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POWER–WEIGHTED ORLICZ CLASSES

RON KERMAN, RAMA RAWAT AND RAJESH K. SINGH

(Communicated by J. Pečarić)

Abstract. Let Φ be a nondecreasing function from R+ = (0,∞) onto itself. Fix γ ∈ R =
(−∞,∞) and let LΦ,tγ (R+) be the set of all Lebesgue-measurable functions f from R+ to
R for which ∫

R+
Φ(k| f (t)|) tγdt < ∞

for some k > 0 . Define the gauge ρΦ,tγ at f ∈ LΦ,tγ (R+) by

ρΦ,tγ ( f ) = inf

{
λ > 0 :

∫
R+

Φ
( | f (t)|

λ

)
tγ

λ
dt � 1

}
.

Our principal goal in this paper is to find conditions on the nondecreasing functions Φ1
and Φ2 , γ ∈ R and an operator T so that the assertions

ρΦ1 ,tγ (T f ) � CρΦ2 ,tγ ( f ) (G)

and ∫
R+

Φ1 (|(T f )(t)|)tγdt � K
∫

R+
Φ2 (K| f (s)|) sγds, (M)

concerning f ∈ S(R+) , the class of simple functions supported in R+ , are equivalent and to
then find necessary and sufficient conditions in order that (M) holds.

In addition, we investigate the connection between (G) and the assertion that

T : L̊Φ2,tγ (R+) → LΦ1 ,tγ (R+),

where L̊Φ2 ,tγ (R+) is the closure of S(R+) in LΦ2,tγ (R+) .

1. Introduction

Let the operator T map the set, S(R+) , of simple, Lebesgue-measurable functions
on R+ = (0,∞) into M(R+) , the class of Lebesgue-measurable functions on R+ . Sup-
pose that T is positively homogeneous in the sense that

|T (c f )| = |c||T f |, f ∈ S(R+), c ∈ R,

with, moreover,
(T f )(λ t) = T ( f (λ ·))(t), λ ,t ∈ R+.
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We call such a T a dilation-commuting operator.
Our aim in this paper is to determine when certain dilation-commuting operators

map functions in a so-called Orlicz class, LΦ2,tγ (R+) , into another such Orlicz class,
LΦ1,tγ (R+) . Here, the Φi, i = 1,2, are nonnegative, nondecreasing functions on R+ ,
γ ∈ R and, for any given nonnegative, nondecreasing function Φ from R+ onto itself,

LΦ,tγ (R+) =
{

f ∈ M(R+) :
∫

R+
Φ(k| f (t)|)tγ dt < ∞, for some k ∈ R+

}
.

One way to measure the size of an f ∈ LΦ,tγ (R+) is by its gauge

ρΦ,tγ ( f ) = inf

{
λ > 0 :

∫
R+

Φ
( | f (t)|

λ

)
tγ

λ
dt � 1

}
.

The class LΦ,tγ (R+) can be shown to be a complete linear topological space under the
metric

dΦ,tγ ( f ,g) = ρΦ,tγ ( f −g), f ,g ∈ LΦ,tγ (R+).

The fundamental result in this paper, the one on which all others are based, is

THEOREM A. Let T be a dilation-commuting operator from S(R+) to M(R+) .
Suppose Φ1 and Φ2 are nonnegative, nondecreasing functions from R+ onto itself and
fix γ ∈ R,γ �= −1 . Then, there exists C > 0 , independent of f ∈ S(R+) , such that

ρΦ1,tγ (T f ) � CρΦ2,tγ ( f ) (1.1)

if and only if ∫
R+

Φ1 (|(T f )(t)|) tγdt � K
∫

R+
Φ2 (K| f (s)|) sγds, (1.2)

in which K > 0 is independent of f ∈ S(R+) .

REMARKS 1.1. 1. When T is linear, (1.1) implies

dΦ1,tγ (T f ,Tg) � CdΦ2,tγ ( f ,g), f ,g ∈ S(R+),

and hence
T : L̊Φ2,tγ (R+) → LΦ1,tγ (R+) (1.3)

continuously. Further, if Φ1 and Φ2 are convex, and hence LΦ1,tγ (R+) and LΦ2,tγ (R+)
are Banach spaces, a well-known result from functional analysis [6, Chapter 1, Propo-
sition 2.5] guarantees (1.1) equivalent to (1.3).

2. (1.2) is simpler than (1.1) and hence easier to work with.
3. A modular inequality, like (1.2), implies a gauge inequality, like (1.1), in a

rather general context, as is seen in Proposition 3.1 below. Theorem A asserts the two
inequalities are equivalent for dilation-commuting operators in the context of power
weights, such weights being required for their homogeneity property.

4. One readily works out the variant of Theorem A in which R+ is replaced by
R

n , n = 1,2, . . . , and tγ by |x|γ = (x2
1 + x2

2 + . . .+ x2
n)

γ/2 , x = (x1,x2, . . . ,xn) ∈ R
n . In

this context S(Rn) denotes the class of simple functions supported in R
n \ {(0, . . . ,0)}

and L̊Φ,|x|γ (Rn) the closure of S(Rn) in LΦ,|x|γ (Rn) .
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The specific dilation-commuting operators we focus on are the Hardy operators

(Pp f )(t) = t−
1
p

∫ t

0
f (s)s

1
p−1ds and (Qq f )(t) = t−

1
q

∫ ∞

t
f (s)s

1
q−1ds, t ∈ R+,

where p,q ∈ R+ and f ∈ S(R+) ; the Hardy-Littlewood maximal function

(M f )(x) = sup
x∈I

I is an interval

1
|I|
∫

I
| f (y)|dy, f ∈ S(R), x ∈ R;

the Hilbert transform

(H f )(x) =
1
π

(P)
∫

R

f (y)
x− y

dy = lim
ε→0+

1
π

∫
|x−y|>ε

f (y)
x− y

dy,

with f ∈ S(R) , x ∈ R .

REMARKS 1.2. 1. The inequality (1.1) is characterized for T = Pp and T = Qq

in [4] when Φ1 and Φ2 are convex and γ = 0. Assuming, in addition, that p = q = 1,
one can, using known results, characterize (1.1) for T = M and T = H as well.

2. Necessary and sufficient conditions to guarantee (1.2) are given in [2] for T = M
and (hence T = H ), Φ1 = Φ2 = Φ is convex.

3. The results for M and H in R have analogues in R
n , n � 2, involving the

n -dimensional version of M and the Calderón-Zygmund operators discussed in [13].

The above operators are treated in Section 4, Section 5 and Section 6, respectively,
following the proof of Theorem A in Section 3. Background on gauges like ρΦ,tγ is
given in Section 2; in particular, we explore when the continuity of a mapping such
as (1.3) implies a corresponding gauge inequality like (1.1). Appendices I and II treat
general modular inequalities for Hardy operators and Hardy-Littlewood maximal func-
tions, in that order.

