DILATION-COMMUTING OPERATORS ON POWER-WEIGHTED ORLICZ CLASSES

Ron Kerman, Rama Rawat and Rajesh K. Singh

(Communicated by J. Pečarić)

Abstract. Let Φ be a nondecreasing function from $\mathbb{R}_{+}=(0, \infty)$ onto itself. Fix $\gamma \in \mathbb{R}=$ $(-\infty, \infty)$ and let $L_{\Phi, t} \gamma\left(\mathbb{R}_{+}\right)$be the set of all Lebesgue-measurable functions f from \mathbb{R}_{+}to \mathbb{R} for which

$$
\int_{\mathbb{R}_{+}} \Phi(k|f(t)|) t^{\gamma} d t<\infty
$$

for some $k>0$. Define the gauge $\rho_{\Phi, t \gamma}$ at $f \in L_{\Phi, t} \gamma\left(\mathbb{R}_{+}\right)$by

$$
\rho_{\Phi, t \gamma}(f)=\inf \left\{\lambda>0: \int_{\mathbb{R}_{+}} \Phi\left(\frac{|f(t)|}{\lambda}\right) \frac{t^{\gamma}}{\lambda} d t \leqslant 1\right\}
$$

Our principal goal in this paper is to find conditions on the nondecreasing functions Φ_{1} and $\Phi_{2}, \gamma \in \mathbb{R}$ and an operator T so that the assertions

$$
\begin{equation*}
\rho_{\Phi_{1}, t^{\gamma}}(T f) \leqslant C \rho_{\Phi_{2}, \gamma^{\prime}}(f) \tag{G}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}_{+}} \Phi_{1}(|(T f)(t)|) t^{\gamma} d t \leqslant K \int_{\mathbb{R}_{+}} \Phi_{2}(K|f(s)|) s^{\gamma} d s \tag{M}
\end{equation*}
$$

concerning $f \in S\left(\mathbb{R}_{+}\right)$, the class of simple functions supported in \mathbb{R}_{+}, are equivalent and to then find necessary and sufficient conditions in order that (M) holds.

In addition, we investigate the connection between (G) and the assertion that

$$
T: \circ_{\Phi_{2}, t \gamma}\left(\mathbb{R}_{+}\right) \rightarrow L_{\Phi_{1}, t \gamma}\left(\mathbb{R}_{+}\right)
$$

where $\stackrel{\circ}{L}_{\Phi_{2}, \gamma}\left(\mathbb{R}_{+}\right)$is the closure of $S\left(\mathbb{R}_{+}\right)$in $L_{\Phi_{2}, t}\left(\mathbb{R}_{+}\right)$.

1. Introduction

Let the operator T map the set, $S\left(\mathbb{R}_{+}\right)$, of simple, Lebesgue-measurable functions on $\mathbb{R}_{+}=(0, \infty)$ into $M\left(\mathbb{R}_{+}\right)$, the class of Lebesgue-measurable functions on \mathbb{R}_{+}. Suppose that T is positively homogeneous in the sense that

$$
|T(c f)|=|c||T f|, f \in S\left(\mathbb{R}_{+}\right), c \in \mathbb{R}
$$

with, moreover,

$$
(T f)(\lambda t)=T(f(\lambda \cdot))(t), \lambda, t \in \mathbb{R}_{+}
$$

Mathematics subject classification (2010): Primary 42B25, 26D15, Secondary 28A25.
Keywords and phrases: Dilation-commuting operators, Orlicz spaces, norm inequalities, modular inequalities, Hardy operator, maximal function, Hilbert transform.

We call such a T a dilation-commuting operator.
Our aim in this paper is to determine when certain dilation-commuting operators map functions in a so-called Orlicz class, $L_{\Phi_{2}, t^{\gamma}}\left(\mathbb{R}_{+}\right)$, into another such Orlicz class, $L_{\Phi_{1}, t}\left(\mathbb{R}_{+}\right)$. Here, the $\Phi_{i}, i=1,2$, are nonnegative, nondecreasing functions on \mathbb{R}_{+}, $\gamma \in \mathbb{R}$ and, for any given nonnegative, nondecreasing function Φ from \mathbb{R}_{+}onto itself,

$$
L_{\Phi, t \gamma}\left(\mathbb{R}_{+}\right)=\left\{f \in M\left(\mathbb{R}_{+}\right): \int_{\mathbb{R}_{+}} \Phi(k|f(t)|) t^{\gamma} d t<\infty, \text { for some } k \in \mathbb{R}_{+}\right\}
$$

