Rd . Also, some other approaches were suggested by Ozawa and
Yuasa in [6].

In fact, the above approaches for the definition of the uncertainty product do not
deal with a new phenomenon, that appears in the multidimensional case, namely, the
localization of a function along a particular direction. We suggest an approach that
allows to include this directionality into the definition.

The directional uncertainty product for R
d along a direction L ∈ R

d we define
using two operators

AL f (x) = 2π〈L,x〉 f (x), BL f (x) =
i

2π
∂ f
∂L

(x).

Note that the domains of these operators are

D(AL) = { f ∈ L2(Rd) :
∫

Rd
‖x‖2| f (x)|2dx < ∞} = { f ∈ L2(Rd) : f̂ ∈ H1(Rd)},

and D(BL) = H1(Rd). Both operators are self-adjoint. The commutator is [AL,BL] =
−i‖L‖2I . Hence, for any non-zero f ∈ D(ALBL)

⋂
D(BLAL)

UPL( f ) :=
Δ(AL, f )Δ(BL, f )

‖L‖4‖ f‖4
2

� 1
4
. (2)
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The uncertainty principle is valid automatically, due to the operator approach. Clearly,
UPL( f ) is well-defined for the wider class of functions f ∈ D(AL)

⋂
D(BL) and by

density arguments also UPL( f ) � 1
4 , since the variances are continuous functionals on

their domains.
The main purpose of this paper is to study the properties of the directional uncer-

tainty product.

3. Properties of the directional uncertainty product

First of all, we note that modifications of a function like shifts, modulations, scal-
ing and replacing the function by its Fourier transform do not change UPL. The direc-
tional uncertainty product of a rotated function is equal to the uncertainty product of
the initial function along a rotated directional vector.

LEMMA 1. Let f ∈ D(AL)
⋂

D(BL) . Then

1. if g(x) = ae2π i〈W,x〉 f (bx− x0), where a,b ∈ R , x0,W ∈ Rd , or g = f̂ , then
UPL(g) = UPL( f ).

2. if U ∈ Rd×d is a unitary matrix and g(x) := f (Ux) then

Δ(AL,g) = Δ(AUL f ), Δ(BL,g) = Δ(BUL, f ).

The proof can be done by straightforward computations.
Next, we establish the set of optimal functions f for UPL, i.e. UPL( f ) = 1

4 .

LEMMA 2. Let L ∈ Rd , ‖L‖ = 1 , μ ∈ R\ {0}. For a function f defined by

f (x) = e−
2π2

μ 〈L,x〉2Φ(L2x1−L1x2,L3x1−L1x3, . . . ,Ldx1 −L1xd),

where Φ is an arbitrary continuously differentiable function (such that UPL( f ) makes
sense), it is valid that UPL( f ) = 1

4 .

3.1. Connection between periodic and non-periodic case

In this subsection, we establish a connection between the directional uncertainty
products in periodic and non-periodic cases. In the univariate case, this connection
between the Heisenberg and Breitenberger uncertainty products was stated in [7].

The counterpart of the directional uncertainty product for the periodic case was
introduced in [5]. It is defined using the operators

A T
d

L f (x) = e2π i〈L,x〉 f (x), BT
d

L f (x) =
i

2π
∂ f
∂L

(x),

L ∈ Z
d \ {0} . The domains of these operators are D(A Td

L ) = L2(Td), D(BTd

L ) =
H1(Td) and A Td

L is normal, BTd

L is self-adjoint. The commutator for f ∈ H1(Td)
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is [A Td

L ,BTd

L ] f = ‖L‖2A Td

L f . Thus, the directional uncertainty product for a function

f ∈ H1(Td) such that A Td

L f �= 0 is defined as

UPTd

L ( f ) =
1

‖L‖4

(
‖ f‖4

Td

|〈A Td

L f , f 〉
Td |2

−1

)(
‖BTd

L f‖2
Td

‖ f‖2
Td

− |〈BTd

L f , f 〉
Td |2

‖ f‖4
Td

)

:=
varAL ( f )varFL( f )

‖L‖4 , (3)

where varAL ( f ) is the angular directional variance and varFL( f ) is the frequency direc-
tional variance. Also, we introduce the notion of admissible functions, for which the
connection will be valid.

DEFINITION 1. A non-zero function f ∈ L2(Rd) is called admissible if f is con-
tinuously differentiable up to order one, f ∈ H1(Rd) , f̂ ∈ H1(Rd) and

| f (x)| � C1

‖x‖γ , for all x ∈ R
d ,∣∣∣∣ ∂ f

∂x j
(x)
∣∣∣∣� C2

‖x‖β , for all x ∈ R
d , j = 1, . . . ,d,

where C1 > 0 and C2 > 0 are some constants, β > d, γ > max{ d
2 +1,d} .

For an admissible function f and a parameter λ∈R , we denote fλ (x):=
√

λ d f (λx).
The function fλ is also admissible. Consider the periodized version of a scaled admis-
sible function, namely

f per
λ (x) :=

√
λ d ∑

k∈Zd

f (λ (x+ k)) = ∑
k∈Zd

fλ (x+ k).

In Section 4 it is proved that f per
λ and

∂ f per
λ

∂L are continuous functions in L2(Td). For

admissible functions we can state a connection between UPT
d

L and UPL.

THEOREM 2. Let f be admissible, L ∈ Zd \ {0} and λ > 0. Then

lim
λ→∞

UPTd

L ( f per
λ ) = UPL( f ).

For the space L2(Td) of multivariate periodic functions, Goh and Goodman in [3]
suggested to take the operators as follows A Td

j f (x)= e2π ix j f (x) , BTd

j f (x)= i
2π

∂ f
∂x j

(x) ,

j = 1, . . . ,d. Note that the domains of these operators are
⋂d

j=1 D(A Td

j ) = L2(Td),⋂d
j=1 D(BT

d

j ) = H1(Td) . Operators A T
d

j are normal, BT
d

j are self-adjoint. The com-

mutators for f ∈ H1(Td) are [A T
d

j ,BT
d

j ] f = A T
d

j f . If for any j = 1, . . . ,d the com-

mutator 〈[A Td

j ,BTd

j ] f , f 〉 is non-zero, then the uncertainty product for f is defined
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as

UPTd

GG( f ) :=

(
d

∑
j=1

Δ(A Td

j , f )

)(
d

∑
j=1

Δ(BTd

j , f )

)(
d

∑
j=1

|〈[A Td

j ,BTd

j ] f , f 〉|
)−2

=

d
∑
j=1

(
‖ f‖4

Td −|〈A Td

j f , f 〉|2
)

(
d
∑
j=1

|〈A Td

j f , f 〉|
)2

d

∑
j=1

(
‖BT

d

j f‖2
Td

‖ f‖2
Td

− |〈BT
d

j f , f 〉|2
‖ f‖4

Td

)

:= varAGG( f )varFGG( f ). (4)

In these terms, the uncertainty principle says that the uncertainty product UPT
d

GG( f )
cannot be smaller than 1

4 for any appropriate function f . In this case, the connection

between UPT
d

GG and UPGG is also valid.

