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OPTIMAL ESTIMATES FOR THE FRACTIONAL HARDY

OPERATOR ON VARIABLE EXPONENT LEBESGUE SPACES

YOSHIHIRO MIZUTA, ALEŠ NEKVINDA AND TETSU SHIMOMURA

(Communicated by L. Pick)

Abstract. Let Aα f (x) = 1
|B(0,|x|)|α/n

∫
B(0,|x|) f (t) dt be the n -dimensional fractional Hardy op-

erator, where 0 < α � n . We prove optimality results for the action of the operator Aα on
variable exponent Lebesgue spaces Lp(·) and weighted variable exponent Lebesgue spaces, as
an extension of [13, 14, 17].

1. Introduction

Let Rn denote the n -dimensional Euclidean space and Ω be an open subset of
Rn . For an integrable function u on a measurable set E ⊂ Rn of positive measure, we
define the integral mean over E by

−
∫

E
u(x) dx =

1
|E|

∫
E

u(x) dx,

where |E| denotes the Lebesgue measure of E . We denote by B(x,r) the open ball with
center x and of radius r > 0, and by |B(x,r)| its Lebesgue measure, i.e. |B(x,r)| =
σnrn , where σn is the volume of the unit ball in Rn . For a locally integrable function
f on Ω and 0 < α � n , we consider the fractional Hardy operator Aα , defined by

Aα f (x) =
1

|B(0, |x|)|α/n

∫
B(0,|x|)

f (t) dt,

the Hardy averaging operator A , defined by

A f (x) = −
∫

B(0,|x|)
f (t) dt
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and the centered Hardy-Littlewood maximal operator M , defined by

M f (x) = sup
r>0

−
∫

B(x,r)
| f (y)| dy

by setting f = 0 outside Ω (for the fundamental properties of maximal functions, see
Stein [19]). In the case α = n , Aα f (x) = A f (x) .

Let 1 < p < ∞ , 1/p+1/p′ = 1 and

pα =
np′

α p′ −n
=

np
α p−np+n

.

We know that Aα is bounded from Lp to Lpα provided n(1−1/p) < α � n . Clearly,
pα � p > 1.

In the previous paper [14], we improved the result of Nekvinda and Pick [17] in the
case when α = n = 1 and Ω is a bounded interval, and that of the authors [13] within
the framework of generalized Banach function spaces. Let ↪→ denote a continuous
embedding and → denote a boundedness of an operator. Under the assumptions Aα :
X → Y and M : Y → Y , we found the ‘source’ space Sα ,Y and the ‘target’ space TY

such that
(i) the fractional Hardy averaging operator Aα satisfies

Aα : Sα ,Y → TY ;

(ii) this result improves the classical estimate

Aα : X → Y

in the sense that
X ↪→ Sα ,Y , TY ↪→ Y ;

(iii) this result cannot be improved any further, at least not within the environment
of generalized Banach function spaces in the sense that whenever Z is a generalized
Banach function space strictly larger than Sα ,Y ,

Aα : Z �→ TY

and, likewise, when Z is a generalized Banach function space strictly smaller than TY ,
then

Aα : Sα ,Y �→ Z.

In this paper, we present applications of our results to variable exponent Lebesgue
spaces Lp(·)(Ω) , as an extension of [13, 14, 17]. In Section 5, we prove optimality
results for the action of the operator Aα on Lp(·) spaces. In Section 6, we prove opti-
mality results for the action of the operator Aα on weighted variable exponent Lebesgue
spaces.

In the last section, we show that the condition TY = Y implies that the norm in Y
is very similar to the norm in L∞ in connection with Lang and Nekvinda [11] and Lang,
Nekvinda and Rákosnı́k [12] .
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2. Preliminaries

Throughout this paper, let C denote various constants independent of the variables
in question, and C(a,b, · · ·) a constant that depends on a,b, · · · .

Let M (Ω) denote the space of measurable functions on an open set Ω ⊂ Rn with
values in [−∞,∞] . Denote by χE the characteristic function of E . Recall the frequently
used definition of Banach function spaces which can be found for instance in [1].

DEFINITION 2.1. We say that a normed linear space (X ,‖.‖X) is a Banach func-
tion space (BFS for short) if the following conditions are satisfied:

‖ f‖X is defined for all f ∈ M (Ω), and f ∈ X if and only if ‖ f‖X < ∞; (1)

‖ f‖X = ‖ | f | ‖X for every f ∈ M (Ω); (2)

if 0 � fn ↗ f a.e. in Ω, then ‖ fn‖X ↗‖ f‖X ; (3)

if E ⊂ Ω is a measurable set of finite measure, then χE ∈ X ; (4)

for every measurable set E ⊂ Ω of finite measure, there exists (5)

a positive constant CE such that
∫

E
| f (x)|dx � CE‖ f‖X .

Denote by B = B(Rn) the class of all BFSs defined on Ω .

We will work with more general spaces where conditions (4) and (5) are omitted .