2. Orlicz classes

Let (X ,M ,μ) be a totally σ -finite measure space and denote by M(X) the set of
μ -measurable functions from X to the real line R . Given a nondecreasing function Φ
from R+ onto itself its corresponding Orlicz class is

LΦ,μ(X) =
{

f ∈ M(X) :
∫

X
Φ(k| f (x)|)dμ(x) < ∞, for some k ∈ R+

}
.

The functional ρΦ,μ defined at f ∈ M(X) by

ρΦ,μ( f ) = inf

{
λ > 0 :

∫
X

Φ
( | f (x)|

λ

)
dμ(x)

λ
� 1

}

is finite if and only if f ∈ LΦ,μ(X) .
This functional has the following properties
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1. ρΦ,μ( f ) = ρΦ,μ(| f |) � 0, with ρΦ,μ( f ) = 0 if and only if f = 0 μ -a.e.;

2. ρΦ,μ(c f ) is a nondecreasing function of c from R+ onto itself if f �= 0 μ -a.e.;

3. ρΦ,μ( f +g) � ρΦ,μ( f )+ ρΦ,μ(g) ;

4. 0 � fn ↑ f implies ρΦ,μ( fn) ↑ ρΦ,μ( f ) ;

5. ρΦ,μ(χE) < ∞ for all E ⊂ X such that μ(E) < ∞ .

The functional ρΦ,μ is a so-called F -norm on the linear space LΦ,μ(X) that makes
it into a complete linear topological space under the metric

dΦ,μ( f ,g) = ρΦ,μ( f −g).

Our function Φ is said to be s-convex with fixed s , 0 < s � 1, if

Φ(αx+ βy) � αsΦ(x)+ β sΦ(y),

where α,β ,x,y ∈ R+ and αs + β s = 1. For such a Φ , the functional

ρ (s)
Φ,μ( f ) = inf

{
λ > 0 :

∫
X

Φ
( | f (x)|

λ 1/s

)
dμ(x) � 1

}

satisfies
ρ (s)

Φ,μ(c f ) = csρ (s)
Φ,μ( f ), c � 0,

as well as properties 1− 5 above, so, in particular, ρ (1)
Φ,μ( f ) is a norm. One has f ∈

M(X) belonging to LΦ,μ(X) if and only if ρ (s)
Φ,μ( f ) < ∞ , with LΦ,μ(X) a complete

linear topological space under the metric

d(s)
Φ,μ( f ,g) = ρ (s)

Φ,μ( f −g), f ,g ∈ LΦ,μ(X).

See [9, Theorem 1.2].

LEMMA 2.1. Let (X ,M ,μ) be a totally σ -finite measure space. Suppose Φ is
a nondecreasing function from R+ onto itself which is s-convex for a fixed s, 0 <

s � 1 . Then, the topologies induced on LΦ,μ(X) by the metrics dΦ,μ and d(s)
Φ,μ are

homeomorphic.

Proof. The equivalence of the topologies amounts to the assertion that, given
f , f j ∈ LΦ(X ,μ) , j = 1,2, . . . , one has

(i)

lim
j→∞

ρΦ,μ( f − f j) = 0

if and only if
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(ii)

lim
j→∞

ρ (s)
Φ,μ( f − f j) = 0.

According to [9, Remarks 3, pp. 7–8], ρΦ,μ( f ) < 1 implies ρ (s)
Φ,μ( f ) � ρΦ,μ( f )s and

ρ (s)
Φ,μ( f ) < 1 implies ρΦ,μ( f ) � ρ (s)

Φ,μ( f )
1

1+s , f ∈ M(X) .
But, given (i) , ρΦ,μ( f − f j) < 1 when j is sufficiently large. Restricting attention

to those j , we get

ρ (s)
Φ,μ( f − f j) � ρΦ,μ( f − f j)s → 0, as j → ∞.

Similarly, (ii) ensures, for j sufficiently large,

ρΦ,μ( f − f j) � ρ (s)
Φ,μ( f − f j)

1
1+s → 0, as j → ∞. �

Modulars, such as ρΦ,μ , were first studied in [10] and [11]. The s-convex modu-

lars, like ρ (s)
Φ,μ , appear in [12]. A systematic study of all this is given in [9].

PROPOSITION 2.1. Let (X ,M ,μ) and (Y,N ,ν) be totally σ -finite measure
spaces. Suppose Φ1 and Φ2 are nondecreasing s-convex functions from R+ onto
itself, where s is fixed in (0,1] . Then, any linear operator T mapping LΦ2,ν (Y ) into
LΦ1,μ(X) continuously with respect to the metrics dΦ2,ν and dΦ1,μ satisfies

ρ (s)
Φ1,μ(T f ) � Cρ (s)

Φ2,ν( f ),

in which C = C(T ) > 0 is independent of f ∈ LΦ2,ν(Y ) .

Proof. Fix f0 ∈ LΦ2,ν (Y ) . Since T is continuous at f0 , there is, in view of
Lemma 2.1, a δ > 0 such that

ρ (s)
Φ1,μ(T f −T f0) < 1

for all f ∈ LΦ2,ν(Y ) satisfying ρ (s)
Φ2,ν( f − f0) < δ . Given f ∈ LΦ2,ν(Y ) , set g =

η1/s

ρ(s)
Φ2,ν ( f )1/s

f , for a fixed η ,0 < η < δ . Then,

η1/s

ρ (s)
Φ2,ν ( f )1/s

T f = Tg = T (g+ f0)−T f0

and

ρ (s)
Φ1,μ

⎛
⎝ η1/s

ρ (s)
Φ2,ν( f )1/s

T f

⎞
⎠= ρ (s)

Φ1,μ (T (g+ f0)−T f0) < 1,
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since
ρ (s)

Φ2,ν (g+ f0− f0) = ρ (s)
Φ2,ν (g) � η < δ .

Indeed, ∫
Y

Φ2

(
g

η1/s

)
dν =

∫
Y

Φ2

⎛
⎝ f

ρ (s)
Φ2,ν( f )1/s

⎞
⎠dν � 1.

Now,

ρ (s)
Φ1,μ

⎛
⎝ η1/s

ρ (s)
Φ2,ν( f )1/s

T f

⎞
⎠< 1,

implies, ∫
X

Φ1

⎛
⎝ T f

ρ (s)
Φ2,ν( f )1/s/η1/s

⎞
⎠dμ � 1,

which, in turn, means that

ρ (s)
Φ1,μ(T f ) � η−1ρ (s)

Φ2,ν ( f ). �

Our particular concern in this paper is with the measure μ = tγdt , γ ∈ R , on the
Lebesgue-measurable subsets of R+ . For simplicity we write ρΦ,tγ and LΦ,tγ rather
than ρΦ,tγ dt and LΦ,tγ dt .

