athematical
nequalities
& Papplications
Volume 22, Number 2 (2019), 463-486 doi:10.7153/mia-2019-22-33

DILATION-COMMUTING OPERATORS ON
POWER-WEIGHTED ORLICZ CLASSES

RoON KERMAN, RAMA RAWAT AND RAJESH K. SINGH

(Communicated by J. Pecaric)

Abstract. Let @ be a nondecreasing function from Ry = (0,) onto itself. Fix y€ R =
(—oo,00) and let Lg,7(Ry) be the set of all Lebesgue-measurable functions f from Ry to
R for which

[ @®shiar <
Ry
for some & > 0. Define the gauge pg,v at f € Lg v(Ry) by
g Y
por(f) :inf{)L >0 ®<M> Dar < 1}.
’ Ry A A

Our principal goal in this paper is to find conditions on the nondecreasing functions @
and @,, y € R and an operator 7' so that the assertions

P, (Tf) < Cpa, 7 (f) G)
and

A TN < k[ @2 KIf()) 7, ™)

concerning f € S(R.), the class of simple functions supported in R, are equivalent and to
then find necessary and sufficient conditions in order that (M) holds.
In addition, we investigate the connection between (G) and the assertion that

T: Z¢2,tV(R+) - L¢1517(R+):

where iz(pz‘tY(R+) is the closure of S(Ry) in La, 7(Ry).

1. Introduction

Let the operator T map the set, S(R ), of simple, Lebesgue-measurable functions
on Ry = (0,) into M(R ), the class of Lebesgue-measurable functions on R . Sup-
pose that T is positively homogeneous in the sense that

T(ch)l =TS, f€SRy), cER,
with, moreover,
(TH)A) =T (f(A )) (1), Aot € Ry
Mathematics subject classification (2010): Primary 42B25, 26D15, Secondary 28A25.
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We call such a T a dilation-commuting operator.

Our aim in this paper is to determine when certain dilation-commuting operators
map functions in a so-called Orlicz class, prz,ty(RJF), into another such Orlicz class,
Lo, 7(Ry). Here, the ®;,i = 1,2, are nonnegative, nondecreasing functions on R,
7 € R and, for any given nonnegative, nondecreasing function ® from R, onto itself,

Loy(Ry)= {f EM(Ry): /]R D(k|f(1))t7dt < oo, for some k € R+} .

One way to measure the size of an f € Ly ,v(R) is by its gauge

posr(f) :inf{k >0: A @(%) ;—ydt < 1}.

The class Lo ,7(R) can be shown to be a complete linear topological space under the
metric

dos(f,8) = pos(f—¢&), [,8€Lao(Ry).
The fundamental result in this paper, the one on which all others are based, is

THEOREM A. Let T be a dilation-commuting operator from S(Ry) to M(R,).
Suppose @1 and ©, are nonnegative, nondecreasing functions from R4 onto itself and
fix yER,y# —1. Then, there exists C > 0, independent of f € S(R..), such that

pfl)l,tV(Tf) <Cpfl)2,t7(f) (11)
if and only if
A ¢1(\(Tf)(f)\)t7df<K/R D, (K| f(s)])s"ds, (1.2)

in which K > 0 is independent of f € S(R.).

REMARKS 1.1. 1. When T is linear, (1.1) implies

d(l)l,ty(Tf7Tg) < qu>27[7(f,g), f?g € S(R+)a

and hence
T: L¢27,7(R+) —>Lq>l7,7(R+) (13)

continuously. Further, if ®; and @, are convex, and hence Lo, ;7(R) and Lo, ;v (R4)
are Banach spaces, a well-known result from functional analysis [6, Chapter 1, Propo-
sition 2.5] guarantees (1.1) equivalent to (1.3).

2. (1.2) is simpler than (1.1) and hence easier to work with.

3. A modular inequality, like (1.2), implies a gauge inequality, like (1.1), in a
rather general context, as is seen in Proposition 3.1 below. Theorem A asserts the two
inequalities are equivalent for dilation-commuting operators in the context of power
weights, such weights being required for their homogeneity property.

4. One readily works out the variant of Theorem A in which R is replaced by
R", n=1,2,...,and 17 by |x|" = (} +23 +... +22)7/2, x = (x1,%2,...,%,) €R". In
this context S(R") denotes the class of simple functions supported in R”\ {(0,...,0)}
and I°J¢’|x|y(R”) the closure of S(R") in L |7 (R").
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The specific dilation-commuting operators we focus on are the Hardy operators

(P,,f)(z):f%/(:f(s “ds and (Q,f)(t / F(s)sa~\ds, t€R,,

where p,q € Ry and f € S(R.); the Hardy-Littlewood maximal function

1
Mp@ = s o [1f0ldy feS®), xeR
Iis ar)lc .iEnIterval | ‘ !

the Hilbert transform

(Hf (P)/fd—l / IO) 4,

e=0" 0 Jjx—y|>e X —Y

with f € S(R), x e R.