DEFINITION 2.2. We say that a normed linear space (X ,‖.‖X) is a generalized
Banach function space (shortly GBFS) if the following conditions are satisfied:

‖ f‖X is defined for all f ∈ M (Ω), and f ∈ X if and only if ‖ f‖X < ∞; (6)

‖ f‖X = ‖ | f | ‖X for every f ∈ M (Ω); (7)

if 0 � fn ↗ f a.e. in Rn, then ‖ fn‖X ↗‖ f‖X ; (8)

Denote by G = G(Ω) the class of all GBFSs defined on Rn .

Recall that condition (8) immediately yields the following property:

if 0 � f � g, then ‖ f‖X � ‖g‖X . (9)

To see this it suffices to set f1 = f , fn = g for n � 2 in (8). It is well-known that each
BFS is complete and so, it is a Banach space (see [1, Theorem 1.6]). We know that each
GBFS is complete (see [13]).

Let X ,Y be Banach spaces (not necessarily generalized Banach function spaces).
Say that X ↪→ Y if X ⊂ Y and there is C > 0 such that ‖ f‖Y � C‖ f‖X for all f ∈ X .
Recall well-known theorems on Banach function spaces (see [1, Theorem 1.8]) which
assert the implication

(‖ f‖X < ∞ ⇒‖ f‖Y < ∞) =⇒ X ↪→ Y.

In what follows we need a generalization of this remark as in [13].
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DEFINITION 2.3. Let (X ,‖.‖X) be a GBFS. Say that a mapping T : (X ,‖.‖X) →
M (Ω) is a sublinear nondecreasing operator if the following conditions are satisfied
for all α ∈ R, f ,g ∈ (X ,‖.‖X) :

(i) T (α f ) = αT ( f ) , T ( f +g) � T ( f )+T (g) almost everywhere;

(ii) if 0 � f � g almost everywhere implies 0 � T f � Tg almost everywhere.

LEMMA 2.4. ([13, Lemma 2.7]) Let (X ,‖.‖X),(Y,‖.‖Y ) be GBFSs and T a sub-
linear nondecreasing operator on M (Ω) . Then the following two conditions are equiv-
alent:

(i) ‖ f‖X < ∞ ⇒‖T f‖Y < ∞;

(ii) there is C > 0 such that ‖T f‖Y � C‖ f‖X for all f ∈ X .

Given a measurable function f on Ω set

f̃ (x) = ess sup
{t∈Ω:|t|�|x|}

| f (t)|.

If x is a Lebesgue point of f , then

| f (x)| � f̃ (x),

so that
| f (x)| � f̃ (x) a.e. on Ω. (10)

DEFINITION 2.5. Let Y be a GiBFS and let f be a measurable function on Ω .
Set

‖ f‖TY = ‖ f̃ ‖Y

and define the corresponding space

TY = { f : f̃ ∈ Y}.
Remark that TY is a GBFS ([13, Lemma 3.2]).

DEFINITION 2.6. Let Y be a GBFS and let f be a measurable function on Ω .
Say that f has an absolutely continuous norm if lim|En|→0 ‖ f χEn‖Y = 0 for measurable
sets En ⊂ Rn .

Say that f has a continuous norm if limr→0+ ‖ f χB(x,r)‖Y = 0 for every x ∈ Ω and
limR→∞ ‖ f χΩ\B(x,R)‖Y = 0.

Denote by Ya the set of all functions with an absolutely continuous norm and by Yc

the set of all functions with a continuous norm. Say that Y has an absolutely continuous
norm if Y = Ya and Y has a continuous norm if Y = Yc .

LEMMA 2.7. ([14, Lemma 3.2]) Let Y be a GBFS and Y �= 0 . Then the embed-
ding TY ↪→ Y holds and TY � Y holds provided Y has an absolutely continuous norm.
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Commonly with the definition of the space TY a question appears when TY = Y .
Clearly TY =Y for Y = L∞ . Remark that it is possible to adopt the proof of the previous
lemma under the assumption Y has a continuous norm if Y = Yc . The property Y = Yc

is really weaker than Y = Ya . Indeed, in [11] there is a space Y such that {0} � Ya �
Yc � Y and in [12] there is even a Y with {0} = Ya � Yc = Y . Nevertheless, we show
in the last section that the condition TY = Y implies that the norm in Y is very similar
to the norm in L∞ .

LEMMA 2.8. ([14, Lemma 3.4]) Let X ,Y be GBFSs and suppose that

Aα : X → Y, M : Y → Y. (11)

Then

Aα : X → TY .

DEFINITION 2.9. Let Y ∈ G(Ω) and let f be a measurable function on Ω . Set

‖ f‖Sα,Y = ‖Aα | f | ‖TY

and the corresponding space

Sα ,Y = { f : Ãα | f | ∈ Y}.
Remark that Sα ,Y is a GBFS. Indeed, we can prove the fact as in the proof of [13,
Lemma 3.6].

By Lemma 2.8 and [14, Lemma 3.6], we readily have the following result.