THEOREM 3. Let f be admissible, L ∈ Zd and λ > 0. Then

lim
λ→∞

UPTd

GG( f per
λ ) = UPGG( f ).

3.2. Dependence of a localization on the direction for a fixed function

In this subsection, we fix a function f ∈ D(AL)
⋂

D(BL) and study how the un-
certainty product of this function depends on a direction L ∈ Rd . Denote

αL( f ) :=
〈AL f , f 〉
‖ f‖2

2

, βL( f ) :=
〈BL f , f 〉
‖ f‖2

2

,

so time and frequency variances take the form

Δ(AL, f ) = ‖AL f‖2
2 −|αL( f )|2‖ f‖2

2, Δ(BL, f ) = ‖BL f‖2
2 −|βL( f )|2‖ f‖2

2.

Without loss of generality we set ‖ f‖2 = 1 and ‖L‖ = 1. In the next theorem we give
a complete analytic solution for the following extremal problems min‖L‖=1UPL( f ) and
max‖L‖=1UPL( f ) , as the function f satisfies a special type of symmetry relations (see
formulas (5) below).

THEOREM 4. Let f ∈ D(AL)
⋂

D(BL) , ‖ f‖2 = 1 , and

| f (x1, . . . ,xk, . . . ,xn)| = | f (x1, . . . ,−xk, . . . ,xd)|,
| f̂ (x1, . . . ,xk, . . . ,xn)| = | f̂ (x1, . . . ,−xk, . . . ,xd)| (5)

for all k = 1, . . . ,d. Denote

Mk = (2π)2
∫

Rd
x2
k | f (x)|2 dx and M̂k =

∫
Rd

x2
k | f̂ (x)|2 dx.
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Let A be a d × d matrix whose elements are (MkM̂j +MjM̂k)/2 , j,k = 1, . . . ,d . Let
A j1,..., jq be a submatrix, cut down from A by removing its j1 -th, . . . , jq -th row and j1 -
th, . . . , jq -th column, q = 1, . . . ,d−1 . Denote A the set of all those matrices A j1,..., jq

whose determinant is not equal to zero, and all the coordinates of the vector A−1
j1,..., jq

E

are nonnegative, E = (1, . . . ,1) ∈ Rd−q. Then

min
‖L‖=1

UPL( f ) = min
L∈L

UPL( f ) and max
‖L‖=1

UPL( f ) = max
L∈L

UPL( f ),

and L is a set of all vectors L ∈ R
d such that ‖L‖ = 1 , v := (L2

1, . . . ,L
2
d) , and v =

B−1E/‖B−1E‖1, where B ∈ A, and ‖B−1E‖1 is the l1 -norm of the vector B−1E.

In the proof we will show that L is a finite nonempty set, namely 1 � #L �
d!∑d

k=1(k!)
−1 . So, Theorem 4 reduces the extremal problems to calculate UPL( f ) for

a finite number of vectors L .
If the function f does not meet relations (5) then UPL is not a quadratic form

anymore and finding its extremal values is a complicated problem allowing numerical
solutions only. On the other hand, it turns out that as in the one-dimensional case the
inequalities

(Δ(AL, f )Δ(BL, f ))1/2 � 1
2
C‖ f‖2

2 and (2π)−2Δ(AL, f )+(2π)2Δ(BL, f ) �C‖ f‖2
2

are equivalent. Indeed, the first inequality implies the second one because of the ele-
mentary inequality 2ab � a2 +b2. Conversely, substituting the function cd/2 f (c·) for
f in the second inequality, we get

(2π)−2c−2Δ(AL, f )+ (2π)2c2Δ(BL, f ) � C‖ f‖2
2

and as c = (Δ(AL, f ))1/4 (Δ(BL, f ))−1/4 the last inequality takes the form

2(Δ(AL, f )Δ(BL, f ))1/2 � C‖ f‖2
2

that has to be proved.
So the functional (2π)−2Δ(AL, f )+(2π)2Δ(BL, f ) can also be used as a measure

for a localization of a function. In contrast to UPL , the functional (2π)−2Δ(AL, f )+
(2π)2Δ(BL, f ) is always a quadratic form with respect to the coordinates of vector L .

We still fix a function f ∈D(AL)
⋂

D(BL) , ‖ f‖2 = 1 and solve the minimization
and maximization problems for the new functional in the next theorem.

THEOREM 5. Let f ∈ D(AL)
⋂

D(BL) , ‖ f‖2 = 1 . The values

min
‖L‖=1

(
Δ(AL, f )
(2π)2 +(2π)2Δ(BL, f )

)
and max

‖L‖=1

(
Δ(AL, f )
(2π)2 +(2π)2Δ(BL, f )

)
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are equal to the minimal and the maximal eigenvalues of the matrix M = (Mk,n)k,n=1,...,d

respectively, where

Mk,n =
∫

Rd
xkxn| f (x)|2 dx+(2π)2

∫
Rd

xkxn| f̂ (x)|2 dx

−
(∫

Rd
xk| f (x)|2 dx

∫
Rd

xn| f (x)|2 dx

)2

−
(

2π
∫

Rd
xk| f̂ (x)|2 dx

∫
Rd

xn| f̂ (x)|2 dx

)2

.

(6)
The minimum and the maximum are attained by eigenvectors corresponding to these
eigenvalues.

REMARK 1. It follows from Theorem 5 that (2π)−2Δ(AL, f ) + (2π)2Δ(BL, f )
does not depend on L if and only if the matrix M has a unique eigenvalue with multi-
plicity d , that, since the matrix M is symmetric, is equivalent to M = λ I, where I is
the identity d×d matrix and λ is the eigenvalue.

