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Abstract. We obtain Landau-Kolmogorov type inequalities for mappings defined on the whole
real axis and taking values in Riemannian manifolds. In terms of an auxiliary convex function,
we find conditions under which the boundedness of covariant derivative along the curve under
consideration ensures the boundedness of the corresponding tangent vector field. We use the
square of the distance function as the auxiliary one to establish counterparts of the Landau –
Hadamard and the Landau-Kolmogorov inequalities where the norms of higher order derivatives
of mapping are replaced, respectively, by the Chebyshev radius of curve and the corresponding
iterates of covariant derivative along the curve.

1. Introducton

Let I ⊆ R be an interval and let for some n ∈ N a function f (·) ∈ Cn (I �→R)
satisfies the inequalities

‖ f (·)‖∞,I := sup
t∈I

| f (t)| < ∞,
∥∥∥ f (n)(·)

∥∥∥
∞,I

< ∞.

There is a vast literature concerning inequalities between
∥∥∥ f (k)(·)

∥∥∥
I,∞

(1 � k < n ),

‖ f (·)‖I,∞ and
∥∥∥ f (n)(·)

∥∥∥
I,∞

(see, e.g., [6, 15] and references therein). The classical

Landau – Hadamard inequality reads

∥∥ f ′(·)∥∥∞,I � C2,1(I)
√
‖ f (·)‖∞,I ‖ f ′′(·)‖∞,I

with the best possible constants C2,1(R+) = 2 [14] and C2,1(R) =
√

2 [8]. A. N. Kol-
mogorov [12] determined the best constants Cn,k(R) for inequalities

∥∥∥ f (k)(·)
∥∥∥

∞,I
� Cn,k(I)‖ f (·)‖1−k/n

∞,I

∥∥∥ f (n)(·)
∥∥∥k/n

∞,I
.
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Further results on Landau-Kolmogorov type inequalities and their generalizations, in-
cluding inequalities for vector space valued functions, can be found in [1, 2, 3, 4, 5, 9,
11, 13, 18, 19, 20].

In the present paper, we aim to obtain Landau-Kolmogorov type inequalities for
mappings taking values in Riemannian manifolds. In what follows, we deal only with
the case where I = R and use the simplified notation ‖·‖∞ instead of ‖·‖∞,R .

Let (M,g = 〈·, ·〉) be a smooth complete Riemannian manifold with the metric
tensor g , and let ∇ be the Levi-Civita connection with respect to g . We denote by
ρ(·, ·) : M×M �→ R+ the corresponding distance function, and by ‖·‖ the norm asso-
ciated with the inner product 〈·, ·〉 on tangent spaces TxM , x ∈ M .

For a given smooth mapping x(·) : I �→M and for a smooth vector field ξ (·) : I �→
TM along x(·) , denote by ∇ẋξ (t) the covariant derivative of ξ (·) along the tangent
vector ẋ(t) ∈ Tx(t)M , t ∈ I , and by ∇k

ẋ the k -th iterate of ∇ẋ . Here TM =
⊔

x∈M TxM
stands for the total space of the tangent bundle with natural projection π(·) : TM �→M .

Now we ask the question: is it true that the boundedness of x(R) and ‖∇ẋẋ(·)‖∞
yields the boundedness of ‖ẋ(·)‖∞ ? Such a question naturally arises, e.g., in studying
the existence problem for bounded solutions of Newtonian equation

∇ẋẋ = F(x, ẋ)

on Riemnnian manifold [16]. It turns out that generally the answer is negative.
To see this, consider the following example.

EXAMPLE 1. Let J be the symplectic unit operator in Euclidean space E2m =(
R2m,〈·, ·〉) :

〈Jx,y〉 = −〈x,Jy〉 , J2x = −x ∀{x,y} ⊂ E
2m.

For any unit vector x0 ∈ E
2n define the curve R  t �→ x(t) := et2Jx0 lying on the unite

sphere S2m−1 :=
{
x ∈ E2m : 〈x,x〉 = 1

}
. The sphere S2m−1 is endowed with induced

Riemannian metric and Levi-Civita connection ∇ . Let ι : S2m−1 �→ E2m be the natural
isometric embedding. In what follows it will not lead to confusion if we write x and
ẋ instead of ι(x) and ι∗(ẋ) , respectively for any x ∈ S2m−1 , ẋ ∈ TxS

2m−1 . Since
〈ẋ(t),x(t)〉 ≡ 0 and 〈ẋ(t), ẋ(t)〉+ 〈ẍ(t),x(t)〉 ≡ 0, then

∇ẋẋ(t) = ẍ(t)−〈ẍ(t),x(t)〉x(t) = ẍ(t)+ 〈ẋ(t), ẋ(t)〉x(t).