LEMMA 2.10. ([14, Lemma 3.7]) Let X ,Y be GBFSs and Aα : X → Y , M : Y →
Y . Then Aα : Sα ,Y → TY and X ↪→ Sα ,Y .

3. Boundedness of Aα

We will frequently use the notation B for the unit ball B(0,1) .
Let 1 � p < ∞ and 1 � p∞ < ∞ . In this section, we consider continuous exponents

p(·) on Rn such that

(P1) 1 � p− ≡ infx∈Rn p(x) � supx∈Rn p(x) ≡ p+ < ∞ ;

(P2) |p(x)− p|� C/ log(e+1/|x|) whenever x ∈ Rn ;

(P3) |p(x)− p∞| � C/ log(e+ |x|) whenever x ∈ Rn .

If p satisfies (P2), then p is said to satisfy the weak-Lipschitz condition at zero with
respect to p . Moreover, we say that p(·) is weak-Lipschitz or log-Hölder if

(P4) |p(x)− p(y)|� C/ log(e+1/|x− y|) whenever x ∈ Rn and y ∈ Rn .
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DEFINITION 3.1. Let Ω be an open subset of Rn . Let us consider the family
Lp(·)(Ω) of all measurable functions f on Ω satisfying

∫
Ω

∣∣∣∣ f (y)λ

∣∣∣∣p(y)

dy < ∞

for some λ > 0. We define the norm on this space by

‖ f‖Lp(·)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣ f (y)λ

∣∣∣∣p(y)

dy � 1

}
.

Remark that Lp(·)(Ω) is a BFS ([4]).
In the next we will use a little more general concept of Banach function spaces

than in Definition 2.1. The last two axioms are weakened and so, we will call these
spaces by weak Banach function spaces.

DEFINITION 3.2. We say that a normed linear space (X ,‖.‖X) is called a weak
Banach function space (WBFS for short) if the following conditions are satisfied:

the norm ‖ f‖X is defined for all f ∈ M (Ω) and f ∈ X if and only if (12)

‖ f‖X < ∞;

‖ f‖X = ‖ | f | ‖X for every f ∈ M (Ω); (13)

if 0 � fn ↗ f a.e. in Ω then ‖ fn‖X ↗ ‖ f‖X ; (14)

if E is a compact subset of Ω, then χE ∈ X ; (15)

for every compact set E ⊂ Ω, there exists a positive constant CE (16)

such that
∫

E
| f (x)|dx � CE‖ f‖X .

Note that each WBFS is complete and consequently, it is a Banach space ([13,
Theorem 6.2]).

DEFINITION 3.3. Let Ω be an open subset of Rn . Let us consider the family
Tp(·)(Ω) of all measurable functions f on Ω satisfying

∫
Ω

(
esssup

{t∈Ω:|t|�|x|}

∣∣∣∣ f (t)λ

∣∣∣∣
)p(x)

dx < ∞

for some λ > 0. We define the norm on this space by

‖ f‖Tp(·)(Ω) = inf

⎧⎨⎩λ > 0 :
∫

Ω

(
esssup

{t∈Ω:|t|�|x|}

∣∣∣∣ f (t)λ

∣∣∣∣
)p(x)

dx � 1

⎫⎬⎭ .

If p(·) is a constant p , then we write Tp(Ω) and ‖ f‖Tp(Ω) for Tp(·)(Ω) and ‖ f‖Tp(·)(Ω) ,
respectively.
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Note that Tp(·)(Ω) = TX for X = Lp(·)(Ω) . Remark that any Tp(·)(Ω) is a WBFS ([13,
Lemma 7.2]).

THEOREM 3.4. ([13, Theorem 7.3 and Corollary 7.4]) Suppose that p(·) satisfies
(P1) and (P2) . Then the norms in Tp(·)(B) and Tp(B) are equivalent. Moreover,

Tp(B) ↪→ Lp(·)(B).

THEOREM 3.5. ([13, Theorem 7.5 and Corollary 7.6]) Suppose that p(·) satisfies
(P1) and (P3) . Then the norms in Tp(·)(Rn\B) and Tp∞(Rn\B) are equivalent. More-
over,

Tp∞(Rn \B) ↪→ Lp(·)(Rn \B).

Here we consider the following condition:

(P1′ ) 1 < p− � p+ < ∞ .

Remark that (P1′ ) and (P3) imply 1 < p∞ < ∞ .
We know the boundedness of maximal operators in Lp(·)(Rn) , due to [3].

LEMMA 3.6. Suppose that p(·) satisfies (P1′) , (P3) and (P4) . Then there exists
a positive constant C such that

‖M f‖Lp(·)(Rn) � C‖ f‖Lp(·)(Rn)

for all measurable functions f ∈ Lp(·)(Rn) .

Let
1/pα(x) = 1/p(x)− (n−α)/n.

For 0 < α < n , we define the Riesz potential of order α for a locally integrable
function f on Rn by

Iα f (x) =
∫

Rn
|x− y|α−n f (y) dy.