3. Proof of Theorem A

We will require the connection between a modular inequality, like (3.1), and cer-
tain gauge inequalities, (3.2). This connection is given, in some generality, in the fol-
lowing result.

PROPOSITION 3.1. Let t,u,v and w be positive measurable functions, called
weights, on R+ . Suppose Φ1 and Φ2 are nonnegative, nondecreasing functions from
R+ onto itself. Given ε > 0 , define the weighted gauge ρΦ2,u,εv by

ρΦ2,u,εv( f ) = inf

{
λ > 0 :

∫
R+

Φ2

(
u(y)| f (y)|

λ

)
ε
λ

v(y)dy � 1

}
, f ∈ M(R+).

Define ρΦ1,t,εw similarly.
Then, a positively homogeneous operator T from S(R+) to M(R+) satisfies∫

R+
Φ1 (t(x)|(T f )(x)|)w(x)dx � K

∫
R+

Φ2 (Ku(y)| f (y)|)v(y)dy, (3.1)

if and only if it satisfies the uniform gauge inequalities

ρΦ1,t,εw(T f ) � CρΦ2,u,εv( f ), (3.2)

in which K > 0 is independent of f ∈ S(R+) and C > 0 is independent of both f ∈
S(R+) and ε > 0 .
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REMARK 3.1. Taking Φ1 = Φ2 = Φ convex and t = u = 1 yields a special case
of Proposition 2.5 in [1]

A proof similar to the one for Proposition 3.1 yields the following result.

PROPOSITION 3.2. Let t,u,v and w be weights on R+ . Suppose Φ1 and Φ2

are nonnegative, nondecreasing functions from R+ onto itself, which are s-convex for

some s, 0 < s � 1 . Given ε > 0 , define the weighted s-gauge ρ (s)
Φ2,u,εv by

ρ (s)
Φ2,u,εv( f ) = inf

{
λ > 0 :

∫
R+

Φ2

(
u(y)| f (y)|

λ 1/s

)
εv(y)dy � 1

}
, f ∈ M(R+).

Define ρ (s)
Φ1,t,εw similarly.

Then, a positively homogeneous operator T from S(R+) to M(R+) satisfies the
modular inequality (3.1) if and only if it satisfies the uniform s-gauge inequalities

ρ (s)
Φ1,t,εw(T f ) � C(s) ρ (s)

Φ2,u,εv( f ),

in which C(s) > 0 is independent of both f ∈ S(R+) and ε > 0 .

Proof of Proposition 3.1. Suppose (3.2) holds. Fix f ∈ S(R+) , f �≡ 0, and put

ε =
(∫

R+
Φ2 (u(y)| f (y)|)v(y)dy

)−1

.

Then, ∫
R+

Φ2 (u(y)| f (y)|)εv(y)dy = 1,

so
ρΦ2,u,εv( f ) � 1,

whence (3.2) implies
ρΦ1,t,εw(T f ) � C.

Thus,

∫
R+

Φ1

(
t(x)|(T f )(x)|

C

)
w(x)
C

dx � 1
ε

=
∫

R+
Φ2 (u(y)| f (y)|)v(y)dy.

Replacing f by C f and using the fact that T is positively homogeneous yields (3.1),
with K = C .

For the converse, fix f ∈ S(R+) and ε > 0. Let α = ρΦ2,u,εv( f ) , so that

∫
R+

Φ2

(
u(y)| f (y)|

α

)
ε
α

v(y)dy � 1.
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By (3.1), then,∫
R+

Φ1

(
t(x)|(T f )(x)|

Kα

)
ε

Kα
w(x)dx = ε

∫
R+

Φ1

(
t(x)|(T f )(x)|

Kα

)
w(x)
Kα

dx

�
∫

R+
Φ2

(
u(y)| f (y)|

α

)
ε
α

v(y)dy

� 1,

which amounts to
ρΦ1,t,εw(T f ) � Kα = CρΦ2,u,εv( f ),

with C = K > 0 independent of f ∈ S(R+) and ε > 0. �

Proof of Theorem A. According to Proposition 3.1, the modular inequality (1.2)
is equivalent to the family of uniform gauge inequalities

ρΦ1,εtγ (T f ) � CρΦ2,εtγ ( f ) (3.3)

with C > 0 independent of both f ∈ S(R+) and ε > 0.
In particular, (3.3) with ε = 1 is (1.1), so (1.2) implies (1.1).
Next, we prove (1.1) implies (3.3), which amounts to showing∫

R+
Φ1

( |(T f )(t)|
CρΦ2,εsγ ( f )

)
εtγ

CρΦ2,εsγ ( f )
dt � 1.

Letting z = εδ t , δ = 1
1+γ , the latter reads

∫
R+

Φ1

(
|(T f )(z/εδ )|
CρΦ2,εsγ ( f )

)
zγ

CρΦ2,εsγ ( f )
dz � 1,

or, since T commutes with dilations,

∫
R+

Φ1

( |T ( f ( 1
εδ ·))(z)|

CρΦ2,εsγ ( f )

)
zγ

CρΦ2,εsγ ( f )
dz � 1.

But,

ρΦ2,εsγ ( f ) = inf

{
λ > 0 :

∫
R+

Φ2

( | f (s)|
λ

)
ε
λ

sγds � 1

}

= inf

⎧⎨
⎩λ > 0 :

∫
R+

Φ2

⎛
⎝ |
(

f
(

1
εδ y
))

|
λ

⎞
⎠ yγ

λ
dy � 1

⎫⎬
⎭

= ρΦ2,tγ

(
f
(

1
εδ ·
))

,

where in the first equality, we have made the change of variable s = y/εδ . Altogether,

then, (3.3) is the same as (1.1), with f replaced by f
(

1
εδ ·
)

. �
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REMARK 3.2. Using Proposition 3.2, a proof similar to the one above yields the
equivalence of (1.2) and the s-gauge inequality

ρ (s)
Φ1,tγ (T f ) � C(s) ρ (s)

Φ2,tγ ( f ), (3.4)

with C(s) > 0 independent of f ∈ S(R+) .
Finally, in view of Lemma 2.1 and Proposition 2.1, (3.4) is equivalent to (1.3).

4. The operators Pp and Qq

We will sometimes need to work with nonnegative, nondecreasing Φ on R+ that
are Young functions, by which is meant

Φ(t) =
∫ t

0
φ(s)ds, t ∈ R+,

where φ is nondecreasing, left-continuous function on R+ , with φ(0+) = 0 and
lims→∞ φ(s) = ∞ . The Young function, Ψ , complementary to such a Φ is defined
by

Ψ(t) =
∫ t

0
φ−1(s)ds, t ∈ R+.

where φ−1 denotes the left-continuous inverse of φ , defined by

φ−1(t) = inf{s � 0 : φ(s) � t} , t ∈ R+.