But

ẋ(t) = 2tJet2Jx0, ẍ(t) = 2Jet2Jx0−4t2et2Jx0,

〈ẋ(t), ẋ(t)〉 = 4t2
〈
Jet2Jx0,Jet2Jx0

〉
= 4t2, ∇ẋẋ(t) = 2Jet2Jx0.

Hence, ‖x(t)‖ ≡ 1, ‖∇ẋẋ(t)‖ ≡ 2, and ‖ẋ(t)‖ ≡ 2 |t| → ∞ when |t| → ∞ .
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Thus, one must impose additional conditions to ensure the boundedness of ‖ẋ(·)‖∞ .
One of the main goals of the present paper is to obtain the inequality

‖ẋ(·)‖∞ � K
√

inf
x∈M

‖ρ(x,x(·))‖∞ ‖∇ẋx(·)‖∞

and find the constant K > 0. It is not hard to see that in the case where x(R) is bounded,
the function supt∈R ρ(·,x(t)) : M �→ R+ is lower semi-continuous and attains its mini-
mum at least at one point x∗ ∈ M (Chebyshev center of the curve x(·)). Hence,

min
x∈Sn

sup
t∈R

ρ(x,x(t)) = sup
t∈R

ρ(x∗,x(t)) := R[x(·)].

The number R[x(·)] is called the Chebyshev radius of the curve x(·) .

2. Landau type inequality and convex functions

For a smooth function U(·) : M �→ R denote by ∇U(x) ∈ TxM and by HU (x) :
TxM �→ TxM , respectively, the gradient vector and the Hesse form of U(·) at point x .1

We obtain the following estimate for ẋ(·) in terms of an auxiliary function U(·) and
the covariant derivative ∇ẋx(·) (see also [17]).

THEOREM 1. Let x(·) : R �→ M be a smooth mapping such that

r2 := ‖∇ẋẋ(·)‖∞ < ∞.

Suppose that there exists a smooth function U(·) : M �→ R satisfying the inequalities

sup
t∈R

U ◦ x(t) < ∞, 0 < r0 := ‖∇U ◦ x(·)‖∞ < ∞,

and

λ := inf
t∈R

min
{〈[HU ◦ x(t)]ξ ,ξ 〉 : ξ ∈ Tx(t)M, ‖ξ‖ = 1

}
> 0.

Then

r1 := ‖ẋ(·)‖∞ � C
√

r0r2/λ

where the constant C does not exceed the positive root of the polynomial ζ 3 −3ζ −1.
In particular, C < 1.87939.

Proof. Introduce the notations

u(t) := U ◦ x(t), v(t) := u̇(t) ≡ 〈∇U ◦ x(t), ẋ(t)〉 .
1Recall that by the definition, 〈HU (x)ξ ,η〉 =

〈
∇ξ ∇U(x),η

〉
for any x ∈ M and any ξ ,η ∈ TxM ).
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Since |v(t)| � r0 ‖ẋ(t)‖ , then

v̇(t) = 〈[HU ◦ x(t)] ẋ(t), ẋ(t)〉+ 〈∇U ◦ x(t),∇ẋẋ(t)〉

� λ ‖ẋ(t)‖2− r0r2 � λ
r2
0

v2(t)− r0r2.

Let us show that v2(t) � r3
0r2/λ for all t ∈ R . In fact, if there exists t0 such that

v(t0) >
√

r3
0r2/λ , then v(t) increases for t � t0 , and v̇(t) � λv2(t0)/r2

0 − r0r2 > 0.

Thus v(t)→+∞ and we arrive at contradiction: u(t)→+∞ as t →+∞ . Now suppose

that there exists t0 such that v(t0) < −
√

r3
0r2/λ . Then v(t) increases for t � t0 , and

we obtain

v(t) � v(t0) < 0, v̇(t) � λv2(t0)/r2
0 − r0r2 > 0 ∀t � t0.

This yields

t0∫
t

v̇(s)ds �
[
λv2(t0)/r2

0 − r0r2
]
(t0 − t)

and, as a consequence,

v(t) � v(t0)+
[
v2(t0)/r2

0 − r0r2
]
(t− t0) →−∞, t →−∞,

u(t) = u(t0)−
t0∫
t

v(s)ds � u(t0)− v(t0)(t0− t) → +∞, t →−∞.