We define the fractional maximal operator for a locally integrable function f on
Rn by

Mα f (x) = sup
r>0

1

|B(x,r)|1− α
n

∫
B(x,r)

| f (y)| dy.

We know the following due to [2].

LEMMA 3.7. Suppose that p(·) satisfies (P1′) , (P3) and (P4) . Then there exists
a positive constant C such that

‖In−α f‖Lpα (·)(Rn) � C‖ f‖Lp(·)(Rn)

for all f ∈ Lp(·)(Rn) .
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LEMMA 3.8. Suppose that p(·) satisfies (P1′) , (P3) and (P4) . Let n(1−1/p+)<
α � n. Then Aα : Lp(·)(Rn) → Lpα (·)(Rn) .

Proof. Since |Aα f (x)|�CMn−α f (x)�CIn−α f (x) , we obtain the lemma by Lemma
3.7. �

LEMMA 3.9. Suppose that p(·) satisfies (P1′) , (P3) and (P4) . Let n(1−1/p+)<
α � n. Then Aα : Lp(·)(Rn) → Tpα (·)(Rn) .

Proof. This lemma follows immediately from Lemmas 3.6, 3.8 and 2.8. �

THEOREM 3.10. (cf. [13, Theorem 7.12]) Let 1 < p < ∞ . Suppose that p(·) sat-
isfies (P1′) and (P2) . Then Aα : Lp(·)(B) → Tpα (B) .

Proof. By our assumption,

|p(x)− p|� C/ log(e+1/|x|) whenever x ∈ B .

We set d = infx∈B p(x) and

q(x) = max

{
d, p− C

log(e+1/|x|)
}

.

Then q(x) � p(x) for x ∈ B and q(·) satisfies (P1′) . Hence Lp(·)(B) ↪→ Lq(·)(B) (see
e.g. [9]). Hence Lp(·) ↪→ Lq(·) (see e.g. [9]). Next, by [13, Lemmas 7.10 and 7.11], q
satisfies (P4) . Thus, by Lemma 3.9, Aα : Lq(·)(B) → Tqα (·)(B) holds. Finally, in view
of Theorem 3.4, Tqα (·)(B) ↪→ Tpα (B) . Altogether,

‖Aα f‖Tpα
(B) � C‖Aα f‖Tqα (·)(B) � C‖ f‖Lq(·)(B) � C‖ f‖Lp(·)(B). �

DEFINITION 3.11. Let us consider the family Sα ,p(Ω) of all measurable func-
tions f on Ω with the finite norm

‖ f‖Sα,p(Ω) =
(∫

Ω

(
Ãα | f |(x)

)p
dx

)1/p

= ‖Aα | f |‖Tp(Ω);

for convenience set f = 0 outside Ω .

Remark that Sα ,p(Ω) is a WBFS (cf. [13, Lemma 7.14]).

COROLLARY 3.12. Let 1 < p < ∞ . Suppose that p(·) satisfies (P1′) and (P2) .
Then

Lp(·)(B) ↪→ Sα ,pα (B).

Proof. This corollary is proved by Theorem 3.10. �
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THEOREM 3.13. Suppose that p(·) satisfies (P1′) and (P3) . Then Aα : Lp(·)(Rn\
B) → T(p∞)α (Rn \B) .

Proof. To show ‖Aα f‖T(p∞)α (Rn\B) � C‖ f‖Lp(·)(Rn\B) , suppose that∫
Rn\B

| f (x)|p(x)dx � 1. (17)

By our assumption,

|p(x)− p∞| � C/ log(e+ |x|) whenever x ∈ Rn \B .

Set d = infx∈Rn\B p(x) . Then by (P3)

q(x) := max

{
d, p∞ − C

log(e+ |x|)
}

� p(x) � p∞ +
C

log(e+ |x|) := q̃(x).

Hence q(x) � p(x) � q̃(x) for x ∈ Rn \B and q(·) and q̃(·) satisfy (P1′) and (P3) .
Since |∇(1/log(e+ |x|))| � 1/e , the functions q and q̃ are Lipschitz and so, both

satisfy (P4) . Thus, by Lemma 3.9, Aα : Lq(·)(Rn) → Tqα (·)(Rn) and Aα : Lq̃(·)(Rn) →
Tq̃α (·)(Rn) . If we consider function with zero values on B , then we obtain

Aα : Lq(·)(Rn \B) → Tqα (·)(Rn \B), Aα : Lq̃(·)(Rn \B) → Tq̃α (·)(Rn \B). (18)

Moreover, in view of Theorem 3.5 we have

Tqα (·)(Rn \B) ↪→ T(p∞)α (Rn \B), Tq̃α (·)(Rn \B) ↪→ T(p∞)α (Rn \B). (19)

Write
f = f χ{y: f (y)�1} + f χ{y:0� f (y)<1} = f1 + f2. (20)

By (17) and (20) we obtain∫
Rn\B

| f1(x)|q(x)dx+
∫

Rn\B
| f2(x)|q̃(x)dx

�
∫

Rn\B
| f1(x)|p(x)dx+

∫
Rn\B

| f2(x)|p(x)dx =
∫

Rn\B
| f (x)|p(x)dx � 1.