THEOREM B. Fix p,γ ∈ R,γ �= −1 . Let Pp be defined as in the introduction.
Suppose that Φ1 and Φ2 are nonnegative, nondecreasing functions from R+ onto
itself. Then, the following are equivalent:

(4.1)
ρΦ1,tγ (Pp f ) � LρΦ2,tγ ( f ),

L > 0 being independent of f ∈ S(R+);

(4.2) ∫
R+

Φ1 (|(Pp f )(t)|) tγdt � K
∫

R+
Φ2 (K| f (s)|) sγds,

in which K > 0 is independent of f ∈ S(R+) .

Moreover, when Φ2 is a Young function with complementary function Ψ2 , (4.1)
and (4.2) are each equivalent to

∫ t

0
Ψ2

(
α(t)

Cs1− 1
p +γ

)
sγds � α(t) < ∞, (4.3)

where
α(t) =

∫ ∞

t
Φ1(s

− 1
p )sγds, t ∈ R+.
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Finally, if Φ1 and Φ2 are s-convex for some s, 0 < s � 1 , one has (4.1) and (4.2)
each equivalent to

Pp : L̊Φ2,tγ (R+) → LΦ1,tγ (R+), (4.4)

the mapping (4.4) being continuous with respect to the metrics dΦ2,tγ and dΦ1,tγ .

Proof of Theorem B. Since Pp commutes with dilations, (4.1) and (4.2) are equiv-
alent, in view of Theorem A.

The inequality in (4.2) reads
∫

R+
Φ1

(
t−

1
p

∫ t

0
f (s)s

1
p−1ds

)
tγdt �

∫
R+

Φ2 (K f (s))sγds, 0 � f ∈ S(R+).

Replacing f (s)s
1
p−1 by g(s) , we have

∫
R+

Φ1

(
t−

1
p

∫ t

0
g(s)ds

)
tγdt �

∫
R+

Φ2

(
Kg(s)s1− 1

p

)
sγds, 0 � f ∈ S(R+).

When Φ2 is a Young function, then according to Proposition 7.2 (in Appendix I), this
latter holds if and only if

∫ t

0
Ψ2

(
α(λ ,t)

Cλy1− 1
p +γ

)
yγdy � α(λ ,t) < ∞,

where
α(λ ,t) =

∫ ∞

t
Φ1

(
λ z−

1
p

)
zγdz,

the constant C > 0 being independent of λ ,t ∈ R+ . Letting y = λ ps and z = λ ps in
the above integrals we obtain

∫ λ−pt

0
Ψ2

(
α(λ−pt)

Cs1− 1
p +γ

)
sγds � α(λ−pt) < ∞,

Replacing λ−pt by t yields (4.3) .
In case Φ1 and Φ2 are s-convex, Lemma 2.1, Proposition 2.1 and Remark 3.2

ensure that (4.1), (4.2) and (4.4) are all equivalent. �

REMARK 4.1. The condition (4.3) is equivalent to the condition

∫ t

0
φ−1

2

(
α(t)

Cs1− 1
p +γ

)
s

1
p−1ds � C, t ∈ R+, (4.5)

since Ψ2(t) =
∫ t
0 φ−1

2 (s)ds satisfies

1
2 φ−1

2

(
t
2

)
� Ψ2(t)

t � φ−1
2 (t), t ∈ R+.

Using (4.5) we are able to get more precise connections between the indices p and γ .
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(1) 1− 1
p + γ = 0. The condition (4.5) reads

pφ−1
2

(
α(t)
C

)
� Ct−

1
p .

(2) 1− 1
p + γ �= 0. We set y = α(t)

s
1− 1

p +γ
in the integral on the left side of the condition

to get, with λ (t) = α(t)

t
1− 1

p +γ
,

∫ ∞

λ (t)
φ−1

2

( y
C

) dy

y
γ+1

1− 1
p +γ

�
(
1− 1

p + γ
)

α(t)
1

1−(1+γ)p , (4.6)

when 1− 1
p + γ > 0, and

∫ λ (t)

0
φ−1

2

( y
C

) dy

y
γ+1

1− 1
p +γ

� −
(
1− 1

p + γ
)

α(t)
1

1−(1+γ)p , (4.7)

when 1− 1
p + γ < 0.

Observe that for the integral in (4.6) to make sense we require γ + 1 > 0 or
γ > −1.

Again, the change of variable y = s−
1
p in the integral giving α(t) yields

α(t) = p
∫ t

− 1
p

0

Φ1(y)
y

dy

y(γ+1)p , when p > 0, (4.8)

and

α(t) = −p
∫ ∞

t
− 1

p

Φ1(y)
y

dy

y(γ+1)p , when p < 0, (4.9)

In (4.9) we need γ +1 < 0 or γ < −1.

Altogether, then, (4.3) amounts to (4.6) with α(t) given by (4.8), when p > 0 and
γ > −1+ 1

p and to (4.7) with α(t) given by (4.9) when p < 0 and γ < −1+ 1
p .

REMARK 4.2. Theorem B, with γ = 0, helps to greatly simplify the proof of
Proposition 6.2 in [7], in which proposition the condition (4.3), in the equivalent form
(4.7), was used to construct the essentially largest Young function, Φ1 , that can appear
with a fixed Young function, Φ2 , in an Orlicz-Sobolev inequality such as

ρΦ1(u) � ρΦ2(|∇u|);

here C > 0 is independent of all infinitely differentiable u supported in a given bounded

domain Ω of R
n with a Lipschitz boundary and |∇u|2 =

(
∂u
∂x1

)2
+ . . .+

(
∂u
∂xn

)2
.
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COROLLARY 4.1. Fix q,γ ∈ R,γ �=−1 . Let Qq be defined as in the introduction.
Suppose that Φ1 and Φ2 are nonnegative, nondecreasing functions from R+ onto
itself. Then, the following are equivalent:

(4.10)
ρΦ1,tγ (Qq f ) � LρΦ2,tγ ( f ),

L > 0 being independent of f ∈ S(R+);

(4.11) ∫
R+

Φ1 (|(Qq f )(t)|) tγdt � K
∫

R+
Φ2 (K| f (s)|) sγds,

in which K > 0 is independent of f ∈ S(R+) .

Moreover, when Φ1 and Φ2 are Young functions with complementary functions
Ψ1 and Ψ2 , respectively, and γ + 1

q −1 �= 0 , (4.10) and (4.11) are each equivalent to

∫ t

0
Φ1

(
β (t)

Cs
1
q

)
sγds � β (t), (4.12)

where
β (t) =

∫ ∞

t
Ψ2(s

1
q−1−γ)sγds < ∞, t ∈ R+.