We again arrive at contradiction.
Observe that if for some ε > 0 there exists a segment [t1,t2] where ‖ẋ(t)‖2 �

(r0r2 + ε)/λ , then v̇(t) > ε , and the inequality v(t2) � v(t1)+ ε(t2− t1) yields

t2− t1 �
2
√

r3
0r2/λ

ε
.

Hence, for any ε > 0 and any T > 0 there exists tε < −T such that ‖ẋ(tε )‖2 <
(r0r2 + ε)/λ . Now it remains to estimate ‖ẋ(t)‖ on the segment [t1,t2] such that
‖ẋ(ti)‖2 = (r0r2 + ε)/λ and ‖ẋ(t)‖2 > (r0r2 + ε)/λ for all t ∈ (t1,t2) .

On account of

2‖ẋ(t)‖
∣∣∣∣d‖ẋ(t)‖dt

∣∣∣∣ =
∣∣∣∣ d
dt

‖ẋ(t)‖2
∣∣∣∣ = 2 |〈ẋ(t),∇ẋẋ(t)〉| � 2r2 ‖ẋ(t)‖

on any interval where ẋ(t) �= 0, we obtain∣∣∣∣d‖ẋ(t)‖dt

∣∣∣∣ � r2 ∀t ∈ (t1,t2).
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Set z(t) := ‖ẋ(t)‖ , zε :=
√

(r0r2 + ε)/λ . Then

v̇(t) � λ
[
‖ẋ(t)‖2− r0r2/λ

]
� λ

[
z2(t)− z2

ε
]
,

and thus, ∣∣∣∣[z2(t)− z2
ε
] dz(t)

dt

∣∣∣∣ � r2
[
z2(t)− z2

ε
]
� r2

λ
v̇(t) ∀t ∈ (t1,t2). (1)

If we define

I(z) :=
z3

3
− z2

εz+
2z3

ε
3

,

then one can rewrite (1) in the form

− r2

λ
v̇(t) � d

dt
I(z(t)) � r2

λ
v̇(t) ∀t ∈ (t1,t2).

From this it follows that

2z3
ε � 2

√
r3
0r

3
2/λ 3 � r2

λ
[v(t2)− v(t1)]

=
r2

λ

t2∫
t1

v̇(s)ds =
r2

λ

t∫
t1

v̇(s)ds+
r2

λ

t2∫
t

v̇(s)ds

=
t∫

t1

d
ds

I(z(s))ds−
t2∫

t

d
ds

I(z(s))ds = 2I(z(t)).

Hence,

z3(t)
3

− z2
εz(t)+

2z3
ε

3
� z3

ε ∀t ∈ (t1,t2).

Introducing the new variable ζ = z/zε , we obtain

ζ 3(t)−3ζ (t)−1 � 0 ∀t ∈ (t1,t2),

and finally, by letting ε tend to zero,

z(t) � C
√

r0r2/λ ∀t ∈ (t1,t2). �

REMARK 1. If M = E
d := (Rd ,〈·, ·〉) and U(x) := ‖x‖2 /2, then λ = 1 and The-

orem 1 leads to the Landau inequality with the constant C somewhat greater then the
best one C2,1 =

√
2 obtained for the case d = 1 in [8]. At the same time, observe that

C < 2 and does not depend on d . Thus, in the case of Hilbert space, our approach
makes it possible to obtain the Landau inequality with somewhat better constant then
in [1, 2].
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3. Landau type inequality for curves on the unit sphere

Let M := Sd , d � 2, and let ι : Sd �→ Ed+1 be the natural isometric embedding.
Consider a curve x(·) ∈ C2 (R �→S

n) . Introduce the coordinates (x1, . . . ,xd+1) in E
d+1

in such a way that x∗ := (1,0, . . . ,0,0) =: e1 stands for a Chebyshev center of x(·) .
(Recall that we have agreed to identify x ∈ Sd and ι(x) ∈ Ed+1 .)

Define U(x) := ρ2 (x∗,x) /2. It is not hard to see that ρ (x∗,x) = arccosx1
∣∣
Sd .

Observe that if F(·) ∈ C1
(
Ed+1 �→R

)
then the gradient of restriction F(·)∣∣

Sd at x ∈ Sd

is

∇F(x) = F ′(x)− 〈
F ′(x),x

〉
x,

(
F ′(x) :=

(
F ′

x1
(x), . . . ,F ′

xd+1
(x)

))
.