One way to measure the size of an $f \in L_{\Phi, t} \gamma\left(\mathbb{R}_{+}\right)$is by its gauge

$$
\rho_{\Phi, t}(f)=\inf \left\{\lambda>0: \int_{\mathbb{R}_{+}} \Phi\left(\frac{|f(t)|}{\lambda}\right) \frac{t^{\gamma}}{\lambda} d t \leqslant 1\right\}
$$

The class $L_{\Phi, t} \gamma\left(\mathbb{R}_{+}\right)$can be shown to be a complete linear topological space under the metric

$$
d_{\Phi, t \gamma}(f, g)=\rho_{\Phi, t} \gamma(f-g), \quad f, g \in L_{\Phi, t} \gamma\left(\mathbb{R}_{+}\right)
$$

The fundamental result in this paper, the one on which all others are based, is
THEOREM A. Let T be a dilation-commuting operator from $S\left(\mathbb{R}_{+}\right)$to $M\left(\mathbb{R}_{+}\right)$. Suppose Φ_{1} and Φ_{2} are nonnegative, nondecreasing functions from \mathbb{R}_{+}onto itself and fix $\gamma \in \mathbb{R}, \gamma \neq-1$. Then, there exists $C>0$, independent of $f \in S\left(\mathbb{R}_{+}\right)$, such that

$$
\begin{equation*}
\rho_{\Phi_{1}, t \gamma}(T f) \leqslant C \rho_{\Phi_{2}, t \gamma}(f) \tag{1.1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\int_{\mathbb{R}_{+}} \Phi_{1}(|(T f)(t)|) t^{\gamma} d t \leqslant K \int_{\mathbb{R}_{+}} \Phi_{2}(K|f(s)|) s^{\gamma} d s \tag{1.2}
\end{equation*}
$$

in which $K>0$ is independent of $f \in S\left(\mathbb{R}_{+}\right)$.
REmARKS 1.1. 1. When T is linear, (1.1) implies

$$
d_{\Phi_{1}, t \gamma}(T f, T g) \leqslant C d_{\Phi_{2}, t \gamma}(f, g), \quad f, g \in S\left(\mathbb{R}_{+}\right)
$$

and hence

$$
\begin{equation*}
T: \stackrel{\circ}{L}_{\Phi_{2}, t^{\gamma}}\left(\mathbb{R}_{+}\right) \rightarrow L_{\Phi_{1}, t \gamma}\left(\mathbb{R}_{+}\right) \tag{1.3}
\end{equation*}
$$

continuously. Further, if Φ_{1} and Φ_{2} are convex, and hence $L_{\Phi_{1}, \gamma}\left(\mathbb{R}_{+}\right)$and $L_{\Phi_{2}, t}\left(\mathbb{R}_{+}\right)$ are Banach spaces, a well-known result from functional analysis [6, Chapter 1, Proposition 2.5] guarantees (1.1) equivalent to (1.3).
2. (1.2) is simpler than (1.1) and hence easier to work with.
3. A modular inequality, like (1.2), implies a gauge inequality, like (1.1), in a rather general context, as is seen in Proposition 3.1 below. Theorem A asserts the two inequalities are equivalent for dilation-commuting operators in the context of power weights, such weights being required for their homogeneity property.
4. One readily works out the variant of Theorem A in which \mathbb{R}_{+}is replaced by $\mathbb{R}^{n}, n=1,2, \ldots$, and t^{γ} by $|x|^{\gamma}=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)^{\gamma / 2}, x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. In this context $S\left(\mathbb{R}^{n}\right)$ denotes the class of simple functions supported in $\mathbb{R}^{n} \backslash\{(0, \ldots, 0)\}$ and $\stackrel{\circ}{L}_{\Phi,|x|^{\gamma}}\left(\mathbb{R}^{n}\right)$ the closure of $S\left(\mathbb{R}^{n}\right)$ in $L_{\Phi,|x| \gamma}\left(\mathbb{R}^{n}\right)$.