By (18) we have∫
Rn\B

∣∣∣Ãα f1(x)
∣∣∣qα (x)

dx � C,

∫
Rn\B

∣∣∣Ãα f2(x)
∣∣∣q̃α (x)

dx � C.

Finally, (19) yields∫
Rn\B

∣∣∣Ãα f (x)
∣∣∣(p∞)α

dx

� C
∫

Rn\B

∣∣∣Ãα f1(x)
∣∣∣(p∞)α

dx+C
∫

Rn\B

∣∣∣Ãα f2(t)
∣∣∣(p∞)α

dx � C,

which finishes the proof with Lemma 2.4. �
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COROLLARY 3.14. (cf. [14, Corollary 7.20]) Let 1 < p < ∞ . Then

Aα : Sα ,pα (Rn) → Tpα (Rn), (by Lemma 2.10)
A : Sα ,pα (B) → Sα ,pα (B) (by Lemma 2.10),
Aα : Sα ,pα (Rn \B) → Sα ,pα (Rn \B) (by Lemma 2.10),
Aα : Tp(B) → Tpα (B) (by Theorem 3.4 and Theorem 3.10)

and

Aα : Tp∞(Rn \B) → T(p∞)α (Rn \B) (by Theorem 3.5 and Theorem 3.13).

Moreover suppose that r(·),s(·) satisfy (P1′) and (P2) with a same p. Then

Aα : Lr(·)(B) → Ls(·)(B) (by Theorem 3.4 and Theorem 3.10).

Suppose that r(·),s(·) satisfy (P1′) and (P3) with the same p. Then

Aα : Lr(·)(Rn \B) → Ls(·)(Rn \B) (by Theorem 3.5 and Theorem 3.13).

4. Optimal pairs

DEFINITION 4.1. Let S ⊂ G . Assume X ,Y ∈ S . Say that (X ,Y ) is an optimal
pair for Aα with respect to S if

Aα : X → Y, (21)

if Z ∈ S with Aα : Z → Y, then Z ↪→ X , (22)

if Z ∈ S with Aα : X → Z, then Y ↪→ Z. (23)

LEMMA 4.2. ([14, Lemma 4.2]) Let X ,Y ∈ G and Aα : X → TY . Suppose

Aα [|x|α−nh(x)] ∈ TY when h ∈ TY . (24)

Then (Sα ,Y ,TY ) is an optimal pair for Aα with respect to G .

REMARK 4.3. We note that (24) holds if and only if the inequality

‖Aα [|x|α−ng]‖Y � C‖g‖Y

holds for every radial symmetric non-increasing function g . Such inequalities as (24)
are investigated for many function spaces. See for example [6].

By Lemmas 2.8 and 4.2, we have the following lemma.

LEMMA 4.4. ([14, Lemma 4.3]) Let X ,Y ∈G and Aα : X →Y , M :Y →Y . Sup-
pose (24) holds. Then (Sα ,Y ,TY ) is an optimal pair for Aα with respect to G .
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5. Lp(·) spaces and Aα

In this section we discuss optimal pairs Aα with respect to G in Lemma 2.10.
Recall that

1/pα(x) = 1/p(x)− (n−α)/n.

LEMMA 5.1. Suppose that q(·) satisfies (P1′) , (P3) and (P4) . Let n/q− < α �
n. Assume h ∈ Lq(·)(Rn) and set f (y) = |y|α−n|h(y)| . Then

‖Ãα f ‖Lq(·)(Rn) � C‖h‖Lq(·)(Rn).

Proof. Set f (y) = |y|α−n|h(y)| for h ∈ Lq(·)(Rn) . By [14, Lemma 3.3], Lemma
3.6 and Lemma 6.2 below, we have

‖Ãα f ‖Lq(·)(Rn) � C‖M(Aα f )‖Lq(·)(Rn)

� C‖Aα f‖Lq(·)(Rn)

� C‖|x|n−αM f‖Lq(·)(Rn)

� C‖|y|n−α f‖Lq(·)(Rn)

= C‖h‖Lq(·)(Rn),

as required. �

THEOREM 5.2. Suppose that p(·) satisfies (P1′) , (P3) and (P4) . Let n(1−
1/p+) < α � n. If X = Lp(·)(Rn) and Y = Lpα (·)(Rn) , then (Sα ,Y ,TY ) is an optimal
pair for Aα .

Proof. First we see from Lemmas 2.8 and 3.8 that Aα : X → TY . By Lemma 5.1
with q(·) = pα(·) , (24) in Lemma 4.2 holds. Hence it follows from Lemma 4.2 that
(Sα ,Y ,TY ) is an optimal pair for Aα . �

6. Weighted Lebesgue spaces and Aα

In this section, let p(·) and q(·) satisfy (P1’), (P3) and (P4). Let β (·) be a con-
tinuous function on Rn satisfying condition (P3), that is,

(β ) |β (x)−β |� C/ log(e+ |x|) for all x ∈ Rn ;

here we write β for β∞ .