Hence, we can identify ∇ρ (x∗,x) with
(
1− x2

1

)−1/2 (x1x− e1) , x1 �= ±1. Obviously,

‖∇ρ(x∗,x)‖ = 1. In the same way, we identify ∇U(x) with arccosx1
(
1− x2

1

)−1/2 ·
(x1x− e1) and find ‖∇U(x)‖ = ρ(x∗,x) . Observe that arccos2 x1 is analytic at x1 = 1,
and thus, U(·) is smooth on Sd \ {−e1} .

Next, in order to calculate λ from Theorem 1, observe that for any ξ ∈ TxS
d ,

‖ξ‖ = 1, we have

〈HU(x)ξ ,ξ 〉 =
d2

dt2

∣∣∣∣
t=0

U ◦ γ(t;ξ )

where γ(·;ξ ) : [0,1] �→ Sd is the naturally parametrized geodesic such that γ(0,ξ ) = x ,
γ̇(0,ξ ) = ξ . One can identify γ(·,ξ ) with the solution of the initial problem

ẍ+ 〈ẋ, ẋ〉x = 0, x(0) = x, ẋ(0) = ξ .

Since ‖γ̇(t;ξ )‖ ≡ 1, then

〈HU(x)ξ ,ξ 〉 =
〈
U ′′(x)ξ ,ξ

〉
+

〈
U ′(x), γ̈(0,ξ )

〉
=

〈
U ′′(x)ξ ,ξ

〉− 〈
U ′(x),x

〉
,

or

〈HU(x)ξ ,ξ 〉 =

√
1− x2

1− arccos(x1)x1

(1− x2
1)3/2

ξ 2
1 +

arccos(x1)x1√
1− x2

1

� arccos(x1)x1√
1− x2

1

.

The function in the right hand side monotonically icreases from 0 to 1 on [0,1] . The
above reasoning together with Theorem 1 proves the following assertion.

THEOREM 2. Let r ∈ (0,π/2) . Denote by Sr the class of mappings x(·) ∈
C2

(
R �→Sd

)
whose Chebyshev radius R[x(·)] does not exceed r . Then

‖ẋ(·)‖∞ � C√
rcotr

√
R[x(·)]‖∇ẋx(·)‖∞ ∀x(·) ∈ Sr

where C is defined in Theorem 1.
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REMARK 2. Basing on Example1 one can show that C2
(
R �→Sd

)\⋃
r∈(0,π/2) Sr

contains mappings for which boundedness of ∇ẋẋ(·) does not ensures the boundedness
of ẋ(·) .

4. Main theorems

Let now M be an arbitrary smooth complete Riemannian manifold of dimension
d � 2. Basing on the results of Section 2, we intend to construct an appropriate auxiliary
function U(·) by means of the square of distance function. For this purpose, we need
to recall a few facts from Riemannian geometry (see, e.g., [7, 10] for details). For a
fixed point x∗ ∈ M , denote by ir(x∗) its injectivity radius. Define the set

B(x∗) := expx∗ ({ξ ∈ Tx∗M : ‖ξ‖ < ir(x∗)})

and the diffeomorphism

h(·) := exp−1
x∗ (·) : B(x∗) �→ {ξ ∈ Tx∗M : ‖ξ‖ < ir(x∗)} .

Then

[0,1]  s �→ expx∗(sh(x)) =: g(s,x∗,x)

is the shortest geodesic connecting x∗ with x , and

‖h(x)‖ = ρ(x∗,x) =: σ(x).

Next, let ξ ∈ TxM , ‖ξ‖= 1, and let γ(·;x) : (−ε,ε) be the naturally paramatrized
geodesic such that γ(0;x) = x , γ̇(0;x) = ξ , where γ̇(t;x) := ∂

∂ t γ(t,x) . If we define the
two parameter family of vector fields along the mapping g(·,x∗,γ(·;x)) by

X(s,t;x) :=
∂
∂ s

g(s,x∗,γ(t;x))

and the Jacobi vector field Y (·) along g(·,x∗,x) satisfying Y (0) = 0, Y (1) = ξ by

Y (s) :=
∂
∂ t

∣∣∣
t=0

g(s,x∗,γ(t;x)),

then the Hesse form for the function U(·) := σ2(·)/2 at x �= x∗ can be computed in the
standard way:

〈HU(x)ξ ,ξ 〉 =
1
2

∂ 2

∂ t2

∣∣∣∣
t=0

1∫
0

‖X(s,t;x)‖2 dt

=
〈
ξ ,∇ξ X(1,t;x)

〉∣∣∣
t=0

= I[Y (·),Y (·)](x).
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Here I is the index form of geodesic g . Observe that if t is the natural parameter and
X(1,0;x) ‖ ξ , then

σ(γ(t;x)) = ρ(x∗,γ(t;x)) = ρ(x∗,x)+ ρ(x,γ(t;x)) = σ(x)+ t.