The specific dilation-commuting operators we focus on are the Hardy operators

$$
\left(P_{p} f\right)(t)=t^{-\frac{1}{p}} \int_{0}^{t} f(s) s^{\frac{1}{p}-1} d s \text { and }\left(Q_{q} f\right)(t)=t^{-\frac{1}{q}} \int_{t}^{\infty} f(s) s^{\frac{1}{q}-1} d s, \quad t \in \mathbb{R}_{+}
$$

where $p, q \in \mathbb{R}_{+}$and $f \in S\left(\mathbb{R}_{+}\right)$; the Hardy-Littlewood maximal function

$$
(M f)(x)=\sup _{\substack{x \in I \\ I \text { is an interval }}} \frac{1}{|I|} \int_{I}|f(y)| d y, \quad f \in S(\mathbb{R}), x \in \mathbb{R}
$$

the Hilbert transform

$$
(H f)(x)=\frac{1}{\pi}(\mathrm{P}) \int_{\mathbb{R}} \frac{f(y)}{x-y} d y=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\pi} \int_{|x-y|>\varepsilon} \frac{f(y)}{x-y} d y
$$

with $f \in S(\mathbb{R}), x \in \mathbb{R}$.
REMARKS 1.2. 1. The inequality (1.1) is characterized for $T=P_{p}$ and $T=Q_{q}$ in [4] when Φ_{1} and Φ_{2} are convex and $\gamma=0$. Assuming, in addition, that $p=q=1$, one can, using known results, characterize (1.1) for $T=M$ and $T=H$ as well.
2. Necessary and sufficient conditions to guarantee (1.2) are given in [2] for $T=M$ and (hence $T=H$), $\Phi_{1}=\Phi_{2}=\Phi$ is convex.
3. The results for M and H in \mathbb{R} have analogues in $\mathbb{R}^{n}, n \geqslant 2$, involving the n-dimensional version of M and the Calderón-Zygmund operators discussed in [13].

The above operators are treated in Section 4, Section 5 and Section 6, respectively, following the proof of Theorem A in Section 3. Background on gauges like $\rho_{\Phi, t} \gamma$ is given in Section 2; in particular, we explore when the continuity of a mapping such as (1.3) implies a corresponding gauge inequality like (1.1). Appendices I and II treat general modular inequalities for Hardy operators and Hardy-Littlewood maximal functions, in that order.

2. Orlicz classes

Let (X, \mathscr{M}, μ) be a totally σ-finite measure space and denote by $M(X)$ the set of μ-measurable functions from X to the real line \mathbb{R}. Given a nondecreasing function Φ from \mathbb{R}_{+}onto itself its corresponding Orlicz class is

$$
L_{\Phi, \mu}(X)=\left\{f \in M(X): \int_{X} \Phi(k|f(x)|) d \mu(x)<\infty, \text { for some } k \in \mathbb{R}_{+}\right\}
$$

The functional $\rho_{\Phi, \mu}$ defined at $f \in M(X)$ by

$$
\rho_{\Phi, \mu}(f)=\inf \left\{\lambda>0: \int_{X} \Phi\left(\frac{|f(x)|}{\lambda}\right) \frac{d \mu(x)}{\lambda} \leqslant 1\right\}
$$

is finite if and only if $f \in L_{\Phi, \mu}(X)$.
This functional has the following properties

1. $\rho_{\Phi, \mu}(f)=\rho_{\Phi, \mu}(|f|) \geqslant 0$, with $\rho_{\Phi, \mu}(f)=0$ if and only if $f=0 \mu$-a.e.;
2. $\rho_{\Phi, \mu}(c f)$ is a nondecreasing function of c from \mathbb{R}_{+}onto itself if $f \neq 0 \mu$-a.e.;
3. $\rho_{\Phi, \mu}(f+g) \leqslant \rho_{\Phi, \mu}(f)+\rho_{\Phi, \mu}(g)$;
4. $0 \leqslant f_{n} \uparrow f$ implies $\rho_{\Phi, \mu}\left(f_{n}\right) \uparrow \rho_{\Phi, \mu}(f)$;
5. $\rho_{\Phi, \mu}\left(\chi_{E}\right)<\infty$ for all $E \subset X$ such that $\mu(E)<\infty$.