REMARKS 1.2. 1. The inequality (1.1) is characterized for T = P, and T = Q,
in [4] when @ and @, are convex and Y = 0. Assuming, in addition, that p =g =1,
one can, using known results, characterize (1.1) for T =M and T = H as well.

2. Necessary and sufficient conditions to guarantee (1.2) are given in [2] for T =M
and (hence T = H), ®| = ®, = ® is convex.

3. The results for M and H in R have analogues in R", n > 2, involving the
n-dimensional version of M and the Calderén-Zygmund operators discussed in [13].

The above operators are treated in Section 4, Section 5 and Section 6, respectively,
following the proof of Theorem A in Section 3. Background on gauges like pg 7 is
given in Section 2; in particular, we explore when the continuity of a mapping such
as (1.3) implies a corresponding gauge inequality like (1.1). Appendices I and II treat
general modular inequalities for Hardy operators and Hardy-Littlewood maximal func-
tions, in that order.

2. Orlicz classes

Let (X,.#,u) be atotally o -finite measure space and denote by M(X) the set of
U -measurable functions from X to the real line R. Given a nondecreasing function ®
from Ry onto itself its corresponding Orlicz class is

Loy (X) = {f eEMX): / D (k| f(x)])du(x) < oo, for some k€ R+}.
X
The functional pe  defined at f € M(X) by

Pcb,y(f):inf{/l >o:/}(®<@> d“l(x) < 1}

is finite if and only if f € Lo ;i (X).
This functional has the following properties
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L. pou(f) =pou(lf]) =0, with pe(f) =0 ifand onlyif f =0 p-ae.;

2. paou(cf) is a nondecreasing function of ¢ from R, onto itself if f# 0 u-a.e.;
3. pou(f+8) <pau(f)+poulg):

4. 0< fu 1 f implies po u(fn) T Pou(f);

5. pau(xe) <eo forall E C X such that p(E) < eo.

The functional pg y is a so-called F -norm on the linear space Lo (X ) that makes
it into a complete linear topological space under the metric

dcl),u(f»g) = P@,u(f_g)~
Our function ® is said to be s-convex with fixed s, 0 <s < 1,if
O(ax+Py) < ' P(x) + B O(y),
where o, ,x,y € R, and o + * = 1. For such a ®, the functional
) (py — . f ()]
PO () = mf{/l ~0: /ch ( ) du <1
5)

Pl (cf) =gl (f), ¢=0,

as well as properties 1 —35 above, so, in particular, ng( f) is anorm. One has f €

satisfies

M(X) belonging to Le 4 (X) if and only if pg’)u (f) < eo, with Lg ;(X) a complete
linear topological space under the metric

doh,(£:8) =Py (f —8), f:8 € Lou(X),

See [9, Theorem 1.2].

LEMMA 2.1. Let (X,.# ,11) be a totally © -finite measure space. Suppose @ is
a nondecreasing function from R onto itself which is s-convex for a fixed s, 0 <

s < 1. Then, the topologies induced on L, (X) by the metrics do ) and d((lf) are

b
homeomorphic.

Proof. The equivalence of the topologies amounts to the assertion that, given
f.fi € Lo(X,u), j=1,2,..., one has

(i)
tim po (£~ ;) =0

if and only if
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(ii)
o (9) _
hm p‘b.[,l(f - fj) -
J—ee :

According to [9, Remarks 3, pp. 7-8], pa u(f) < 1 implies pé:‘?)“ (f) < pou(f)* and

Pioyu(/) < 1 implies pau(f) < pgy (f)T5 . € M(X).

But, given (i), pa.u(f — f;) <1 when j is sufficiently large. Restricting attention
to those j, we get

Péf’)ﬂ(f—fj) <pou(f—rf;) —0, asj—co.

Similarly, (if) ensures, for j sufficiently large,
= :
pq).,ﬂ(f_fj) p(l)u(f fj)l a aS]—>°°. D

Modulars, such as pg ;, , were first studied in [10] and [11]. The s-convex modu-

lars, like pg )#, appear in [12]. A systematic study of all this is given in [9].

PROPOSITION 2.1. Let (X,.# ,1) and (Y, N ,v) be totally o -finite measure
spaces. Suppose @1 and ®, are nondecreasing s-convex functions from R, onto
itself, where s is fixed in (0,1]. Then, any linear operator T mapping La, v (Y) into
LfI>1.,u(X ) continuously with respect to the metrics do, v and do, ; satisfies

)T <Cpy) (1),

in which C = C(T) > 0 is independent of f € Lo, v(Y).

Proof. Fix fy € Lo, v(Y). Since T is continuous at fy, there is, in view of
Lemma 2.1, a § > 0 such that

&) (Tf—Th) <1

for all f € Lo, y(Y) satisfying pgz)y(f—fo) < 68. Given f € Lo, v(Y), set g =
“L/Smf,foraﬁxed n,0 <n < §. Then,

P ()
nl/s
o o Lf=Te=T(g+fo)=Tfo
p(])27v(f) /l\
and
) nl/.\'

Py i Tf | =py)  (T(s+fo)~Tf) <1

o) (Vs
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since
Por v (8+fo—fo) =py),(g) <n <.