Besides, by the Gauss lemma we have (see [7, Sect. 5.2, Rem. (ii)] for details)

∇σ(γ(t;x)) = γ̇(t;x).

Now it is not hard to see that

∇ξ ∇U(x) = ∇ξ [σ(x)∇σ(x)] = ξ .

Hence the pair (1,ξ ) represents eigenvalue and eigenvector for HU(x) . All the other
eigenvalues of HU(x) are expressed as λi(x) = σ(x)κi(x) where κ1(x), . . . ,κd−1(x)
are the principal curvatures of the second fundamental form l(ξ ,η) :=

〈
∇ξ σ(x),η

〉
,

ξ ,η ⊥ ∇σ(x), for the “sphere” {y ∈ M : σ(y) = σ(x)} at the point x . Finally, define

λ∗(x) = min
1�i�n

{1,λ1(x), . . . ,λd−1(x)} .

Note that since U(·) is smooth in B(x∗) , then the value λ∗(x∗) is correctly defined
by the continuity. It is known [10, p. 203], that if the maximal sectional curvature in
B(x∗) does not exceed κ � 0 and σ(x) < 0.5π/

√
κ , then

λ∗(x) �
√

κρ(x) · cot(
√

κρ(x)).

DEFINITION 1. Let λ ∈ (0,1] . A mapping x(·) ∈ C2 (R �→ M) is said to be of
class Cλ if the set x(R) has a Chebyshev center x∗ such that

x(R) ⊂ {x ∈ B(x∗) : λ∗(x) � λ} .

DEFINITION 2. Let κ � 0, 0 < r < 0.5π/
√

κ . A mapping x(·) ∈ C2 (R �→ M)
is said to be of class Cκ,r if the set x(R) has a Chebyshev center x∗ such that R[x(·)] �
r � ir(x∗) and the maximal sectional curvature in B(x∗) does no exceed κ .

The foregoing facts together with Theorem 1 allow us to obtain the following
generalization of Theorem 2.

THEOREM 3. Let x(·) ∈ Cλ ∪Cκ,r and ‖∇ẋx(·)‖∞ < ∞ . Then

‖ẋ(·)‖∞ �

⎧⎨
⎩

C√
λ

√
R[x(·)]‖∇ẋx(·)‖∞ if x(·) ∈ Cλ ,
C√√

κrcot(
√

κr)

√
R[x(·)]‖∇ẋx(·)‖∞ if x(·) ∈ Cκ,r

where C is defined in Theorem 1.

Now we aim to obtain the counterpart of Landau – Kolmogorov inequalities in-
volving iterates of covariant derivatives.
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LEMMA 1. Let ξ (·) : R �→ TM be a smooth vector field along a smooth mapping
x(·) : R �→ M and let n � 2 be a natural number. Suppose that

‖ξ (·)‖∞ < ∞, ‖∇n
ẋξ (·)‖∞ < ∞.

Then for any natural k < n there holds the inequality∥∥∥∇k
ẋξ (·)

∥∥∥
∞

� Cn,k ‖ξ (·)‖1−k/n
∞ ‖∇n

ẋξ (·)‖k/n
∞

where Cn,k are the Kolmogorov constants for mappings f (·) ∈ Cn
(
R �→Rd

)
.

Proof. Denote by Ωt
s : Tx(s)M �→ Tx(t)M the cocycle of parallel transport along

x(·) , and define the mapping f (·) : R �→ Tx(0)M � Rd by f (t) := Ω0
t ξ (t) . Then

∇ẋξ (t) = lim
s→0

1
s

[
Ωt

t+sξ (t + s)− ξ (t)
]
= lim

s→0

1
s

[
Ωt

t+sΩ
t+s
0 f (t + s)−Ωt

0 f (t)
]

= Ωt
0 lim

s→0

1
s
[ f (t + s)− f (t)] = Ωt

0 f ′(t),

and thus, ∇k
ẋξ (t)= Ωt

0 f (k)(t) . Now it remains only to observe that the parallel transport
preserves the inner product. �

THEOREM 4. Let 0 � k < n and let x(·) ∈ (Cλ ∪Cκ,r)∩Cn+1 (R �→M) . Define

K1,0 :=

{
C/

√
λ if x(·) ∈ Cλ ,

C/
√√

κrcot(
√

κr) if x(·) ∈ Cκ,r.
,

Kn+1,k+1 := Cn,k
(
K2

1,0Cn,1
) n−k

n+1 .