3.3. Time and frequency variances in terms of the Hermite functions

In [1], de Bruijn gives an expression for time and frequency variances in terms
of the Fourier-Hermite coefficients. In this subsection we generalize this idea to the
multivariate case and variances Δ(AL, f ) , Δ(BL, f ). Without loss of generality, by
Lemma 1, we assume

〈AL f , f 〉 = 0, 〈BL f , f 〉 = 0. (7)

So,

Δ(AL, f ) = ‖AL f‖2
2 and Δ(BL, f ) = ‖BL f‖2

2.

The d -dimensional Hermite functions are products of one-dimensional ones

hα(x) = hα1(x1)hα2(x2) . . .hαd (xd), α ∈ Z
d
+,

where for k ∈ N , y ∈ R we choose the Hermite function in the form (see [2])

hk(y) = (−1)k(2kk!
√

π)−
1
2 e

y2
2 Dke−y2

.

THEOREM 6. Let f ∈ D(AL)
⋂

D(BL) and let a function f be expanded in the
Fourier-Hermite series f = ∑α∈Zd

+
cαhα . Then

‖AL f‖2
2

(2π)2 +(2π)2‖BL f‖2
2

= ∑
α∈Zd

+

⎛⎝∣∣∣∣∣ d

∑
n=1

Ln
√

αncα1...αn−1...αd

∣∣∣∣∣
2

+

∣∣∣∣∣ d

∑
n=1

Ln

√
αn +1cα1...αn+1...αd

∣∣∣∣∣
2
⎞⎠ ,

(8)
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UPL( f ) =
‖AL f‖2

2‖BL f‖2
2

‖L‖4‖ f‖4
2

=
1

4‖L‖4‖ f‖4
2

∑
α∈Zd

+

∣∣∣∣∣ d

∑
n=1

Ln

(√
αncα1...αn−1...αd +

√
αn +1cα1...αn+1...αd

)∣∣∣∣∣
2

× ∑
α∈Zd

+

∣∣∣∣∣ d

∑
n=1

Ln

(√
αncα1...αn−1...αd −

√
αn +1cα1...αn+1...αd

)∣∣∣∣∣
2

,

(9)
where we put cα1...αn−1...αd = 0 for (α1, . . . ,αn −1, . . . ,αd) /∈ Zd

+ .

One can deduce the inequality (2π)−2‖AL f‖2
2 +(2π)2‖BL f‖2

2 � ‖L‖2‖ f‖2
2 and,

therefore, the uncertainty principle UPL( f ) � 1/4 from (8). Indeed,

∑
α∈Zd

+

⎛⎝∣∣∣∣∣ d

∑
n=1

Ln
√

αncα1...αn−1...αd

∣∣∣∣∣
2

+

∣∣∣∣∣ d

∑
n=1

Ln

√
αn +1cα1...αn+1...αd

∣∣∣∣∣
2
⎞⎠

�

∣∣∣∣∣∣ ∑
α∈Zd

+

∣∣∣∣∣ d

∑
n=1

Ln
√

αncα1...αn−1...αd

∣∣∣∣∣
2

−
∣∣∣∣∣ d

∑
n=1

Ln

√
αn +1cα1...αn+1...αd

∣∣∣∣∣
2
∣∣∣∣∣∣

=

∣∣∣∣∣∣ ∑
α∈Zd

+

d

∑
n=1

L2
nαn|cα1...αn−1...αd |2− ∑

α∈Zd
+

d

∑
n=1

L2
n(αn +1)|cα1...αn+1...αd |2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
α∈Zd

+

d

∑
n=1

L2
n|cα |2

∣∣∣∣∣∣= ‖L‖2‖ f‖2
2.

Equality (8) can also be used to improve the inequality

(2π)−2‖AL f‖2
2 +(2π)2‖BL f‖2

2 � ‖L‖2‖ f‖2
2

and, in the end, the uncertainty principle UPL( f ) � 1/4 for functions with some kind
of symmetry.

LEMMA 3. Let f ∈ D(AL)
⋂

D(BL) and

f (x1, . . . ,xk, . . . ,xd) = − f (x1, . . . ,−xk, . . . ,xd) (10)

for k = 1, . . . ,d , x ∈ Rd . Then

UPL( f ) � 9
4
.
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4. Proof of statements

Proof of Lemma 2. Due to Theorem 3.1 in [8] the equality in the uncertainty
principle is attained if and only if there exist constants c1,c2,d1,d2 ∈ C with (|c1|+
|d1|)(|c2|+ |d2|) > 0 such that

c1(A ∗
L −a) f = d1(BL −b) f , and c2(AL −a) f = d2(B∗

L −b) f (11)

and, either at least one of the constants is zero, or d1
c1

= − d2
c2

. Here a = 〈AL f , f 〉
‖ f‖2

2
and

b = 〈BL f , f 〉
‖ f‖2

2
.

In our case, since AL and BL are self-adjoint, then a and b are real. Therefore,
condition (11) is equivalent to

c1(AL −a) f = d1(BL −b) f , (12)

for some c1,d1 ∈ C , |c1|+ |d1| > 0, and, either at least one of the constants is zero, or
d1
c1

=− d1
c1

. If c1 = 0 or d1 = 0, relation (12) implies that (BL−b) f = 0 or (AL−a) f =
0. In any case f should be zero function. Assume that c1 �= 0 and d1 �= 0 and denote
iμ = d1

c1
, and μ ∈ R\ {0} . So

(AL −a) f = iμ(BL −b) f .

Due to Lemma 1 the value of the uncertainty product does not change, if we replace the
function f with the following g(x) = e2π i〈β ,x〉 f (x+α), where 〈α,L〉 = a , 〈β ,L〉 = b .
But for this function 〈ALg,g〉

‖g‖2
2

= 0,
〈BLg,g〉
‖g‖2

2

= 0.

Thus, without loss of generality, assume that a = 0 and b = 0. Now, we need to solve
the following equation

4π2〈L,x〉 f (x) = −μ
∂ f
∂L

(x),

which is a linear partial differential equation. Let us rewrite it in another form

d

∑
j=1

Lj
∂ f
∂x j

(x) = −4π2

μ
〈L,x〉 f (x).

Using the standard methods of solving such partial differential equation, we combine
the additional system of equations

dx1

L1
=

dx2

L2
= . . . =

dxd

Ld
= − μd f

4π2〈L,x〉 f (x)
and find its d independent first integrals

L2x1−L1x2 = C1, L3x1−L1x3 = C2, . . . ,Ldx1−L1xd = Cd−1
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and the last integral can be computed from the following considerations. Since ‖L‖= 1,

− μd f
4π2〈L,x〉 f (x) = −

d

∑
j=1

L2
j

μd f
4π2〈L,x〉 f (x) =

d

∑
j=1

Ljdx j = d〈L,x〉.