Indeed,

/¢2<%S>dv:/¢2 ()# dv< 1.

N r Pl
Now,

1/s
(s) n
p(l) u Sin < 17
Y\ ps) (Vs

implies,

T
/ D m—f du <1,
X Pa, v ()15 /n1/s
which, in turn, means that

P (TH<n Tl (). O

Our particular concern in this paper is with the measure u =?dt, v € R, on the
Lebesgue-measurable subsets of R . For simplicity we write pg ;v and Lg,r rather
than P tvar and Lq;ﬂd, .

3. Proof of Theorem A

We will require the connection between a modular inequality, like (3.1), and cer-
tain gauge inequalities, (3.2). This connection is given, in some generality, in the fol-
lowing result.

PROPOSITION 3.1. Let t,u,v and w be positive measurable functions, called
weights, on Ry. Suppose @ and ®, are nonnegative, nondecreasing functions from
R onto itself. Given € > 0, define the weighted gauge pa, ey by

Py er(f) =inf{a ~0: [ @ (M) &)y < 1}, feM®,).

Define pa, 1w similarly.
Then, a positively homogeneous operator T from S(Ry) to M(R.) satisfies

L P (I(X)\(TJ’)(JC)DW(}C)a’x<K/]R @ (Ku(y)[f(3)]) v(y)dy, (3.1

if and only if it satisfies the uniform gauge inequalities
pfl)l,t,sw(Tf) < deh,u,sv(f)» (3.2)

in which K > 0 is independent of f € S(R;) and C > 0 is independent of both f €
S(Ry) and € > 0.
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REMARK 3.1. Taking ®; = ®, = ® convex and r = u = 1 yields a special case
of Proposition 2.5 in [1]

A proof similar to the one for Proposition 3.1 yields the following result.

PROPOSITION 3.2. Let t,u,v and w be weights on R... Suppose ®| and @,

are nonnegative, nondecreasing functions from R onto itself, which are s-convex for

some s, 0 <s < 1. Given € > 0, define the weighted s-gauge pgz)u e DY

péfz’,mgv(f):inf{b(): i @z(“(”i'%) gv(y>dy<1}, fEeMR.).

Define p, () similarly.

D 1.ew
Then, a positively homogeneous operator T from S(Ry) to M(R.) satisfies the
modular inequality (3.1) if and only if it satisfies the uniform s-gauge inequalities

P e T1) < CY P ey ()
in which C > 0 is independent of both f € S(R,) and € > 0.

Proof of Proposition 3.1. Suppose (3.2) holds. Fix f € S(Ry), f# 0, and put

-1
e= ([ @000 -

Then,
/R D (u(y)|f(v)]) ev(y)dy =1,
SO
p(bz?uvgv(f) < 1,

whence (3.2) implies
P(I)l,t,ew(Tf) <C.

Thus,

[ o (L) < L= [ @l e

Replacing f by Cf and using the fact that T is positively homogeneous yields (3.1),
with K =C.
For the converse, fix f € S(R;) and € > 0. Let & = pa, uev(f), so that

[ o (HO0N) 2

o (04
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By (3.1), then,

[ o (MATOD) & e [ (AU 20,

which amounts to
P(I)l,t,ew(Tf) <Ko= CP(DZ,u,ev(f)»
with C =K > 0 independentof f € S(R.) and € >0. O

Proof of Theorem A. According to Proposition 3.1, the modular inequality (1.2)
is equivalent to the family of uniform gauge inequalities

po, e (Tf) <Cpa, e (f) (3.3)

with C > 0 independent of both f € S(R;) and € > 0.
In particular, (3.3) with € =1 is (1.1), so (1.2) implies (1.1).
Next, we prove (1.1) implies (3.3), which amounts to showing

[(T£)@)] et’
~/R+ i <Cp¢’2~,857(f)> Cpq)zagﬂ(f) st

Letting z = €%, § = %Y the latter reads

/ o, (L0 (z/€° | <1
Ry Cp(sz,sV Cp(l)z 857 ’

or, since T commutes with dilations,

(@)
D, dz< 1.
/l‘@+ ( Cp(bz esV f) Cp(l)z 5\7

But,

Pyt (f) = inf{?L >0:

=inf{ A >0: R+(I)2 M y%dygl

=poun (7 ().

where in the first equality, we have made the change of variable s = y/ €% Altogether,
then, (3.3) is the same as (1.1), with f replaced by f (8%) g
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REMARK 3.2. Using Proposition 3.2, a proof similar to the one above yields the
equivalence of (1.2) and the s-gauge inequality

Pgl) AT <cV pt(bsz)ﬂ (f), (3.4)

with C¥) > 0 independent of f € S(R).
Finally, in view of Lemma 2.1 and Proposition 2.1, (3.4) is equivalent to (1.3).