If ‖∇n
ẋ ẋ(·)‖∞ < ∞ , and ‖ẋ(·)‖∞ < ∞ or ‖∇ẋẋ(·)‖∞ < ∞ , then

∥∥∥∇k
ẋẋ(·)

∥∥∥
∞

� Kn+1,k+1 (R[x(·)])1− k+1
n+1 ‖∇n

ẋ ẋ(·)‖
k+1
n+1
∞ .

Proof. Set l0 = lnR[x(·)] , l1 := ln‖ẋ(·)‖∞ , lk+1 = ln
∥∥∇k

ẋẋ(·)
∥∥

∞ , c1,0 = lnK1,0 ,
cn,k = lnCn,k for n > k � 1, and ξ (·) = ẋ(·) . If l1 < ∞ , then by Lemma 1

lk+1 �
(

1− k
n

)
l1 +

k
n
ln+1 + cn,k, k � 1, (2)

in particular, l2 < ∞ , and now by Theorem 3

l1 � 1
2
l0 +

1
2
l2 + c1,0. (3)
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If l2 < ∞ , then first we get (3), and then (2). In the both cases, the last two inequalities
yield

l1 � 1
2
l0 +

1
2

[(
1− 1

n

)
l1 +

1
n
ln+1 + cn,1

]
+ c1,0,

and thus,

l1 � n
n+1

l0 +
1

n+1
ln+1 +

n(2c1,0 + cn,1)
n+1

.

Finally, returning to (2), we arrive at the inequality

lk+1 �
(

1− k+1
n+1

)
l0 +

k+1
n+1

ln+1 +
(n− k)(2c1,0 + cn,1)

n+1
+ cn,k

which, after taking exponentials of both sides, completes the proof. �

Concluding Remark. There is still an open problem whether Theorem 4 remains
true if we omit the boundedness requirements for ‖ẋ(·)‖∞ or ‖∇ẋẋ(·)‖∞ .

RE F ER EN C ES

[1] G. A. ANASTASSIOU, Ostrowski and Landau inequalities for Banach space valued functions, Math.
Comput. Modelling 55, 3–4 (2012), 312–329.

[2] G. A. ANASTASSIOU, Intelligent comparisons: analytic inequalities, Springer, Studies in Computa-
tional Intelligence 609, Cham, 2016.

[3] Z. DITZIAN, Some remarks on inequalities of Landau and Kolmogorov, Aequationes Math. 12, 2–3
(1975), 145–151.

[4] Z. DITZIAN, Remarks, questions and conjectures on Landau -Kolmogorov-type inequalities, Math.
Inequal. Appl. 3, 1 (2000), 15–24.

[5] Z. DITZIAN, A Kolmogorov-type inequality, Math. Proc. Camb. Philos. Soc. 136, 3 (2004), 657–663.
[6] S. R. FINCH, Mathematical constants, Cambridge University Press, Encyclopedia of Mathematics

and its Applications 94, Cambridge, 2003.
[7] D. GROMOLL, W. KLINGENBERG, AND W. MEYER, Riemannsche Geometrie im Grossen, Springer-

Verlag, Lecture Notes in Mathematics 55, Berlin-New York, 1968.
[8] J. HADAMARD, Sur le module maximum d’une fonction et de ses dérivées, C. R. Soc. Math. France,
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[12] A. KOLMOGOROFF, On inequalities between upper bounds of consecutive derivatives of an arbitrary

function defined on an infinite interval, Uchenye Zapiski Moskov. Gos. Univ. Matematika 30 (1939),
3–16.

[13] M. K. KWONG AND A. ZETTL, An alternate proof of Kato’s inequality, Evolution equations, Lecture
Notes in Pure and Appl. Math. 234, 275–279, Dekker, New York, 2003.

[14] E. LANDAU, Einige Ungleichungen Fur Zweimal Differentiierbare Funktionen, Proc. Lond. Math.
Soc. (2), 13, 1 (1914), 43–49.
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