DEFINITION 6.1. Recall the definition of weighted Lebesgue spaces Lq(·)(Rn, |x|β (·))
as a set of all functions f with

‖ f‖Lq(·)(Rn,|x|β(·)) = inf{λ > 0 :
∫

Rn
(| f (x)/λ ||x|β (x))q(x)dx � 1} < ∞
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(see [15]).
We know the following result (see [15, Theorem 1.1]).

LEMMA 6.2. Let −n/q∞ < β < n(1−1/q−) . Then

‖M f‖Lq(·)(Rn,|x|β(·)) � C‖ f‖Lq(·)(Rn,|x|β(·)).

Now we prove the boundedness of Aα on weighted Lebesgue spaces.

LEMMA 6.3. Let n(1−1/p+) < α � n. Let 1/p+−1/q− >−1/q∞ and 1/p−−
1/q+ < 1−1/q− . Then

‖Aα f‖
Lq(·)(Rn,|x|n( 1

pα (·)−
1

q(·) )
)
� C‖ f‖

Lq(·)(Rn,|x|n( 1
p(·) −

1
q(·) )

)
.

Proof. Set X = Lq(·)(Rn, |x|n( 1
p(·)− 1

q(·) )) and Y = Lq(·)(Rn, |x|n( 1
pα (·)− 1

q(·) )) . Set β (·)
= n( 1

p(·) − 1
q(·) ) . Since 1/p+ − 1/q− > −1/q∞ and 1/p− − 1/q+ < 1− 1/q− , β (·)

satisfies (β ) and −n/q∞ < β (·) < n(1−1/q−) . We have∫
Rn

|Aα f (x)|q(x)|x|n( q(x)
pα (x)−1)

dx

=
∫

Rn

( 1

|B(0, |x|)|α/n

∫
B(0,|x|)

| f (t)|dt
)q(x)|x|n( q(x)

pα (x)−1)
dx

� C
∫

Rn

( 1
|x|n

∫
B(0,|x|)

| f (t)|dt
)q(x)|x|n( q(x)

pα (x)−1)+q(x)(n−α)
dx

= C
∫

Rn

( 1
|x|n

∫
B(0,|x|)

| f (t)|dt
)q(x)|x|β (x)q(x)dx

� C
∫

Rn
(M f (x)|x|β (x))q(x)dx.

By Lemma 6.2, we obtain
‖Aα f‖Y � C‖ f‖X ,

as required. �

Setting α = n in the previous lemma we obtain the next lemma.

REMARK 6.4. Let 1/p+−1/q− > −1/q∞ and 1/p−−1/q+ < 1−1/q− . Then

‖Aα f‖
Lq(·)(Rn,|x|n( 1

p(·)−
1

q(·) )
)
� C‖ f‖

Lq(·)(Rn,|x|n( 1
p(·)−

1
q(·) )

)
.

As an immediate consequence of Lemmas 6.2, 6.3 and 2.8, we obtain the following
lemma.
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LEMMA 6.5. Let p−,q− > 1 and n(1− 1/p+) < α � n. Let 1/p+ − 1/q− >
−1/q∞ and 1/p−−1/q+ < 1−1/q− . Then

‖Aα f‖T
Lq(·)(Rn,|x|

n( 1
pα (·) −

1
q(·) )

)

� C‖ f‖
Lq(·)(Rn,|x|n( 1

p(·)−
1

q(·) )
)
. (25)

LEMMA 6.6. Let n(1− 1/p+) < α � n. Let 1/p+ − 1/q− > −1/q∞ , 1/p− −
1/q+ < 1− 1/q− and Y = Lq(·)(Rn, |x|n( 1

pα (·)− 1
q(·) )) . Assume h ∈ TY and set f (x) =

|x|α−nh(x) . Then
‖Aα f‖TY � C‖h‖TY .

Proof. Let h ∈ TY . Let X = Lq(·)(Rn, |x|n( 1
p(·)− 1

q(·) )) . By Lemma 6.5 with f (x) =
|x|α−nh(x) , we have

‖Aα f‖TY � C‖ f‖X � C‖h‖TY ,

since ∫
Rn

| f (x)|q(x)|x|n( q(x)
p(x)−1)

dx =
∫

Rn
(|x|α−n|h(x)|)q(x)|x|n( q(x)

p(x)−1)
dx

=
∫

Rn
|h(x)|q(x)|x|n( q(x)

pα (x)−1)
dx

�
∫

Rn
h̃(x)q(x)|x|n( q(x)

pα (x)−1)
dx. �

We discuss optimal pairs Aα with respect to G in Lemma 2.10. By Lemmas 6.5,
6.6 and 4.2, we obtain the following theorem.