So,
d f
f (x)

= −4π2

μ
d
〈L,x〉2

2
.

Therefore, the last first integral is given by

f (x) = Cd e−
2π2

μ 〈L,x〉2 .

Since the function f appears only in one first integral, then the general solution can be
written as

f (x) = e−
2π2

μ 〈L,x〉2Φ(L2x1−L1x2,L3x1−L1x3, . . . ,Ldx1 −L1xd),

where Φ is an arbitrary continuously differentiable function (such that UPL( f ) makes
sense). For this class of functions UPL( f ) = 1

4 . �

In order to prove Theorems 2 and 3 we need some additional statements and no-
tations. For an admissible function f and a parameter λ ∈ R , we denote fλ (x) :=√

λ d f (λx). The function fλ is also admissible. Although, fλ is not periodic, we
will use notations ‖ fλ‖2

Td :=
∫
Td | fλ |2 and 〈 fλ ,g〉

Td =
∫
Td fλ g , assuming that T

d =
[−1/2,1/2)d , where g is in L2(Td) or also is an admissible function.

Now, we rewrite 〈A Td

L f , f 〉
Td for an admissible function f . Define two function-

als

KL( f ) =
1
2

∫
Td

∣∣∣e2π i〈L,x〉 −1
∣∣∣2 | f (x)|2dx = 2

∫
Td

sin2 2π〈L,x〉
2

| f (x)|2dx,

ML( f ) =
1
2

∫
Td

(e2π i〈L,x〉 −1)(e−2π i〈L,x〉+1)| f (x)|2dx = i
∫

Td
sin(2π〈L,x〉)| f (x)|2dx.

From

2‖ f‖2
Td −2 Re(〈A Td

L f , f 〉
Td ) =

∫
Td

(2− e2π i〈L,x〉− e−2π i〈L,x〉)| f (x)|2dx = 2KL( f )

it follows that Re(〈A Td

L f , f 〉
Td ) = ‖ f‖2

Td −KL( f ) . Also,

I m(〈A Td

L f , f 〉
Td ) =

1
2i

∫
Td

(e2π i〈L,x〉 −1)(e−2π i〈L,x〉+1)| f (x)|2dx = −iML( f ),

since e2π i〈L,x〉 − e−2π i〈L,x〉 = (e2π i〈L,x〉 −1)(e−2π i〈L,x〉+1) . Thus,

|〈A Td

L f , f 〉
Td |2 = (‖ f‖2

Td −KL( f ))2 −M2
L( f ).
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The directional angular variance can be written as follows

varAL ( f ) =
‖ f‖4

Td − (‖ f‖2
Td −KL( f ))2 +M2

L( f )

(‖ f‖2
Td −KL( f ))2 −M2

L( f )
=

2‖ f‖2
TdKL( f )−K2

L( f )+M2
L( f )

(‖ f‖2
Td −KL( f ))2 −M2

L( f )
.

(13)

LEMMA 4. Let f be an admissible function and λ > 0, L ∈ Zd . Then

lim
λ→∞

‖ fλ‖2
Td = ‖ f‖2

2, lim
λ→∞

1
λ 2 ‖BL fλ‖2

Td = ‖BL f‖2
2 ,

lim
λ→∞

1
λ
〈BL fλ , fλ 〉Td = 〈BL f , f 〉 .

Additionally,

lim
λ→∞

2λ 2KL( fλ ) = ‖AL f‖2
2, lim

λ→∞
λML( fλ ) = i〈AL f , f 〉.

The proof can be given by straightforward computations following the proof of the
analogous results in [7].

Now, we study the behavior of the periodized version of a scaled admissible func-
tion, i.e. f per

λ (x) = ∑k∈Zd fλ (x+ k).

LEMMA 5. Let f be an admissible function, L ∈ Zd and λ > 0. Then f per
λ and

∂ f per
λ

∂L are continuous functions in L2(Td).

Proof. For x ∈ T
d , we get the following estimate for a big enough N ∈ N , using

the admissibility of f ,∣∣∣∣∣ ∑
k∈Zd

fλ (x+ k)− ∑
‖k‖<N

fλ (x+ k)

∣∣∣∣∣� ∑
‖k‖�N

√
λ d | f (λ (x+ k))|

� ∑
‖k‖�N

C1

√
λ d

‖λ (x+ k)‖γ � ∑
‖k‖�N

C1λ d/2−γ

(‖k‖−‖x‖)γ � ∑
‖k‖�N

C1λ d/2−γ

(‖k‖−√
d/2)γ

→ 0, N → ∞.

The last expression is independent of x . Since fλ is continuous and the convergence
of the series ∑k∈Zd fλ (x + k) is uniform, f per

λ is also continuous. The same estimate

is valid for the continuous function ∂ fλ
∂L , and therefore,

∂ f per
λ

∂L is a continuous func-
tion. �

Now, we study the limit behavior of the directional angular and frequency vari-
ances of f per

λ .



DIRECTIONAL HEISENBERG UNCERTAINTY PRODUCT 389

LEMMA 6. Let f be admissible, L ∈ Zd and λ > 0. Then

lim
λ→∞

1
λ 2 varFL( f per

λ ) =
Δ(BL, f )
‖ f‖2

2

.

Proof. Using the admissibility of f , for k �= 0 we get

‖ fλ (·+ k)‖2
Td = λ d

∫
Td

| f (λ (x+ k))|2dx �
∫

Td

C2
1λ d

‖λ (x+ k)‖2γ dx �
∫

Td

C2
1λ d−2γ

‖x+ k‖2γ dx.

For big enough k (‖k‖ >
√

d/2),

1
‖x+ k‖2γ � 1

(‖k‖−‖x‖)2γ � 1

(‖k‖−√
d/2)2γ

.

Therefore, we can state that S(γ) := ∑
k �=0

(∫
Td ‖x+ k‖−2γdx

)1/2
< ∞ and

∑
k �=0

‖ fλ (·+k)‖
Td �C1λ d/2−γ ∑

k �=0

(∫
Td

dx
‖x+ k‖2γ

)1/2

=C1λ d/2−γS(γ)→ 0, λ → ∞.