4. The operators P, and Q,

We will sometimes need to work with nonnegative, nondecreasing @ on R that
are Young functions, by which is meant

D) = /O[d)(s)ds, teRy,

where ¢ is nondecreasing, left-continuous function on R, with ¢(07) = 0 and
limg_, ¢ (s) = oo. The Young function, ¥, complementary to such a @ is defined
by

1
W(r) = / 0\ (s)ds, 1 €R,.
0
where ¢! denotes the left-continuous inverse of ¢, defined by
o L) =inf{s>0:0(s) =1}, t€R,.

THEOREM B. Fix p,y € R,y # —1. Let P, be defined as in the introduction.
Suppose that @ and ®, are nonnegative, nondecreasing functions from R onto
itself. Then, the following are equivalent:

4.1)
pa, 7 (Ppf) < Lpa, v (f),
L > 0 being independent of f € S(Ry);
4.2)
[ @Enohrar<k [ oK) stas,
R. Ry
in which K > 0 is independent of f € S(R.).

Moreover, when @, is a Young function with complementary function ¥, (4.1)
and (4.2) are each equivalent to

' o(r)
‘/0 "Pz (m) Syds < (X(t) < oo, (43)

where . 1
a(t):/ @ (s 7)sTds, 1€R,.
t
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Finally, if ®; and ®, are s-convex for some s, 0 < s < 1, one has (4.1) and (4.2)
each equivalent to

Py: Loy (Ry) — Lo, v (Ry), (4.4)
the mapping (4.4) being continuous with respect to the metrics de, v and de, ;7.

Proof of Theorem B. Since P, commutes with dilations, (4.1) and (4.2) are equiv-
alent, in view of Theorem A.
The inequality in (4.2) reads

t
/ @, (zé/ f(s)sé‘ds> ﬂdtg/ @, (Kf(s))s7ds, 0 < f € S(R.).
Ry 0 Ry
Replacing f(s)s%_1 by g(s), we have

1
/ D, (tll’/ g(s)ds) tVdr < / D, (Kg(s)slf%> s’ds, 0 < f e S(Ry).
R. 0 Ry

When @, is a Young function, then according to Proposition 7.2 (in Appendix I), this
latter holds if and only if

r
vy (220 ) vty < g <,
0 1-14

Chy » 7

where

a(d,1) = /tmap1 (A2 7) e,

the constant C > 0 being independent of A,7 € R . Letting y = A”s and z = APs in
the above integrals we obtain

A’* —
/ T (AR s < aa ) < oo
0 cs' ot

Replacing A7t by ¢ yields (4.3).
In case ®; and @, are s-convex, Lemma 2.1, Proposition 2.1 and Remark 3.2
ensure that (4.1), (4.2) and (4.4) are all equivalent. [J

REMARK 4.1. The condition (4.3) is equivalent to the condition

g t
/0 05 (%)s%%sa 1Ry, (4.5)
S P

since Wy(1) = [ ¢, ' (s)ds satisfies

1071 (5) < B2 <00, reRe

Using (4.5) we are able to get more precise connections between the indices p and y.
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(1 1-— }—) + Y= 20. The condition (4.5) reads

1

pos! () <crm.

2) 1— % +7#0. Weset y= f(f)ﬂ in the integral on the left side of the condition
P

N

to get, with A(f) = —24_

Aoy
°° d S
/ 0t (8) —F < (1 ~3 +Y) ofe) e, (4.6)
Ar) T
y r
when 1—1%+7>0,and
A(r) d 1
[et () 2 < - (1- 5+ 9) at) T (“.7)
0 yIT%T}’

when 1—1%+7<0.

Observe that for the integral in (4.6) to make sense we require Y+ 1 > 0 or
Y>—1.

Again, the change of variable y = s_% in the integral giving o(¢) yields

1
M @uy) dy
ot) = p/o VY’ when p >0, (4.8)
and o) d
(T Dy Yy
ot) = p/f% —y S when p <0, 4.9)

In (49)weneed y+1<0or y<—1.

Altogether, then, (4.3) amounts to (4.6) with o(¢) given by (4.8), when p > 0 and
y>—1+1 andto (4.7) with a(r) given by (4.9) when p <0 and y < —1+41.

REMARK 4.2. Theorem B, with y = 0, helps to greatly simplify the proof of
Proposition 6.2 in [7], in which proposition the condition (4.3), in the equivalent form
(4.7), was used to construct the essentially largest Young function, @, that can appear
with a fixed Young function, @, in an Orlicz-Sobolev inequality such as

po, (1) < pa, ([Vul);

here C > 0 is independent of all infinitely differentiable u supported in a given bounded

2 2
domain Q of R” with a Lipschitz boundary and |Vu|> = (g—;) +...+ (5—;) .
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COROLLARY 4.1. Fix q,y € R,y# —1. Let Q, be defined as in the introduction.
Suppose that @ and ®, are nonnegative, nondecreasing functions from R, onto
itself. Then, the following are equivalent:

(4.10)
p(I)htY(qu) < qu)27t7(f)7
L > 0 being independent of f € S(Ry);

(4.11)
/ O, (|(Quf) (1)) 1dr <K / @, (K|f(s)]) s7ds,
R, R,

in which K > 0 is independent of f € S(R.).