THEOREM 6.7. Let n(1 − 1/p+) < α � n. Let 1/p+ − 1/q− > −1/q∞ and

1/p−−1/q+ < 1−1/q− . If X = Lq(·)(Rn, |x|n( 1
p(·)− 1

q(·) )) and Y = Lq(·)(Rn, |x|n( 1
pα (·)− 1

q(·) )) ,
then (Sα ,Y ,TY ) is an optimal pair for Aα .

Proof. Note from Lemma 6.5 that Aα : X → TY . Let h∈TY and f (x)= |x|α−nh(x) .
By Lemma 6.6, (24) in Lemma 4.2 holds. Hence, we see from Lemma 4.2 that (Sα ,Y ,TY )
is an optimal pair for Aα . �

7. Relation between TY and Y

We deal here with relations TY =Y and TY �Y . Let us fix a weak Banach function
space Y on B(0,R) , 0 < R � ∞ .

DEFINITION 7.1. Define for ε > 0 and x ∈ B(0,R)

cε(x) = inf{‖χM‖Y ;M ⊂ B(x,ε), |M| > 0} (26)
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and

c(x) = liminf
ε→0+

cε(x). (27)

LEMMA 7.2. The function c(·) is lower semi-continuous.

Proof. Let xn → x and choose λ > 0. There is a sequence εn > 0 tending to 0
with

cεn(x)−λ � c(x) � cεn(x)+ λ

and we find n0 such that xk ∈ B(x,εn) for k > n0 . From (27) there is a sequence ηk > 0
with B(xk,ηk) ⊂ B(x,εn)

cηk(xk)−λ � c(xk) � cηk(xk)+ λ

and by (26) we can find a set Mk ⊂ B(xk,ηk) with

‖χMk‖Y � cηk(xk)+ λ � c(xk)+2λ .

Since Mk ⊂ B(xk,ηk) ⊂ B(x,εn) we obtain

c(x) � cεn(x)+ λ � ‖χMk‖Y + λ � c(xk)+3λ

which means
c(x) � liminf

k→∞
c(xk)

and finishes the proof. �

LEMMA 7.3. Assume that there is r > 0 such that

inf{c(x); |x| � r} = 0. (28)

Then TY � Y .

Proof. We know TY � Y . To see our lemma we must construct f ∈ Y such that
f /∈ TY . From (28) there is a sequence xn with |xn|� r and c(xn)→ 0. By (27) there are
0 < εn < r/2 such that cεn(xn) � 1/(2n3) and by (26) we can find sets Mn ⊂ B(xn,εn)
with |Mn| > 0 such that ‖χMn‖Y � 1/n3 . Set

f (x) =
∞

∑
n=1

nχMn(x).

Then

‖ f‖Y �
∞

∑
n=1

n‖χMn‖Y �
∞

∑
n=1

1
n2 < ∞
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and so f ∈ Y . Moreover, fix n . Then for |x| � r/2 we have

f̃ (x) = ess sup
|y|�|x|

| f (y)| � ess sup
y∈Mn

| f (y)| � n.

Thus, f̃ (x) = ∞ on B(0,r/2) which gives ‖ f̃ ‖Y = ∞ and so, f /∈ TY . �
Recall an easy fact L∞ ↪→ Y provided R < ∞ . Actually, taking f we have

‖ f χB(0,R)‖Y � ‖χB(0,R)‖Y ‖ f‖∞ := D‖ f‖∞. (29)

LEMMA 7.4. Let 0 � r1 < R � ∞ and denote Ω1 = {x;r1 < |x| < R} . Assume
that there is δ > 0 with c(x) � δ for almost all x ∈ Ω1 . Then

‖ f χΩ1‖∞ � 1
δ
‖ f χΩ1‖Y

holds for all f .

Proof. Let A ⊂ Ω1 be a set of full measure with c(x) � δ for all x ∈ A . Denote
d := ‖ f χΩ1‖∞ . Choose an arbitrary λ > 0. Then there exists a set M ⊂ Ω1 , |M| > 0
and | f (z)| � d−λ for all z ∈ M . Let x ∈ M be a Lebesgue point. By (27) there exists
a sequence εn → 0 such that c(x) � cεn(x)+ 1

n . Set Pn = M∩B(x,εn) . Then |Pn| > 0,
Pn ⊂ B(x,εn) and so, cεn(x) � ‖χPn‖Y . Since Pn ⊂ M , we finally obtain

δ � c(x) � cεn(x)+
1
n

� ‖χPn‖Y +
1
n

� 1
d−λ

‖ f χPn‖Y +
1
n

� 1
d−λ

‖ f χΩ1‖Y +
1
n
.

Letting n → ∞ , we obtain

(‖ f χΩ1‖∞ −λ )δ = (d−λ )δ � ‖ f χΩ1‖Y .