Analogously, we can estimate the derivatives Dej fλ , j = 1, . . . ,d . Namely,

‖Dej fλ (·+ k)‖2
Td =

∫
Td

|Dej fλ (x+ k)|2dx = λ d+2
∫

Td
|Dej f (λ (x+ k))|2dx

�
∫

Td

C2
2λ d+2−2β

‖x+ k‖2β dx.

Therefore,∥∥∥∥∂ fλ
∂L

(·+ k)
∥∥∥∥2

Td
�

d

∑
j=1

L2
j‖Dej fλ (·+ k)‖2

Td � ‖L‖2
∫

Td

C2
2λ d+2−2β

‖x+ k‖2β dx.

Hence,

1
λ ∑

k �=0

∥∥∥∥∂ fλ
∂L

(·+ k)
∥∥∥∥

Td
� C2‖L‖λ d/2−β ∑

k �=0

(∫
Td

dx

‖x+ k‖2β

)1/2

= C2‖L‖λ d/2−βS(β ) → 0,

as λ → ∞. Now, consider,∣∣ ‖ f per
λ ‖

Td −‖ f‖2
∣∣� ∣∣‖ f per

λ ‖
Td −‖ fλ‖Td

∣∣+ |‖ fλ‖Td −‖ f‖2| .
The first term can be estimated as follows∣∣ ‖ f per

λ ‖
Td −‖ fλ‖Td

∣∣= ∣∣∣∣∣
∥∥∥∥∥ fλ + ∑

k �=0
fλ (·+ k)

∥∥∥∥∥
Td

−‖ fλ‖Td

∣∣∣∣∣
�
∥∥∥∥∥∑k �=0

fλ (·+ k)

∥∥∥∥∥
Td

� ∑
k �=0

‖ fλ (·+ k)‖
Td → 0, λ → ∞.
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The second term tends to zero as λ → ∞ by Lemma 4. Thus, we get

lim
λ→∞

‖ f per
λ ‖2

Td = ‖ f‖2
2.

Analogously, it can be stated that

lim
λ→∞

1
λ 2

∥∥∥∥∥∂ f per
λ

∂L

∥∥∥∥∥
2

Td

=
∥∥∥∥∂ f

∂L

∥∥∥∥2

2
.

Furthermore,

1
λ

〈
∂ f per

λ
∂L

, f per
λ

〉
Td

=
1
λ

〈
∑

k∈Zd

∂ fλ
∂L

(·+ k), ∑
l∈Zd

fλ (·+ l)

〉
Td

=
1
λ

〈
∂ fλ
∂L

, fλ

〉
Td

+
1
λ ∑

l∈Zd ,l �=0

〈
∂ fλ
∂L

, fλ (·+ l)
〉

Td

+
1
λ ∑

k∈Zd ,k �=0
∑

l∈Zd

〈
∂ fλ
∂L

(·+ k), fλ (·+ l)
〉

Td
.

With the Cauchy-Bunyakovsky-Schwarz inequality and above considerations, we esti-
mate the last two terms as∣∣∣∣∣ 1λ ∑

l∈Zd ,l �=0

〈
∂ fλ
∂L

, fλ (·+ l)
〉

Td

∣∣∣∣∣� 1
λ

∥∥∥∥∂ fλ
∂L

∥∥∥∥
Td

∑
l �=0

‖ fλ (·+ l)‖
Td → 0, λ → ∞,

since Lemma 4 states that 1
λ

∥∥∥ ∂ fλ
∂L

∥∥∥
Td

→
∥∥∥ ∂ fλ

∂L

∥∥∥
2
< ∞ , and

∣∣∣∣∣ 1λ ∑
k∈Zd ,k �=0

∑
l∈Zd

〈
∂ fλ
∂L

(·+ k), fλ (·+ l)
〉

Td

∣∣∣∣∣
� ∑

k∈Zd ,k �=0

1
λ

∥∥∥∥∂ fλ
∂L

(·+ k)
∥∥∥∥

Td
∑

l∈Zd

‖ fλ (·+ l)‖
Td → 0, λ → 0,

since by ‖ fλ‖Td → ‖ f‖2 < ∞. Thus,

lim
λ→∞

1
λ

〈
∂ f per

λ
∂L

, f per
λ

〉
Td

=
〈

∂ f
∂L

, f

〉
.

Combining all the limits together and noting that

lim
λ→∞

1
λ 2

∥∥∥BTd

L f per
λ

∥∥∥2

Td
= ‖BL f‖2

2 , lim
λ→∞

1
λ

〈
BTd

L f per
λ , f per

λ

〉
Td

= 〈BL f , f 〉
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we get

lim
λ→∞

1
λ 2 varFL( f per

λ ) = lim
λ→∞

⎛⎜⎝ 1
λ 2

∥∥∥BTd

L f per
λ

∥∥∥2

Td

‖ f per
λ ‖2

Td

−
1

λ 2

∣∣∣〈BTd

L f per
λ , f per

λ

〉
Td

∣∣∣2
‖ f per

λ ‖4
Td

⎞⎟⎠
=

Δ(BL, f )
‖ f‖2

2

. �

Now we consider the directional angular variance.

LEMMA 7. Let f be admissible, L ∈ Zd and λ > 0. Then there exists a λ1 > 0,
such that varAL ( f per

λ ) is finite for all λ > λ1 and

lim
λ→∞

λ 2varAL ( f per
λ ) =

Δ(AL, f )
‖ f‖2

2

.

Proof. We will use the representation of the directional angular variance (13).
Let us consider KL( f per

λ ) first. Since sin2 2π〈L,x〉
2 � 0 and sin2 2π〈L,x〉

2 = 0 on a set of

measure zero,
√

KL(·) is actually a weighted L2 norm. This allows to proceed as
follows. Note that

KL( fλ (·+ k)) = 2
∫

Td
sin2 2π〈L,x〉

2
| fλ (x+ k)|2dx

� 2
∫

Td
| fλ (x+ k)|2dx = 2‖ fλ (·+ k)‖2

Td .

By the admissibility of fλ and the estimates in Lemma 6, we obtain
√

2λ ∑
k �=0

√
KL( fλ (·+ k)) � 2λ ∑

k �=0
‖ fλ (·+ k)‖

Td � 2Cλ d/2+1−γS(γ) → 0, λ → ∞,

since γ > d/2+1. Using the triangle inequality for the weighted norm, we get

√
2λ
∣∣∣∣√KL( f per

λ )−
√

KL( fλ )
∣∣∣∣� √

2λ ∑
k �=0

√
KL( fλ (·+ k)).