Finally, if Φ1 and Φ2 are s-convex for some s, 0 < s � 1 , one has (4.10) and (4.11)
each equivalent to

Qq : L̊Φ2,tγ (R+) → LΦ1,tγ (R+), (4.13)

the mapping (4.13) being continuous with respect to the metrics dΦ2,tγ and dΦ1,tγ .

Proof. In view of Theorem A, (4.10) and (4.11) are equivalent, since Qq com-
mutes with dilations.

Given that Φ1 and Φ2 are s-convex, 0 < s � 1, Proposition 3.2 ensures (4.11),
hence (4.10), is equivalent to

ρ (s)
Φ1,tγ (Qq f ) � L(s) ρ (s)

Φ2,tγ ( f ), f ∈ S(R+), (4.14)

and hence, by Proposition 2.1, to

Qq : L̊Φ2,tγ (R+) → LΦ1,tγ (R+).

In particular, if s = 1, namely, Φ1 and Φ2 are Young functions, having complementary
functions Ψ1 and Ψ2 , respectively, (4.14), with s = 1, is equivalent to

ρ (1)
Ψ2,tγ (Prg) � K ρ (1)

Ψ1,tγ (g), g ∈ S(R+), (4.15)

where 1
r = 1− 1

q + γ . Theorem B ensures (4.15) holds if and only if (4.12) does. This
completes the proof. �
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5. The Hardy-Littlewood maximal operator M

THEOREM C. Fix γ > −1 . Let M be the Hardy-Littlewood maximal operator.
Suppose Φ1 and Φ2 are nonnegative, nondecreasing functions from R+ onto itself.
Then, the following are equivalent:

(5.1)
ρΦ1,|x|γ (M f ) � L ρΦ2,|x|γ ( f ),

L > 0 being independent of f ∈ LΦ2,|x|γ (R);

(5.2) ∫
R

Φ1 ((M f )(x)) |x|γdx � K
∫

R

Φ2(K| f (y)|)|y|γdy < ∞,

in which K > 0 is independent on f ∈ M(R) .

Moreover, when Φ1 = Φ2 = Φ is a Young function with complementary function
Ψ , (5.1) and (5.2) are each equivalent to

(5.3) (a)
Ψ(2t) � CΨ(t), t ∈ R+

and

(b) −1 < γ < 0 or, if γ � 0 ,

1
t

∫ t

0
φ−1(s−γ )ds � Cφ−1(Ct−γ), φ =

dΦ
dt

,

for some C � 1 independent of t ∈ R+ .

Proof of Theorem C. In view of Theorem A, (5.1) and (5.2) are equivalent. When
Φ1 = Φ2 = Φ is a Young function, a special case of Theorem 1 in [2] ensures that (5.2)
(hence (5.1)) holds if and only if

Ψ(2t) � CΨ(t), t ∈ R+,

and
1

μγ (I)

∫
I
Ψ
(

1
C

Φ(λ )
λ

μγ(I)
|I||x|γ

)
|x|γdx � Φ(λ ), (5.4)

where C � 1 is independent of the bounded interval I ⊂ R and λ ∈ R+ ; here

μγ(I) =
∫

I
|x|γdx.

Since
t
2φ−1( t

2 ) � Ψ(t) � tφ−1(t), t ∈ R+,

(5.4) is equivalent to

1
|I|
∫

I
φ−1

(
1
C

φ(λ )
μγ (I)
|I|

1
|x|γ
)

dx � Cλ , (5.5)

in which C � 1 does not depend on I ⊂ R or λ ∈ R+ .
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We observe that the assumption γ > −1 is necessary to guarantee μγ (I) < ∞ for
all intervals I ⊂ R .

One readily shows that for I = [a,b],

μγ (I)
|I| � max

[
1,

1
1+ γ

]
d γ ,

where d = max[|a|, |b|] .
Assume, first that ab � 0, say 0 � a < b . Then, (5.5) holds if

1
b−a

∫ b

a
φ−1

(
φ(λ )max

[
1
C , 1

C(1+γ)

](
b
x

)γ
)
dx � Cλ ,

which, when −1 < γ < 0, automatically holds with C = 1
1+γ , since then 1

C(γ+1)

(
b
x

)γ �
1. The same is true when γ � 0 and a > b

2 with C = 2γ .
So, assume γ � 0 and 0 � a � b

2 . It suffices to show

1
b

∫ b

0
φ−1

(
φ(λ )

2
C

(
b
x

)γ)
dx � C

2
λ ,

or, setting x = by , ∫ 1

0
φ−1

(
φ(λ )

2
C

y−γ
)

dy � C
2

λ .

Let s = φ(λ )−
1
γ
(

2
C

)− 1
γ y to get

∫ φ(λ )−
1
γ ( 2

C )−
1
γ

0
φ−1 (s−γ)φ(λ )

1
γ
( 2

C

) 1
γ ds � C

2
λ .

Taking t = φ(λ )−
1
γ
( 2

C

)− 1
γ , whence λ = φ−1

(
C
2 t−γ) , we then arrive at (5.3) (C), with

C replaced by C
2 .

Finally, suppose ab < 0, say a < 0 < b . In that case,

1
b−a

∫ b

a
φ−1

(
φ(λ )max

[
1
C , 1

C(1+γ)

](
d
x

)γ
)

dx

=
1

|a|+ |b|
(∫ |a|

0
+
∫ |b|

0

)
φ−1

(
φ(λ )max

[
1
C , 1

C(1+γ)

](
d
x

)γ
)

dx

� 2
d

∫ d

0
φ−1

(
φ(λ )

[
1
C , 1

C(1+γ)

](
d
x

)γ
)

dx,

whence (5.5) reduces to

1
d

∫ d

0
φ−1

(
φ(λ )max

[
2
C , 2

C(1+γ)

](
d
x

)γ
)

dx � C
2

λ ,

namely, to the previous case.
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It only remains to show that (5.5) implies (5.3) (C). To this end, take I = (0,t) ,
t > 0 in the equivalent form of (5.5) to get

1
t

∫ t

0
φ−1

(
1
C φ(λ ) 1

γ+1

(
t
x

)γ
)

dx � Cλ .