Moreover, when ®| and ®, are Young functions with complementary functions
WY, and ¥, respectively, and v+ é —1+#£0, (4.10) and (4.11) are each equivalent to

i "o, <@> sds < B(1), (4.12)
0 Csa

/ Wy(sa— V)sVds < oo, t €Ry.

where

Finally, if ®; and ®, are s-convex for some s, 0 < s < 1, one has (4.10) and (4.11)
each equivalent to

Qg Loy, (Ry) — Loy, v(Ry), (4.13)

the mapping (4.13) being continuous with respect to the metrics de, ;v and de, .

Proof. In view of Theorem A, (4.10) and (4.11) are equivalent, since Q, com-
mutes with dilations.

Given that ®; and @, are s-convex, 0 < s < 1, Proposition 3.2 ensures (4.11),
hence (4.10), is equivalent to

Po 1(Qaf) LY pg) (), [ ESRY), (4.14)
and hence, by Proposition 2.1, to

Qg : Loy, (Ry) — Lo, v(Ry).

In particular, if s = 1, namely, ®; and @, are Young functions, having complementary
functions ¥; and ¥,, respectively, (4.14), with s = 1, is equivalent to

p\(lllz)JY(Pi’g) < Kp‘(l’ll),ﬂ(g)7 8 € S(R-‘r)v (415)

where % =1- é + 7. Theorem B ensures (4.15) holds if and only if (4.12) does. This
completes the proof. [
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5. The Hardy-Littlewood maximal operator M

THEOREM C. Fix y> —1. Let M be the Hardy-Littlewood maximal operator.
Suppose ®; and @, are nonnegative, nondecreasing functions from R onto itself.
Then, the following are equivalent:

(5.1)
pd)l,\xV(Mf) <L pfl)z,\xW(f)a
L > 0 being independent of f € Lg, |qr(R);
(5.2)
(7)) s < K [ @a(KIFO)DIylTay <
in which K > 0 is independent on f € M(R).

Moreover, when @ = @, = @ is a Young function with complementary function
Y, (5.1) and (5.2) are each equivalent to

(5.3) (a)
Y(2t) <CY(t), teRy

and
(b) —1<y<O0orify=0,

| do
Lot e nas<cotern, o=,

for some C > 1 independent of t € R...

Proof of Theorem C. In view of Theorem A, (5.1) and (5.2) are equivalent. When
@ = P, = ® is a Young function, a special case of Theorem 1 in [2] ensures that (5.2)
(hence (5.1)) holds if and only if

Y(2r) <CY(r), teR,,

L (g (Lo0) mDY
.U)/(I)/I\P<C A |I|x|y>| [7dx < ®(1), (5.4)

where C > 1 is independent of the bounded interval I C R and A € R ; here

(D) = [ lxfar

and

Since

(5.4) is equivalent to

ﬁ/ldrl (éwk)”Y—(I)i) dx < CA, (5.5)

1l

in which C > 1 does notdependon I CR or A € Ry .



476 R. KERMAN, R. RAWAT AND R. K. SINGH

We observe that the assumption y > —1 is necessary to guarantee (iy(I) < oo for
all intervals / C R.
One readily shows that for 7 = [a,b],

1
B [1;] av,
|1 I+y

where d = max[|al,|b|].
Assume, first that ab > 0, say 0 < a < b. Then, (5.5) holds if

bia/ale(q)(l)max {é,ﬁ} (i’—()y>dx<C7L,

which, when —1 <y <0, automatically holds with C = 1, since then m (g)y <

1. The same is true when ¥ > 0 and a > ’% with C =27.
So,assume Y >0 and 0 < a < % . It suffices to show

1 b 2 (b\ C
i o (ewE(3) a5

1 2 C
[ot(empyr)arsa

or, setting x = by,

ds < =A.

<=
—~
g
~
|
<=
<
L
—~
hl
<
~
<
—~
>
~—
<=
—~
Qe
~—
~<I—
S

1 _1
Taking 1 = (1) 7(2) 7, whence A = ¢! (§¢77), we then arrive at (5.3) (C), with
C replaced by %
Finally, suppose ab < 0, say a < 0 < b. In that case,

o [0 (00man [b. ety | ()7

|al |b]
zﬁ(/o o )¢1(¢<A>max[
<[l (o bt 47 s

whence (5.5) reduces to

o (o0max

namely, to the previous case.

al—
ol
_T_‘ —
=
—_
—~
=
SN—
<
~—
QU
=

9IS}
e
_T_‘M
=
—_
—~
=X
SN—
2
~—
Y
=
VAN
(SN
>
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It only remains to show that (5.5) implies (5.3) (C). To this end, take I = (0,¢),
t > 0 in the equivalent form of (5.5) to get