Now, it can be stated that

lim
λ→∞

2λ 2KL( f per
λ ) = ‖AL f‖2

2. (14)

Indeed, since∣∣∣∣√2λ
√

KL( f per
λ )−‖AL f‖2

∣∣∣∣ � ∣∣∣∣√2λ
√

KL( f per
λ )−

√
2λ
√

KL( fλ )
∣∣∣∣

+
∣∣∣√2λ

√
KL( fλ )−‖AL f‖2

∣∣∣ ,
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where the first term goes to zero as λ → ∞ by the above inequality, the second one by
Lemma 4.

Now, we establish that limλ→∞ λML( f per
λ ) = i〈AL f , f 〉. Again, we start from the

following estimate∣∣λML( f per
λ )− i〈AL f , f 〉∣∣ � ∣∣λML( f per

λ )−λML( fλ )
∣∣+ |λML( fλ )− i〈AL f , f 〉| .

By Lemma 4 the second term tends to zero since limλ→∞ λML( fλ ) = i〈AL f , f 〉. Thus,
it is sufficient to prove, that

lim
λ→∞

λML( f per
λ ) = λML( fλ ).

Recall that for some admissible g

ML(g) = i
∫

Td
sin(2π〈L,x〉)|g(x)|2dx.

So,
√

ML(·) is not a weighted norm. But it is possible to split the area of integration as
follows. Let

P+ = {x ∈ T
d , sin〈2πL,x〉 > 0}, P− = {x ∈ T

d , sin〈2πL,x〉 < 0}
and

M+
L (g) =

∫
P+

sin(2π〈L,x〉)|g(x)|2dx, M−
L (g) =

∫
P−

(−sin2π〈L,x〉)|g(x)|2dx.

Then, ML(g) = i(M+
L (g)−M−

L (g)). Thus,
√

M+
L (·) is a weighted norm on L2(P+) ,√

M−
L (·) is a weighted norm on L2(P−) . Therefore, it is sufficient to prove that

lim
λ→∞

λM+
L ( f per

λ ) = λM+
L ( fλ ), lim

λ→∞
λM−

L ( f per
λ ) = λM−

L ( fλ ).

Hence,

∣∣∣∣√λ
√

M+
L ( f per

λ )−
√

λ
√

M+
L ( fλ )

∣∣∣∣ �
∣∣∣∣∣∣
√

λ

√√√√M+
L

(
∑
k �=0

fλ (·+ k)

)∣∣∣∣∣∣
�

√
λ ∑

k �=0

√
M+

L ( fλ (·+ k)).

Consider the following estimates

M+
L ( fλ (·+ k)) =

∫
P+

sin(2π〈L,x〉)| fλ (x+ k)|2dx � ‖ fλ (·+ k)‖2
Td ,

√
λ ∑

k �=0

√
M+

L ( fλ (·+ k)) �
√

λ ∑
k �=0

‖ fλ (·+ k)‖
Td � 2Cλ d/2+1/2−γS(γ) → 0, λ → ∞
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and their counterparts for M−
L . Thus,

lim
λ→∞

λML( f per
λ ) = i〈AL f , f 〉. (15)

Recall that
|〈A Td

L f , f 〉
Td |2 = (‖ f‖2

2−KL( f ))2 −M2
L( f ).

Therefore,

lim
λ→∞

|〈A Td

L f per
λ , f per

λ 〉
Td |2 = lim

λ→∞
(‖ f per

λ ‖2
2−KL( f per

λ ))2−M2
L( f per

λ ) = ‖ f‖4
2 > 0,

since ML( f per
λ ) and KL( f per

λ ) should tend to zero as λ → ∞ by (14) and (15). Also,
there exists big enough λ1 , such that for any λ > λ1 , (‖ f per

λ ‖2
2−KL( f per

λ ))2−M2
L( f per

λ )
> 0. Thus,

lim
λ→∞

λ 2varAL ( f per
λ ) = lim

λ→∞

2λ 2‖ f per
λ ‖2

Td KL( f per
λ )−λ 2K2

L( f per
λ )+ λ 2M2

L( f per
λ )

(‖ f per
λ ‖2

Td −KL( f per
λ ))2 −M2

L( f per
λ )

=
‖ f‖2

2‖AL f‖2
2−〈AL f , f 〉2

‖ f‖4
2

=
Δ(AL, f )
‖ f‖2

2

.

The last equality is valid since AL is self-adjoint and therefore, 〈AL f , f 〉 is real. �

Proof of Theorem 2. To prove the connection between UPTd

L and UPL , which are

defined in (3) and (2), we apply Lemmas 6, 7 to (3) and get that UPT
d

L ( f per
λ ) →UPL( f )

as λ → +∞. �

Proof of Theorem 3. To prove the connection between UPTd

GG and UPGG which
are defined in (1) and (4) we can use Lemmas 6 and 7 with L = e j. Namely, it is
straightforward to see by Lemma 6 that

lim
λ→∞

1
λ 2 varFGG( f per

λ ) =
d

∑
j=1

Δ(B j, f )
‖ f‖2

2

.

Also by the proof of Lemma 7 it can be shown that

lim
λ→∞

λ 2varAGG( f per
λ ) = lim

λ→∞

d
∑
j=1

(
λ 2‖ f per

λ ‖4
Td −λ 2|〈A T

d

j f per
λ , f per

λ 〉
Td |2
)

(
d
∑
j=1

|〈A Td

j f per
λ , f per

λ 〉
Td |
)2

=

d
∑
j=1

‖ f‖2
2‖A j f‖2

2 −〈A j f , f 〉2

d2‖ f‖4
2

=

d
∑
j=1

Δ(A j, f )

d2‖ f‖2
2

.
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Therefore, UPGG
Td

( f per
λ ) → UPGG( f ) as λ → +∞. �

Proof of Theorem 4. Writing the time variance in detail we obtain

Δ(AL, f ) = ‖AL f‖2
2 −|〈AL f , f 〉|2

= 4π2
∫
Rd

∣∣∣∣∣ d

∑
j=1

Ljx j

∣∣∣∣∣
2

| f (x)|2 dx−4π2

⎛⎝ ∫
Rd

d

∑
j=1

Ljx j · | f (x)|2 dx

⎞⎠2

.
(16)

Similarly, using the property of the Fourier transform we get for the frequency
variance

Δ(BL, f ) = ‖BL f‖2
2 −|〈BL f , f 〉|2

=
∫
Rd

∣∣∣∣ i
2π

∂ f
∂L

(x)
∣∣∣∣2 dx−

⎛⎝∫
Rd

i
2π

∂ f
∂L

· f (x)dx

⎞⎠2

=
∫
Rd

∣∣∣∣∣ d

∑
j=1

Ljx j

∣∣∣∣∣
2

| f̂ (x)|2 dx−
⎛⎝ ∫

Rd

d

∑
j=1

Ljx j · | f̂ (x)|2 dx

⎞⎠2

.