Since λ was chosen arbitrarily, the lemma follows. �

PROPOSITION 7.5. Let TY = Y and 0 < r1 < r2 < ∞ , r2 � R. Denote Ω2 =
{x;r1 < |x| < r2} . Then there exist two positive constants c1,c2 such that

c1‖ f χΩ2‖∞ � ‖ f χΩ2‖Y � c2‖ f χΩ2‖∞.

Proof. Since Ω2 is bounded we have ‖ f χΩ2‖Y � D‖ f χΩ2‖∞ by (29). Let us
prove the opposite inequality. By Lemma 7.3 there exists a δ > 0 such that c(x) � δ in
Ω2 . By Lemma 7.4 we obtain ‖ f χΩ2‖∞ � 1/δ‖ f χΩ2‖Y , which proves the lemma. �

The previous proposition claims that the norm in Y on sets {x;r1 < |x| < r2}
behaves as L∞ norm provided TY = Y .

In the next let us restrict ourselves to the case R < ∞ . Define a function on [0,R]
by

δ (r) = ess inf{c(x);r < |x| < R}.
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It is easy to see that δ (·) is nondecreasing. We know in this case that B(0,R) is bounded
and the norm on sets {x;0 < r < |x| < R} is in fact L∞ norm provided TY = Y . More-
over, if δ := limr→0+ δ (r) > 0 we have c(x) � δ and by Lemma 7.3 and Lemma 7.4 we
know Y = L∞ with equivalent norms. In the next we will investigate a relation between
properties limr→0+ δ (r) = 0 and TY = Y . We will find two examples of spaces Y . In
both spaces the property limr→0+ δ (r) = 0 holds but the first one satisfies TY = Y and
the second one satisfies TY � Y .

EXAMPLE 7.6. There exists a space Y such that

(i) δ (r) > 0 for all r > 0,

(ii) limr→0+ δ (r) = 0,

(iii) TY = Y .

Proof. Define

‖ f‖Y =
∫

B
ess sup
|t|�|y|<1

| f (y)|dt =
∫

B
f̃ (t)dt = ‖ f̃‖Y = ‖ f‖TY ;

set f = 0 outside B for convenience. Then Y = TY by definition, which proves (iii).
Let us estimate c(x) for x ∈ B . By (27) and (26), we have

c(x) = liminf
ε→0+

cε(x) � liminf
ε→0+

∫
B

χB(0,|x|+ε)(t)

= liminf
ε→0+

C(|x|+ ε)ndt = C|x|n.

Thus

lim
r→0+

δ (r) = lim
r→0+

ess inf{c(x);r � |x| � 1} � lim
r→0+

Crn = 0,

which proves (i) and (ii). �

EXAMPLE 7.7. There exists a space Y such that

(i) δ (r) > 0 for all r > 0,

(ii) limr→0+ δ (r) = 0,

(iii) TY � Y .

Proof. Consider the family of all measurable functions f such that

‖ f‖Y =
∞

∑
n=1

1
n2 ‖ f‖L∞( 1

n+1 , 1
n ) < ∞.
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Set

f =
∞

∑
n=1

n2χ( 1
n2+1

, 1
n2 ).

Then

f̃ = 12χ( 1
12+1

, 1
12 ) +12χ( 1

12+2
, 1
12+1

) +12χ( 1
12+3

, 1
12+2

)

+22χ( 1
22+1

, 1
22 ) +22χ( 1

22+2
, 1
22+1

) +22χ( 1
22+3

, 1
22+2

) ++22χ( 1
22+4

, 1
22+3

) +22χ( 1
22+5

, 1
22+4

)

+32χ( 1
32+1

, 1
32 ) +32χ( 1

32+2
, 1
32+1

) + · · ·
+ · · · .

Hence

‖ f̃‖Y = 12 · 1
(12)2 +12 · 1

(12 +1)2 +12 · 1
(12 +2)2

+22 · 1
(22)2 +22 · 1

(22 +1)2 +22 · 1
(22 +2)2 +22 · 1

(22 +3)2 +22 · 1
(22 +4)2

+32 · 1
(32)2 +32 · 1

(32 +1)2 + · · ·+32 · 1
(42−1)2

+ · · ·
� 12 · 1

(22−1)2 · (22−12)+22 · 1
(32−1)2 · (32−22)+ · · ·

+n2 · 1
((n+1)2−1)2 · ((n+1)2−n2)+ · · ·

=
∞

∑
n=1

2n+1
(n+2)2 = ∞,

which proves (iii).
Obviously, since c(x) = 1/n2 when 1/(n+1) < x < 1/n , we have the following:

• δ (r) > 0 for 0 < r < 1;

• lim
r→0+

δ (r) = 0. �
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Aleš Nekvinda
Faculty of Civil Engineering Czech technical University

Thákurova 7, 166 29 Praha 6, Czech Republic
e-mail: nekvinda@fsv.cvut.cz

Tetsu Shimomura
Department of Mathematics

Graduate School of Education, Hiroshima University
Higashi-Hiroshima 739-8524, Japan

e-mail: tshimo@hiroshima-u.ac.jp

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