Taking λ = φ−1 (C(γ +1)t−γ) yields

1
t

∫ t

0
φ−1 (x−γ)dx � Cφ−1 (C(γ +1)t−γ)

� C′φ−1(C′t−γ),

with C′ = max [1,γ +1]C . �

6. The Hilbert transform H

THEOREM D. Fix γ ∈ R , γ > −1 . Let H be the Hilbert transform. Suppose
Φ1 and Φ2 are nonnegative, nondecreasing functions from R+ onto itself. Then, the
following are equivalent:

(6.1)
ρΦ1,|x|γ (H f ) � L ρΦ2,|x|γ ( f ),

L > 0 being independent of f ∈ L1

(
1

1+|x|
)
∩ LΦ2,|x|γ (R) ,

L1

(
1

1+|x|
)

=
{

f ∈ M(R) :
∫
R

| f (x)|
1+|x|dx < ∞

}
;

(6.2) ∫
R

Φ1 (|(H f )(x)|) |x|γdx � K
∫

R

Φ2(K| f (y)|)|y|γ dy < ∞,

in which K > 0 is independent of f ∈ L1

(
1

1+|x|
)

.

Moreover, when Φ1 = Φ2 = Φ is a Young function with complementary function
Ψ , (6.1) and (6.2) are each equivalent to

(6.3) (a)
Φ(2t) � CΦ(t),

(b)
Ψ(2t) � CΨ(t), t ∈ R+

and

(c) −1 < γ < 0 or, if γ � 0 ,

1
t

∫ t

0
φ−1(s−γ )ds � φ−1(Ct−γ), φ =

dΦ
dt

,

for some C � 1 independent of t ∈ R+ .
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Finally, if Φ1 and Φ2 are s-convex, for some s, 0 < s � 1 , one has (6.1) and
(6.2) each equivalent to

H : L̊Φ2,|x|γ (R) → LΦ1,|x|γ (R), (6.4)

the mapping (6.4) being continuous with respect to the metrics dΦ2,tγ and dΦ1,tγ .

The condition (6.3) (c) clearly holds if γ � 0. As for γ > 0, Lemma 6.1 to follow
shows (6.3) (c) amounts to the condition Aφ for |x|γ in [8], provided one has (6.3) (a).

LEMMA 6.1. Fix γ > 0 and let Φ(t) =
∫ t
0 φ(s)ds be a Young function. Then, one

has
ε μγ(I)
|I| φ

(
1
|I|
∫

I
φ−1

(
1

ε|x|γ
)

dx

)
� C, (Aγ

φ )

for all bounded intervals I ⊂ R and ε > 0 if and only if

∫ t1
0 φ−1(s−γ )ds+

∫ t2
0 φ−1(s−γ )ds

t1 + t2
� φ−1(Ct−γ

2 ), (6.5)

for some C > 1 independent of 0 � t1 < t2 .
If further, one has (6.3)(a), then (6.5) can be replaced by (6.3)(c).

Proof. Given I=[a,b] , the change of variable y=ε
1
γ x in the integrals

∫
I ε|x|γdx

and
∫
I φ−1

(
1

ε|x|γ
)

dx in (Aγ
φ ) yields ε−

1
γ
∫
Iε |y|γdy and ε−

1
γ
∫
Iε φ−1

(
1
|y|γ
)

dy , respec-

tively, where Iε =[ε
1
γ a,ε

1
γ b] . So (Aγ

φ ) becomes

μγ(Iε)
|Iε | φ

(
1
|Iε |

∫
Iε

φ−1
(

1
|y|γ
)

dy

)
� C.

Since Iε is arbitrary whenever I is, it suffices to verify (Aγ
φ ) with ε =1.

Now, if ab � 0, say, 0 � a < b ,

b−γ � |I|
μγ(I)

� 2γ+1 b−γ

while if ab < 0 with, say, |a| < |b| ,
γ +1

2
|b|−γ � |I|

μγ(I)
� 2(γ +1) |b|−γ � 2γ+1 |b|−γ .

Thus, with I = (−t1, t2) , 0 � t1 < t2 , we have

1
t1 + t2

[∫ t1

0
φ−1(s−γ )ds+

∫ t2

0
φ−1(s−γ)ds

]
=

1
|I|
∫

I
φ−1(|y|−γ )dy
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and

φ−1
(
C γ+1

2 t−γ
2

)
� φ−1

(
C

|I|
μγ (I)

)
� φ−1

(
C2γ+1t−γ

2

)
,

that is, (Aγ
φ ) is equivalent to (6.5) when ab < 0. In particular, we have (Aγ

φ ) implies
(6.5).

It remains to show (6.5) implies (Aγ
φ ) when ab � 0. In this case (Aγ

φ ) holds if and
only if

1
b

∫ b

0
φ−1(s−γ )ds � φ−1(Cb−γ), b > 0, (6.6)

since φ−1(s−γ) decreases in s on R+ .
Taking t1 = 0 and t2 = b in (6.5) yield (6.6).
Finally, (6.5) always implies (6.3) (c)-just take t1 = 0 and t2 = t . Moreover,∫ t1

0 φ−1(s−γ )ds+
∫ t2
0 φ−1(s−γ )ds

t1 + t2
� 2

t2

∫ t2

0
φ−1(s−γ )ds

� 2 φ−1(Ct−γ
2 ),

(6.7)

ensures (6.3) (c) when (6.3) (a) holds, since (6.3) (a) is equivalent to φ(2t) � Cφ(t) ,
which, on replacing t by φ−1(t) , yields

2φ−1(t) � φ−1(Ct), t > 0. �

Proof of Theorem D. The equivalence of (6.1), (6.2) and (6.4) follows from the
variant of Theorem A for |x|γ on R , since H is dilation-commuting.

The condition (6.3) (a) comes out of the inequality in (6.2) in the same way it
comes out of the corresponding inequality for M in Theorem 7 of [2], but with

(M fm)(y) � C|E ∩Bm| |x− y|−1, y /∈ Bm,

replaced by
(H fm)(y) � Cr0 |x− y|−1, y /∈ Bm,

where fm = χBm , Bm = (x−2−mr0,x+2−mr0) . Indeed, if, for instance, y < x−2−mr0 ,

−(H fm)(y) =
1
π

∫ x+2−mr0

x−2−mr0

1
y− z

dz =
1
π

log

[
x− y−2−mr0

x− y+2−mr0

]

=
1
π

log

[
1− 2−mr0

x− y+2−mr0

]

� 1
π

2−mr0

x− y+2−mr0

� 1
π

2−m−1r0

|x− y| .

Again, by Corollary 2.7 in [1], the modular inequality in (6.2) is equivalent to∫
R

Ψ
(|x|−γ |(H f )(x)|) |x|γdx �

∫
R

Ψ(K|y|−γ | f (y)|)|y|γdy < ∞,
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which implies, by the argument above, the condition (6.3) (b).
Next, the argument in [8, p. 280], applied to (6.4) yields the (Aγ

φ ) condition in-
volving |x|γ , provided one can replace (M f )(x) in

(M f )(x) � ρΨ,ε|x|γ (χI/ε| · |γ)εμγ (I)

by |(H f )(x)| . In [8] f was a nonnegative, measurable function supported in I , with
ρΨ,|x|γ ( f ) = 1 and ∫

I
f (x)dx = ρΨ,|x|γ (χI/| · |γ).