(17)

Since | f | and | f̂ | are even with respect to each variable (see (5)), then for all k, j =
1, . . . ,d , k �= j,

0 =
∫

Rd
xk| f (x)|dx =

∫
Rd

xkx j| f (x)|dx =
∫

Rd
xk| f̂ (x)|dx =

∫
Rd

xkx j| f̂ (x)|dx.

So, UPL takes the form

UPL =
d

∑
k=1

L2
kMk

d

∑
k=1

L2
kM̂k = vTAv,

where A is a d×d matrix whose elements are (MkM̂j +MjM̂k)/2, j,k = 1, . . . ,d , and
v := (L2

1, . . . ,L
2
d).

Therefore, to find min‖L‖=1UPL( f ) and max‖L‖=1UPL( f ) we derive at the fol-
lowing extremal problem with respect to the vector v for the quadratic form vTAv{

vTAv → extr,
v1 + . . .+ vd = 1, v j � 0, j = 1, . . . ,d.

Since the restriction set V := {v ∈ Rd ; v1 + . . . ,+vd = 1,v j � 0, j = 1, . . . ,d} is com-
pact, it follows that the solution for the extremal problem exists. It remains to follow
the well-known classical scheme for a solution of such problems. According to this
scheme, extremal points lay on the boundary of the restriction set V or they are con-
tained among the solutions of the systems of equations

∂
∂v j

(
vAvT −λ (v1 + . . .+ vd)

)
= 0, j = 1 . . . ,d, λ ∈ R.
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The last system is rewritten in the form 2Av = λE, where E = (1, . . . ,1) ∈ Rd . Thus,
v = λ/2A−1E, and the Lagrange parameter λ is chosen to meet the condition v1 +
. . . + vd = 1. If extremal points lay on the boundary of the set V then we come to
the analogous system of equations, however the matrix A is replaced by the matrix
Aj1,..., jq . �

Proof of Theorem 5. Starting with formulas (16) and (17) we obtain the following
quadratic form

(2π)−2Δ(AL, f )+ (2π)2Δ(BL, f ) = LTML,

where the matrix M is defined by (6). So, the statement of the theorem is a well-known
fact of linear algebra. �

Proof of Theorem 6. Using the recurrent formula (see [2])

√
2xnhαn(xn) =

√
αn +1hαn+1(xn)+

√
αnhαn−1(xn), n = 1, . . . ,d,

we obtain

(2π)−1AL f = ∑
α∈Zd

+

cα
d

∑
n=1

Lnxnhα1(x1)hα2(x2) . . .hαd (xd)

=
1√
2

∑
α∈Zd

+

cα
d

∑
n=1

Ln

(√
αn +1hαn+1(xn)+

√
αnhαn−1(xn)

)
×hα1(x1) . . .hαn−1(xn−1)hαn+1(xn+1) . . .hαd (xd)

=
1√
2

∑
α∈Zd

+

hα(x)
d

∑
n=1

Ln

(√
αncα1...αn−1...αd +

√
αn +1cα1...αn+1...αd

)
.

Here we set hα(x) = 0 and cα = 0 for α /∈ Zd
+. Thus, due to orthonormality of the

Hermite functions, we obtain

(2π)−2‖AL f‖2
2 =

1
2 ∑

α∈Zd
+

∣∣∣∣∣ d

∑
n=1

Ln

(√
αncα1...αn−1...αd +

√
αn +1cα1...αn+1...αd

)∣∣∣∣∣
2

.

Using the property of Hermite functions ĥα(ξ ) = (−i)|α |(2π)d/2hα(2πξ ) , we get
analogously

(2π)2‖BL f‖2
2

= (2π)2
∫

Rd

∣∣∣ ∑
α∈Zd

+

cα〈L,xĥα〉
∣∣∣2 dx =

∫
Rd

∣∣∣ ∑
α∈Zd

+

(−i)|α |cα〈L,xhα 〉
∣∣∣2 dx
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=
1
2

∫
Rd

∣∣∣ ∑
α∈Zd

+

(−i)|α |−1hα(x)
d

∑
n=1

Ln

(√
αncα1...αn−1...αd −

√
αn +1cα1...αn+1...αd

)∣∣∣2 dx

=
1
2 ∑

α∈Zd
+

∣∣∣∣∣ d

∑
n=1

Ln

(√
αncα1...αn−1...αd −

√
αn +1cα1...αn+1...αd

)∣∣∣∣∣
2

.

Now, formula (9) immediately follows from above expressions for (2π)−2‖AL f‖2
2 and

(2π)2‖BL f‖2
2 . To get (8) we write

(2π)−2‖AL f‖2
2 +(2π)2‖BL f‖2

2

=
1
2 ∑

α∈Zd
+

⎛⎝∣∣∣∣∣ d

∑
n=1

Ln

(√
αncα1...αn−1...αd +

√
αn +1cα1...αn+1...αd

)∣∣∣∣∣
2

+

∣∣∣∣∣ d

∑
n=1

Ln

(√
αncα1...αn−1...αd −

√
αn +1cα1...αn+1...αd

)∣∣∣∣∣
2
⎞⎠

= ∑
α∈Zd

+

⎛⎝∣∣∣∣∣ d

∑
n=1

Ln
√

αncα1...αn−1...αd

∣∣∣∣∣
2

+

∣∣∣∣∣ d

∑
n=1

Ln

√
αn +1cα1...αn+1...αd

∣∣∣∣∣
2
⎞⎠ . �

Proof of Lemma 3. The symmetry relations (10) mean that cα1...αn−1...αd cα1...αk−1...αd

= 0 for k �= n, k,n = 1, . . . ,d .
So, (8) is rewritten as

(2π)−2‖AL f‖2
2 +(2π)2‖BL f‖2

2

= ∑
α∈Zd

+

(
d

∑
n=1

L2
nαn
∣∣cα1...αn−1...αd

∣∣2 +
d

∑
n=1

L2
n(αn +1)

∣∣cα1...αn+1...αd

∣∣2)

= ∑
α∈Zd

+

d

∑
n=1

L2
n(2αn +1) |cα |2

� 3 ∑
α∈Zd

+

d

∑
n=1

L2
n |cα |2 = 3‖L‖2‖ f‖2

2.