/¢ 0(2) 71 (1)) dx < CA.
Taking A = ¢ 1 (C(y+ 1)) yields
/ o (x )dx <Co (Cly+ 1Y)
<Co~l(Ct),
with €' = max[1,y+1]C. O

6. The Hilbert transform H

THEOREM D. Fix ye R, v > —1. Let H be the Hilbert transform. Suppose
@, and D, are nonnegative, nondecreasing functions from R onto itself. Then, the
following are equivalent:

6.1)
p¢|,|x|7(Hf) <L p(l)z,lxw(f)a

L > 0 being independent of f € L; <ﬁ|x|> N Lo, [x7 (R),

L () = {F eM®) s fp filar < =}
(6.2)
L@ ax <K [ @a(KlF)bIdy <o

in which K > 0 is independent of f € L, <ﬁ>

Moreover, when @ = @, = @ is a Young function with complementary function
Y, (6.1) and (6.2) are each equivalent to

6.3) (a)
D(21) < CD(1),

(b)
W(2r) <C¥(r), teRy

and

(c) —1<y<Oorify=0,

do
ot mas<otan, o=

for some C > 1 independent of t € R...
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Finally, if ®| and ®, are s-convex, for some s, 0 < s < 1, one has (6.1) and
(6.2) each equivalent to

H : z¢27|x|y(R) — L(Dhlxly(R)’ (64)
the mapping (6.4) being continuous with respect to the metrics de, v and de, ;7.

The condition (6.3) (c) clearly holds if ¥y < 0. As for y > 0, Lemma 6.1 to follow
shows (6.3) (c) amounts to the condition Ay for |x|” in [8], provided one has (6.3) (a).

LEMMA 6.1. Fix y> 0 and let ®(t) = [ ¢(s)ds be a Young function. Then, one

has ( )
eul) (1 f (1
u¢@¢¢<w0“%“’ 49

for all bounded intervals I C R and € > 0 if and only if

Joto (s V)ds+ [ 9 (sV)ds

-+t

<ol(Ch ), (6.5)

for some C > 1 independent of 0 <t <.
If further, one has (6.3)(a), then (6.5) can be replaced by (6.3)(c).

Proof. Given I=a,b|, the change of variable y= 871’)6 in the integrals [, €|x|Ydx
and [;¢! <£‘x‘7>dx in (AY) yields € Yf, |v|Ydy and € Yf, <W>dy, respec-

tively, where I, =[€7 7 a,€ 7 b]. So (AY ) becomes

w%)( <1>d) .
PRAVAI AR

Since I is arbitrary whenever [ is, it suffices to verify (Ag) with e=1.
Now, if ab > 0, say, 0 < a<b,

]

L2rH Y
#7( )

b 7' ——

while if ab < 0 with, say, |a| < |b],

S
S (D)

Thus, with I = (—11,52), 0 <1 <1, we have

1
hh+n [ ds+/ o ds] - 11| /(P (177")dy

)/—|-1

|77 < <2(y+ 1) b7 <27 b7,
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and "
(P <CY+1t 7) < ¢—l (C—) < ¢—l (C2Y+1t_7> ,
? uy (1) 2

that is, (Ag) is equivalent to (6.5) when ab < 0. In particular, we have (Ag) implies
(6.5).

It remains to show (6.5) implies (Ag) when ab > 0. In this case (Ag ) holds if and
only if

b/ 0! Nds < ¢~ (Cb’y), b>0, (6.6)

since ¢~ !(s77) decreasesin s on R .
Taking #1; = 0 and 7, = b in (6.5) yield (6.6).
Finally, (6.5) always implies (6.3) (c)-just take #{ =0 and #, = . Moreover,

0 9 (s ds+ fPo~!
t2/ ¢

Hn+n

(6.7)
<2 (Ct )

ensures (6.3) (c) when (6.3) (a) holds, since (6.3) (a) is equivalent to ¢(2¢) < Co(¢),
which, on replacing ¢ by ¢ ~!(¢), yields

207y <o (Cr), t>0. O

Proof of Theorem D. The equivalence of (6.1), (6.2) and (6.4) follows from the
variant of Theorem A for |x|” on R, since H is dilation-commuting.

The condition (6.3) (a) comes out of the inequality in (6.2) in the same way it
comes out of the corresponding inequality for M in Theorem 7 of [2], but with

(Mfu)(¥) = CIENBu| [x=3|"", y ¢ Bu,

replaced by
(Hfm)(y) 2 CVO "x—y‘ila y ¢ BH’H
where f, = x8,, s Bn = (x—27"r9,x+2""rp). Indeed, if, for instance, y < x—2""ry

1 2" ] 1 xX—y—2"r
- )

T Jx—2-mry y—2 T x—y+27"r

1 2—71’1

= _log 1_7,0
T xX—y+27"ry

> l 2o
T Xx—y+2""r
127"

= - T .
T |x—yl

Again, by Corollary 2.7 in [1], the modular inequality in (6.2) is equivalent to

L (W) 7 < [ PRIl dy <=
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which implies, by the argument above, the condition (6.3) (b).
Next, the argument in [8, p. 280], applied to (6.4) yields the (Ag) condition in-
volving |x|?, provided one can replace (M f)(x) in