But for this f and x ∈ I + |I| , one has

|(H f )(x)| � 1
2π

ρΨ,|x|γ (χI/| · |γ)χJ(x)
|I| ,

and so, as Φ satisfies the modular inequality in (6.2),

∫
J

Φ
(ρΨ,|x|γ (χI/| · |γ)

|I|
)
|y|γdy

� C
∫

R

Φ(| f (y)|)|y|γ dy = C;

that is,

Φ
(ρΨ,|x|γ (χI/| · |γ)

|I|
)

μγ (J) � C.

Similarly, there holds

Φ
(ρΨ,|x|γ (χJ/| · |γ)

|J|
)

μγ(I) � C,

whence

Φ
(ρΨ,|x|γ (χJ/| · |γ)

|J|
)

μγ(J) Φ
(ρΨ,|x|γ (χI/| · |γ)

|I|
)

μγ(I) � C2.

To get (Aγ
φ ) (for ε = 1, which is enough) it suffices to show

Φ
(ρΨ,|x|γ (χJ/| · |γ)

|J|
)

μγ (J) � 1,

or, equivalently,
1

Φ−1
(

1
μγ (I)

) ρΨ,|x|γ (χJ/| · |γ) � |J|,

that is,
ρΦ,|x|γ (χJ) ρΨ,|x|γ (χJ/| · |γ) � |J|,
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which inequality is essentially the generalized Hölder inequality

|J| =
∫

R

χJ(x)
χJ(x)
|x|γ |x|γdx

� 2ρΦ,|x|γ (χJ) ρΨ,|x|γ (χJ/| · |γ).
Finally, we prove conditions (6.3) (a), (6.3) (b) and (6.3) (c) imply (6.2). Accord-

ing to Theorem 7 in [8], |x|γ in (Aγ
φ ), together with (6.3) (a) and (6.3) (b), implies

|x|γ satisfies the A∞ condition, namely, there exist constants C,δ > 0 so that for any
interval I and any measurable subset E of I ,

μγ(E)
μγ(I)

� C

( |E|
|I|
)δ

.

The argument on p. 245 of [5] then ensures the maximal Hilbert transform, H∗ ,

defined at f ∈ L1

(
1

1+|y|
)

by

(H∗ f )(x) = sup
ε>0

∣∣∣∣ 1π
∫
|x−y|>ε

f (y)
x− y

dy

∣∣∣∣, x ∈ R,

satisfies, for any given α > 0 and the δ > 0 in the A∞ condition,∫
{H∗ f>2λ , M f�αλ}

|x|γdx � Cαδ
∫
{M f>λ}

|x|γdx,

in which C > 0 does not depend on α , λ or f ∈ L1

(
1

1+|y|
)

.

We thus have, since Φ satisfies (6.3) (a),∫
R

Φ((H∗ f )(x)) |x|γdx = C
∫

R+
φ(λ )

∫
{H∗ f>2λ}

|x|γdx dλ

� C
∫

R+
φ(λ )

∫
{M f>αλ}

|x|γdx dλ +Cαδ
∫

R+
φ(λ )

∫
{H∗ f>λ}

|x|γdx dλ

=
C
α

∫
R+

φ(λ/α)
∫
{M f>λ}

|x|γdx dλ +Cαδ
∫

R+
φ(λ )

∫
{H∗ f>λ}

|x|γdx dλ

� C′
∫

R+
φ(λ )

∫
{M f>λ}

|x|γdx dλ +Cαδ
∫

R+
φ(λ )

∫
{H∗ f>λ}

|x|γdx dλ

Taking α such that Cαδ < 1
2 we get∫

R

Φ(|(H f )(x)|) |x|γdx �
∫

R

Φ((H∗ f )(x)) |x|γdx

� K
∫

R

Φ((M f )(x)) |x|γdx

�
∫

R

Φ(K| f (x)|) |x|γdx,

by Theorem C, since (6.3) (c) implies (5.3) (C). �
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7. Appendix I

The two general results in this appendix are variants of Theorem 4.1 and 3.1 in [1].

PROPOSITION 7.1. Let t,u,v and w be weights on R+ . Suppose Φ1 and Φ2 are
nonnegative nondecreasing functions from R+ onto itself. Then, the general weighted
modular inequality for

(I f )(x) =
∫ x

0
f (y)dy, 0 � f ∈ M(R+), x ∈ R+,

namely, ∫
R+

Φ1(w(x)I f (x))t(x)dx �
∫

R+
Φ2(Ku(y) f (y))v(y)dy (7.1)

is equivalent to the weighted weak-type modular inequality

∫
{x∈R+ :(I f )(x)>λ}

Φ1(λw(x))t(x)dx �
∫

R+
Φ2(Ku(y) f (y))v(y)dy. (7.2)

in both of which K > 0, is independent of 0 � f ∈ M(R+) and in (7.2) is independent
of λ as well.

Proof. Clearly, (7.1) implies (7.2) . To prove the converse fix f � 0 and choose
xk so that I f (xk) = 2k,k = 0,±1,±2, . . . and set Ik = [xk−1,xk) and fk = f χIk . Then,
arguing as in Proposition 4.1 in [1], we obtain, by (7.2) ,

∫
R+

Φ1(w(x)(I f )(x))t(x)dx � ∑
k∈Z

∫
{x∈R+ :I(8 fk−1)(x)>2k}

Φ1(2kw(x))t(x))dx

� ∑
k∈Z

∫
R+

Φ2(8K fk−1(x)u(x))v(x)dx

=
∫

R+
Φ2(8K f (x)u(x))v(x)dx. �

PROPOSITION 7.2. Let t,u,v,w and Φ1 and Φ2 be as in the Proposition 7.1.
Assume, moreover, that Φ2 is a Young function. Then, (7.2) (and hence (7.1)) holds if
and only if ∫ x

0
Ψ2

(
α(λ ,x)

Cλu(y)v(y)

)
v(y)dy � α(λ ,x) < ∞, (7.3)

where

α(λ ,x) =
∫ ∞

x
Φ1(λw(y))t(y)dy,

and C > 0 being independent of λ ,x ∈ R+ .
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Proof. Suppose (7.2) holds and fix x ∈ R+ . Since u and v are weights, they are
positive a.e. and so

Ψ2

(
1

u(y)v(y)

)
v(y) < ∞, y-a.e.

Let the set En ⊆ (0,x) be such that En ↑ (0,x)∫
En

Ψ2

(
1

u(y)v(y)

)
v(y) < ∞.