Since the function c f (c·) keeps the symmetry, it follows that

‖AL f‖2‖BL f‖2 � 3
2
‖L‖2‖ f‖2

2.

Finally, by (7), we obtain UPL( f ) � 9
4
. �
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5. Examples

We give a couple of examples to illustrate the results of Subsection 3.2, namely,
the dependence of localization on a direction L .

EXAMPLE 1. We illustrate Remark 1. Let d = 2, L = (a,b) , where a,b ∈ R and
a2 +b2 = 1. Consider the function

f (x,y) :=
3xy
2
�[−1,1]2(x, y).

Note that ‖ f‖2 = 1,

AL f = 3π(ax+by)xy, BL f =
3π(ay+bx)

4
.

Since αL( f ) = βL( f ) = 0, it follows that

(2π)−2Δ(AL, f )+ (2π)2Δ(BL, f ) = (2π)−2‖AL f‖2
2 +(2π)2‖BL f‖2

2

= 3(a2 +b2)/5+3 · (a2+b2) = 18/5.

So (2π)−2‖Δ(AL, f )‖2 +(2π)2‖Δ(BL, f )‖2 is constant and does not depend on L .

EXAMPLE 2. Let d = 2, L = (a,b) , where a,b ∈ R and a2 + b2 = 1. Consider
the function

f (x,y) :=
√

21x3y
2

�[−1,1]2(x, y).

Note that ‖ f‖2 = 1,

AL f =
√

21π (ax+by)x3y, BL f =
√

21
4π

(3ax2y+bx3).

Since αL( f ) = βL( f ) = 0, it follows that

(2π)−2Δ(AL, f )+ (2π)2Δ(BL, f ) = (2π)−2‖AL f‖2
2 +(2π)2‖BL f‖2

2

=
(

7
9

a2 +
3
5

b2
)

+
(

28
5

a2 +
4
3

b2
)

=
287
45

a2 +
29
15

b2 =
40
9

a2 +
29
15

.

So, (2π)−2Δ(AL, f ) + (2π)2Δ(BL, f ) is a quadratic function of a and its maximum
and minimum is attained on a = 1 (b = 0) and a = 0 (b = 1) respectively.

EXAMPLE 3. We illustrate Theorem 5. Consider a function

f0(x) := (2/π)d/4(a1 · ... ·ad)1/4e−(a1x
2
1+...+adx2

d)

where x ∈ Rd and a1, ...,ad > 0. Let L ∈ Rd , and ‖L‖ = 1. The Fourier transform of
the function f0 is

f̂0(x1, ...,xd) = (2π)d/4(a1 · ... ·ad)−1/4e−π2(x2
1/a1+...+x2

d/ad).



398 A. KRIVOSHEIN, E. LEBEDEVA, E. NEIMAN AND J. PRESTIN

Since f0 is even with respect to every variable xk, k = 1, . . . ,d , it follows that Mn,k = 0
for k �= n , n,k = 1, . . . ,d .

So, the matrix M is diagonal and for the k -th diagonal element we obtain

Mk,k =
∫

Rd
x2
k | f (x)|2 dx+(2π)2

∫
Rd

x2
k | f̂ (x)|2 dx

= (2/π)d/2(a1 . . .ad)1/2
∫

Rd
x2
ke

−2(a1x
2
1+...+adx2

d) dx

+(2π)d/2+2(a1 . . .ad)−1/2
∫

Rd
x2
ke

−2π2(x2
1/a1+...+x2

d/ad) dx

=
1

4ak
+ak.

Therefore, eigenvectors of M coincide with the standard basis {ek}d
k=1 and correspond-

ing eigenvalues are equal to Mk,k . Thus, by Theorem 5

min
‖L‖=1

(
(2π)−2Δ(AL, f )+ (2π)2Δ(BL, f )

)
= min

k=1,...,d
Mk,k,

max
‖L‖=1

(
(2π)−2Δ(AL, f )+ (2π)2Δ(BL, f )

)
= max

k=1,...,d
Mk,k.

The case of a function

f (x) := (2/π)d/4(a1 . . .ad)1/4e−∑d
i=1 ∑d

j=1 ai, jxix j ,

ai, j > 0, i, j = 1 . . . ,d , reduces to the case of the function f0 . Indeed, by suitable
shifts and rotations the function f transforms to f0 . Then by Lemma 1, we con-
clude that these transformations do not change the maximum and the minimum of
(2π)−2Δ(AL, f )+ (2π)2Δ(BL, f ) .

EXAMPLE 4. We illustrate Theorem 4. Consider the same function f0 as in Ex-
ample 3. The moments are

Mk = (2π)2
∫

Rd
x2
k | f (x)|dx =

π2

ak
, M̂k =

∫
Rd

ξ 2
k | f̂ (ξ )|dξ =

ak

4π2 .

So, the elements of the matrix A are equal to An,k = 1/8(ak/an +an/ak) .
It turns out that determinants of the matrix A and all the matrices Aj1,..., jq are

equal to zero for q = 1, . . . ,d − 2. According to Theorem 4, it means that the set of
all extremal vectors v consists of the vectors with at least d − 2 nonzero coordinates.
So, these are vectors of the type vnk := (0, . . . ,0,vk,0 . . . ,0,vn,0, . . . ,0), n,k = 1, . . . ,d ,
where vk �= 0, vn �= 0, and vectors ek , k = 1, . . . ,d , of the standard basis in R

d . The
vectors vnk satisfy the equation

1
8

(
2 ak/an +an/ak

ak/an +an/ak 2

)(
vk

vn

)
= λ
(

1
1

)
.

Since the parameter λ is chosen to satisfy the condition v1 + . . . + vd = 1, it follows
that vk = vn = 1/2. Therefore, the corresponding extremal directional vector Lnk has
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two nonzero coordinates Ln = Lk = 1/
√

2. Calculating and comparing the values of
UPL( f ) for the vectors Lnk and ek we obtain

max‖L‖=1UPL( f ) = maxn,k=1...,dUPLnk ( f ) =
1
16

maxn,k=1...,d
(an +ak)2

4anak
,

min‖L‖=1UPL( f ) = UPek( f ) =
1
4
.
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