The functional $\rho_{\Phi, \mu}$ is a so-called F-norm on the linear space $L_{\Phi, \mu}(X)$ that makes it into a complete linear topological space under the metric

$$
d_{\Phi, \mu}(f, g)=\rho_{\Phi, \mu}(f-g)
$$

Our function Φ is said to be s-convex with fixed $s, 0<s \leqslant 1$, if

$$
\Phi(\alpha x+\beta y) \leqslant \alpha^{s} \Phi(x)+\beta^{s} \Phi(y)
$$

where $\alpha, \beta, x, y \in \mathbb{R}_{+}$and $\alpha^{s}+\beta^{s}=1$. For such a Φ, the functional

$$
\rho_{\Phi, \mu}^{(s)}(f)=\inf \left\{\lambda>0: \int_{X} \Phi\left(\frac{|f(x)|}{\lambda^{1 / s}}\right) d \mu(x) \leqslant 1\right\}
$$

satisfies

$$
\rho_{\Phi, \mu}^{(s)}(c f)=c^{s} \rho_{\Phi, \mu}^{(s)}(f), \quad c \geqslant 0
$$

as well as properties $1-5$ above, so, in particular, $\rho_{\Phi, \mu}^{(1)}(f)$ is a norm. One has $f \in$ $M(X)$ belonging to $L_{\Phi, \mu}(X)$ if and only if $\rho_{\Phi, \mu}^{(s)}(f)<\infty$, with $L_{\Phi, \mu}(X)$ a complete linear topological space under the metric

$$
d_{\Phi, \mu}^{(s)}(f, g)=\rho_{\Phi, \mu}^{(s)}(f-g), \quad f, g \in L_{\Phi, \mu}(X)
$$

See [9, Theorem 1.2].
Lemma 2.1. Let (X, \mathscr{M}, μ) be a totally σ-finite measure space. Suppose Φ is a nondecreasing function from \mathbb{R}_{+}onto itself which is s-convex for a fixed $s, 0<$ $s \leqslant 1$. Then, the topologies induced on $L_{\Phi, \mu}(X)$ by the metrics $d_{\Phi, \mu}$ and $d_{\Phi, \mu}^{(s)}$ are homeomorphic.

Proof. The equivalence of the topologies amounts to the assertion that, given $f, f_{j} \in L_{\Phi}(X, \mu), j=1,2, \ldots$, one has
(i)

$$
\lim _{j \rightarrow \infty} \rho_{\Phi, \mu}\left(f-f_{j}\right)=0
$$

if and only if
(ii)

$$
\lim _{j \rightarrow \infty} \rho_{\Phi, \mu}^{(s)}\left(f-f_{j}\right)=0
$$

According to [9, Remarks 3, pp. 7-8], $\rho_{\Phi, \mu}(f)<1 \operatorname{implies} \rho_{\Phi, \mu}^{(s)}(f) \leqslant \rho_{\Phi, \mu}(f)^{s}$ and $\rho_{\Phi, \mu}^{(s)}(f)<1$ implies $\rho_{\Phi, \mu}(f) \leqslant \rho_{\Phi, \mu}^{(s)}(f)^{\frac{1}{1+s}}, f \in M(X)$.

But, given $(i), \rho_{\Phi, \mu}\left(f-f_{j}\right)<1$ when j is sufficiently large. Restricting attention to those j, we get

$$
\rho_{\Phi, \mu}^{(s)}\left(f-f_{j}\right) \leqslant \rho_{\Phi, \mu}\left(f-f_{j}\right)^{s} \rightarrow 0, \quad \text { as } j \rightarrow \infty
$$

Similarly, (ii) ensures, for j sufficiently large,

$$
\rho_{\Phi, \mu}\left(f-f_{j}\right) \leqslant \rho_{\Phi, \mu}^{(s)}\left(f-f_{j}\right)^{\frac{1}{1+s}} \rightarrow 0, \quad \text { as } j \rightarrow \infty
$$

Modulars, such as $\rho_{\Phi, \mu}$, were first studied in [10] and [11]. The s-convex modulars, like $\rho_{\Phi, \mu}^{(s)}$, appear in [12]. A systematic study of all this is given in [9].