(Mf)(x) = pw el (X1 /€] - [ ey ()

by [(Hf)(x)|. In [8] f was a nonnegative, measurable function supported in 7, with
Pyl (f) =1 and

[ £60dx = puyr /|- 7).
But for this f and x € I+ |I|, one has

27(x)
1’

) > 5= pegar (/)11

and so, as @ satisfies the modular inequality in (6.2),

/Jq) <p‘l’,|x|7(;f|1/| : |y)> [y

<c [ o(fmbldy=c:

that is,

pw.xr (/| 17)
()

Similarly, there holds

Py (xs/1-17)
o (PN, )

whence

pw xr(x1/1-17) pw (/] 17)
() o BB

To get (Ag) (for € = 1, which is enough) it suffices to show

Pty (xs/1+17)
o (PN

or, equivalently,

PUNYARIRY P‘P,|x|7(XJ/‘ M) =1,
> ()
that is,

Po 1y (X1) Pwxr(xa/|-17) =1,
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which inequality is essentially the generalized Holder inequality

1= [ a0 2

< 20,1y (X1) Py (/|- 17)-

Finally, we prove conditions (6.3) (a), (6.3) (b) and (6.3) (c) imply (6.2). Accord-
ing to Theorem 7 in [8], |x|” in (Ag ), together with (6.3) (a) and (6.3) (b), implies
|x|” satisfies the A condition, namely, there exist constants C,8 > 0 so that for any
interval I and any measurable subset E of I,

Hy(E) |E| 0
(1) S C( 7 )

The argument on p. 245 of [5] then ensures the maximal Hilbert transform, H*,
defined at f € L, ( ) by

1
I+[y]

(H"f)(x) = sup , xER,

1/ Mdy

x—y|>e X —Y

satisfies, for any given o > 0 and the & > 0 in the A.. condition,

[x|Vdx < Ca‘s/{ |x|dx,
M

/{H*f>2l, Mf<al} >}

in which C > 0 does not dependon o, A or f € L; <$\y\> .
We thus have, since @ satisfies (6.3) (a),

Lo neac=c [ o0 [ idaxa

gc/ ¢(x)/ Ix|7dx d. +Ca5/ ¢(x)/ Ix|Ydx dA
R4 {Mf>al} R4 {H*f>A}

_C 5
_a/M(p(x/a)/{Mfw x|7dx d + Car / ¢(/1)/ x|7dx d.

R, (H*f>2)

gc’/ ¢(/1)/ x|7dx d. +Ca5/ ¢(/1)/ x|7dx d2.
e Jpapeay e Jpegea)

Taking o such that Ca® < % we get
L) b < [ o (" 1)) f7dx
<K [ o((MF)() l7ax

< [ @®KIrw) ax,
R
by Theorem C, since (6.3) (c) implies (5.3) (C). U
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7. Appendix I

The two general results in this appendix are variants of Theorem 4.1 and 3.1 in [1].

PROPOSITION 7.1. Let t,u,v and w be weights on R,.. Suppose ®| and ®, are
nonnegative nondecreasing functions from R onto itself. Then, the general weighted
modular inequality for

(1) (x) = /Oxf(y)dx 0< feMR,) xR,

namely,

O (w0 (@dx < [ @a(Kuly) F()V()dy 7.0
Ry R.

is equivalent to the weighted weak-type modular inequality

/{x€R+:(I.f)(x)>/l} Ci(Awldrs | KBGOy (72)

in both of which K > 0, is independent of 0 < f € M(R..) and in (7.2) is independent
of A as well.

Proof. Clearly, (7.1) implies (7.2). To prove the converse fix f > 0 and choose
xg so that If(x) =25,k =0,+1,+2,... and set [y = [x_1,%) and fi = fxs,. Then,
arguing as in Proposition 4.1 in [1], we obtain, by (7.2),

@y (w(x) (1f) (x)) (x)dx Dy (2°w(x) )t (x))dx

R+ ke% /{XER+ :I(ka,l)(x)>2/"}
<Y /[R ®2 (8K fi1 (x)u(x) v(x)dx
+

keZ

N

= e D, (8K f(x)u(x))v(x)dx. O

PROPOSITION 7.2. Let t,u,v,w and ®; and ®, be as in the Proposition 7.1.
Assume, moreover, that @, is a Young function. Then, (7.2) (and hence (7.1)) holds if
and only if

x a(A,x)
v (m) W(5)dy < (A x) < oo, 7.3)

where

o) = [ @10 ().

and C > 0 being independent of A, x € R,.
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Proof. Suppose (7.2) holds and fix x € Ry . Since u and v are weights, they are

positive a.e. and so
1
Y, <7) v(y) < oo, y-a.e.
TR

Let the set E, C (0,x) be such that E, T (0,x)