Fix n ∈ Z+ . Then, as in the proof of Theorem 3.1 in [1], given λ ∈ R+ , there
exists an ε > 0 such that ∫

En

Ψ2

(
ε

u(y)v(y)

)
v(y)

ε
dy = 2Kλ .

Setting

f (y) =
1
K

Ψ2

(
ε

u(y)v(y)

)
v(y)

ε
.χEn(y),

the subsequent part of the above-mentioned proof, with (Φ1 ◦Φ−1
2 )(z) replaced by z ,

yields
α(λ ,x) � 2Kε

and then (7.3), with C = 4K .
The argument that (7.3) implies (7.2) is identical to the one that (3.2) implies

(1.12) in [1]. �

8. Appendix II

Let Φ(t) =
∫ t
0 φ(s)ds , t ∈ R+ be a Young function, with complementary function

Ψ(x) =
∫ x
0 φ−1(y)dy , and let w be a weight on R

n . The conditions

1
w(Q)

∫
Q

Ψ
(

1
C

Φ(λ )
λ

w(Q)
|Q|

1
w(x)

)
w(x)dx � Φ(λ ) (8.1)

and
εw(Q)
|Q| φ

(
1
|Q|

∫
Q

φ−1
(

1
εw(x)

)
dx

)
� C, (Aφ )

in which C > 1 is to be independent of λ ,ε in R+ and Q is a cube in R
n , with

sides parallel to the coordinate axes, w(Q) =
∫
Q w(x)dx , were introduced in [2] and

[8], respectively. To put the two conditions on the same footing we will work with (8.1)
in the equivalent form

1
|Q|

∫
Q

φ−1
(

1
C

φ(λ )
w(Q)
|Q|

1
w(x)

)
dx � Cλ .

Our aim in this section is to compare (8.1) and (Aφ ) in the context of power
weights on R , namely, the conditions (5.3) (C) and (6.5). We have already observed
that (6.5) implies (5.3) (C). Indeed, (Aφ ) implies (8.1) in general, as seen in
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THEOREM 8.1. Let Φ(t) =
∫ t
0 φ(s)ds, t ∈ R+ , be a Young function and let w be

a weight on R
n . Then, (Aφ ) implies (8.1).

Proof. Writing (Aφ ) in the form

1
|Q|

∫
Q

φ−1
(

1
εw(x)

)
dx � φ−1

(
1
ε

C|Q|
w(Q)

)
,

then setting 1
ε = φ(λ )w(Q)

C|Q| , we obtain

1
|Q|

∫
Q

φ−1
(

1
C

φ(λ )
w(Q)
|Q|

1
w(x)

)
dx � φ−1 (φ(λ )) � λ ,

which is, of course, (8.1). �
We now show that to each power weight w(x) = |x|γ ,γ > 0, on R there corre-

sponds a Young function, Φγ (t) =
∫ t
0 φγ (s)ds , t ∈ R+ , for which (8.1) holds, but (Aφ )

doesn’t.

EXAMPLE 8.1. We define Φγ in terms of decreasing function χ as

φ−1
γ (t) = χ(t−

1
γ ), t ∈ R+,

where
χ(t) = log(e/t), 0 < t � 1,

and

χ(t) =

{
1
2k

(
1− t−ak

2

)
, ak < t � ak +1,

1
2k+1 , ak +1 < t � ak+1,

with a0 = 1 and ak = (k+3)! , k � 1.
If (Aφ ) held, one would have, on taking t1 = 0,t2 = t in (6.5)

1
t

∫ t

0
χ(s)ds � χ

(
t/C

1
γ
)

, t ∈ R+,

for some C > 1. But, for k � 1,

1
ak

∫ ak

0
χ(s)ds � χ(ak) =

1
2k = χ

( ak
k

)
.

It thus suffices to show

1
t

∫ t

0
χ(s)ds � 4χ

(
t/4

1
γ
)

, t ∈ R+.

This is readily done when 0 < t � 1. For t ∈ (ak,ak+1] , k � 0, one has

1
t

∫ t

0
χ(s)ds =

⎧⎨
⎩

1
t

∫ ak
0 χ(s)ds+ 1

t2k

[
(t−ak)− (t−ak)2

4

]
, ak < t � ak +1,

1
t

∫ ak
0 χ(s)ds+ 1

2k+1

[
3
2t +1− (ak+1)

t

]
, ak +1 < t � ak+1.
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If we can prove
1
ak

∫ ak

0
χ(s)ds � 2χ (ak) for each k, (8.2)

then the above gives: for ak < t � ak +1,

1
t

∫ t

0
χ(s)ds � 2ak

t
χ(ak)+

1
t2k

[
(t−ak)− (t−ak)2

4

]

=
1

2k+1

[
4ak

t
+

2
t

(
(t −ak)− (t −ak)2

4

)]

=
1

2k+1

[
2ak

t
+2− (t−ak)2

2t

]

� 4
2k

= 4χ(ak+1)

� 4χ
(
t/4

1
γ
)

,

and for ak +1 < t � ak+1

1
t

∫ t

0
χ(s)ds � 2ak

t
χ(ak)+

1
2k+1

[
3
2t

+1− (ak +1)
t

]

=
1

2k+1

[(
3ak +

1
2

)
1
t

+1

]

� 1
2k+1 [3+1]

= 4χ(ak+1)

� 4χ
(
t/4

1
γ
)

.

We prove (8.2) by induction. It is readily shown for k = 0. Assuming it holds for k ,
we prove it for k+1.

Indeed,

1
ak+1

∫ ak+1

0
χ(s)ds =

ak

ak+1

1
ak

∫ ak

0
χ(s)ds+

1
ak+1

∫ 1+ak

ak

χ(s)ds+
1

ak+1

∫ ak+1

1+ak

χ(s)ds

� ak

ak+1
2χ(ak)+

1
ak+1

1
2k

3
4

+
1

2k+1

(
1− 1+ak

ak+1

)

=
ak

ak+1

2
2k +

1
ak+1

1
2k

3
4

+
1

2k+1 −
1

2k+1

1
ak+1

− 1
2k+1

ak

ak+1

=
1
2k

(
2− 1

2

)
1

k+4
+

1
2k+1

1
2

1
ak+1

+
1

2k+1

=
1
2k

[
3

2(k+4)
+

1
2

+
1

4((k+4)!)

]

<
1
2k

= 2χ(ak+1).
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In view of [9, Theorem 1] and [2, Theorem 1], (Aφ ) and (8.1) are equivalent if
Ψ(2t) � CΨ(t), t ∈ R+ , that is Ψ ∈ Δ2 . Moreover, one can show this is also the case
if Φ ∈ Δ2 . However, neither Ψ ∈ Δ2 nor Φ ∈ Δ2 is necessary for the equivalence of
(Aφ ) and (8.1), since both conditions hold for all Young functions when w(x) ≡ 1.
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