0,
/‘P<<>l<>>”<

Fix n € Z. . Then, as in the proof of Theorem 3.1 in [1], given A € R, there
exists an € > 0 such that

), v (u@)gv(y)) "y =26

_ 1 e\
0= 2% (35057 ) "L a0

the subsequent part of the above-mentioned proof, with (®; o @5 1)(z) replaced by z,
yields

Setting

a(l,x) < 2Ke

and then (7.3), with C =4K.
The argument that (7.3) implies (7.2) is identical to the one that (3.2) implies
(1.12) in[1]. O

8. Appendix II

Let ®(t) = [ ¢(s)ds, t € R; be a Young function, with complementary function
W(x) = f3 ¢~ '(y)dy, and let w be a weight on R". The conditions

1 1D(A)w(Q) 1
0 b (65 e ) s < o) &

\QI <|Q/"’ (w >X)<C’ (4)

in which C > 1 is to be independent of A,& in R, and Q is a cube in R”, with
sides parallel to the coordinate axes, w(Q) = [ow(x)dx, were introduced in [2] and
[8], respectively. To put the two conditions on the same footing we will work with (8.1)
in the equivalent form

@b ( (QQI) é))‘““’“'

Our aim in this section is to compare (8.1) and (Ay) in the context of power
weights on R, namely, the conditions (5.3) (C) and (6.5). We have already observed
that (6.5) implies (5.3) (C). Indeed, (A, ) implies (8.1) in general, as seen in

and
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THEOREM 8.1. Let ®(t) = [\ ¢(s)ds, t € Ry, be a Young function and let w be
a weight on R". Then, (Ay) implies (8.1).

Proof. Writing (Ay ) in the form

ok (5m) == (o)

then setting % = (I)()L)%, we obtain
1
AN CE ) EEUNUE
which is, of course, (8.1). [l

We now show that to each power weight w(x) = |x|¥,7 > 0, on R there corre-
sponds a Young function, ®y(t) = [§ ¢,(s)ds, t € R, for which (8.1) holds, but (A4)
doesn’t.

EXAMPLE 8.1. We define @y in terms of decreasing function ) as

¢y () (t y), IGR+7

where
x () =log(e/t), 0<r<1,
and

1 t—a,

%(l): 2—k(1— 2k)7 ap <t<ap+1,
1
2k+1 ak+1<t<ak+la

with ap =1 and a; = (k+3)!, k> 1.
If (Ay ) held, one would have, on taking #; = 0,7, =¢ in (6.5)

1 1
—/x(s)dsgx(t/CY)7 teRy,
tJo

for some C > 1. But,for k> 1,
1 (% 1
il (%
o), XO)ds > (@) =5 =x ().

It thus suffices to show
1 1
7/ x(s)ds <4y <t/47> , teR,.
0
This is readily done when 0 <7 < 1. For 7 € (ay,a.1], k > 0, one has

2
l/tx(s e 1 X(S)d5+,2k [(t—a)—%}, a <t <ap+l,
1 X(S)ds+ 2+ T [21 +1- (ak:rl)} s ap T 1<t <ag.
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If we can prove
1

— x(s)ds <2y (ay) foreachk, (8.2)
ar Jo
then the above gives: for q; <t <ap+1,
ai 1 (1 —a)?
[ xos < 2 gt [0 5
1 [4a 2 (r—ar)?
= 26T [T+?<(t_“">_T
1 [2a (t —a;)?
= |[ZE 4o M
2k+1 { r 2t
4
S5
=4y (ax+1)
<4 (t/ﬁ) :
and for ap + 1 <t < ag4
a 1 [3 (ap+1)
=k — | =41
/% t %(akﬂ_z’ﬂr1 [2t+ t
1 1
= 2k+1 |:<3ak+§> ;+1:|
1
< 5T [3+1]
=4y (ax+1)
<4y (1/47).

We prove (8.2) by induction. It is readily shown for k£ = 0. Assuming it holds for &,
we prove it for k+ 1.

Indeed,
1 Ajt1 a1 [ 1 I+ay 1 Ay |
— [ s = 2 [Tyass — [ yds+ — [ g(s)as
Aj+1 70 A+-1 Ak JO Aj+1 Aft-1 J1+a
ay 1 13 1 1+a;
<—2 — ==+ (1=
Akt xlaw) a1 24 o it 1
a4 2 113 1 11 1 a

ak+1 2k Qs 1 2k 4 2k+1 2k+1 A 2k+1 Qi1

1 1\ 1 N 111 N 1
oDk 2) k+4 2512q  2k+L

L3 1
‘ﬁ[z(k+4)+ T ikt )}

1
<% =2y (ax+1)-
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In view of [9, Theorem 1] and [2, Theorem 1], (Ay) and (8.1) are equivalent if

Y(2r) <CY¥(r), r € Ry, thatis ¥ € Ay. Moreover, one can show this is also the case
if ® € A,. However, neither ¥ € A, nor ® € A; is necessary for the equivalence of
(Ag) and (8.1), since both conditions hold for all Young functions when w(x) = 1.
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