Proposition 2.1. Let (X, \mathscr{M}, μ) and (Y, \mathscr{N}, v) be totally σ-finite measure spaces. Suppose Φ_{1} and Φ_{2} are nondecreasing s-convex functions from \mathbb{R}_{+}onto itself, where s is fixed in $(0,1]$. Then, any linear operator T mapping $L_{\Phi_{2}, v}(Y)$ into $L_{\Phi_{1}, \mu}(X)$ continuously with respect to the metrics $d_{\Phi_{2}, v}$ and $d_{\Phi_{1}, \mu}$ satisfies

$$
\rho_{\Phi_{1}, \mu}^{(s)}(T f) \leqslant C \rho_{\Phi_{2}, v}^{(s)}(f)
$$

in which $C=C(T)>0$ is independent of $f \in L_{\Phi_{2}, v}(Y)$.
Proof. Fix $f_{0} \in L_{\Phi_{2}, v}(Y)$. Since T is continuous at f_{0}, there is, in view of Lemma 2.1, a $\delta>0$ such that

$$
\rho_{\Phi_{1}, \mu}^{(s)}\left(T f-T f_{0}\right)<1
$$

for all $f \in L_{\Phi_{2}, v}(Y)$ satisfying $\rho_{\Phi_{2}, v}^{(s)}\left(f-f_{0}\right)<\delta$. Given $f \in L_{\Phi_{2}, v}(Y)$, set $g=$ $\frac{\eta^{1 / s}}{\rho_{\Phi_{2}, v}^{(s)}(f)^{1 / s}} f$, for a fixed $\eta, 0<\eta<\delta$. Then,

$$
\frac{\eta^{1 / s}}{\rho_{\Phi_{2}, v}^{(s)}(f)^{1 / s}} T f=T g=T\left(g+f_{0}\right)-T f_{0}
$$

and

$$
\rho_{\Phi_{1}, \mu}^{(s)}\left(\frac{\eta^{1 / s}}{\rho_{\Phi_{2}, v}^{(s)}(f)^{1 / s}} T f\right)=\rho_{\Phi_{1}, \mu}^{(s)}\left(T\left(g+f_{0}\right)-T f_{0}\right)<1
$$

since

$$
\rho_{\Phi_{2}, v}^{(s)}\left(g+f_{0}-f_{0}\right)=\rho_{\Phi_{2}, v}^{(s)}(g) \leqslant \eta<\delta .
$$

Indeed,

$$
\int_{Y} \Phi_{2}\left(\frac{g}{\eta^{1 / s}}\right) d v=\int_{Y} \Phi_{2}\left(\frac{f}{\rho_{\Phi_{2}, v}^{(s)}(f)^{1 / s}}\right) d v \leqslant 1
$$

Now,

$$
\rho_{\Phi_{1}, \mu}^{(s)}\left(\frac{\eta^{1 / s}}{\rho_{\Phi_{2}, v}^{(s)}(f)^{1 / s}} T f\right)<1
$$

implies,

$$
\int_{X} \Phi_{1}\left(\frac{T f}{\rho_{\Phi_{2}, v}^{(s)}(f)^{1 / s} / \eta^{1 / s}}\right) d \mu \leqslant 1
$$

which, in turn, means that

$$
\rho_{\Phi_{1}, \mu}^{(s)}(T f) \leqslant \eta^{-1} \rho_{\Phi_{2}, v}^{(s)}(f) .
$$

Our particular concern in this paper is with the measure $\mu=t^{\gamma} d t, \gamma \in \mathbb{R}$, on the Lebesgue-measurable subsets of \mathbb{R}_{+}. For simplicity we write $\rho_{\Phi, t} \gamma$ and $L_{\Phi, t \gamma}$ rather than $\rho_{\Phi, t \gamma d t}$ and $L_{\Phi, t \gamma d t}$.

3. Proof of Theorem A

We will require the connection between a modular inequality, like (3.1), and certain gauge inequalities, (3.2). This connection is given, in some generality, in the following result.

Proposition 3.1. Let t, u, v and w be positive measurable functions, called weights, on \mathbb{R}_{+}. Suppose Φ_{1} and Φ_{2} are nonnegative, nondecreasing functions from \mathbb{R}_{+}onto itself. Given $\varepsilon>0$, define the weighted gauge $\rho_{\Phi_{2}, u, \varepsilon v}$ by

$$
\rho_{\Phi_{2}, u, \varepsilon v}(f)=\inf \left\{\lambda>0: \int_{\mathbb{R}_{+}} \Phi_{2}\left(\frac{u(y)|f(y)|}{\lambda}\right) \frac{\varepsilon}{\lambda} v(y) d y \leqslant 1\right\}, \quad f \in M\left(\mathbb{R}_{+}\right)
$$

Define $\rho_{\Phi_{1}, t, \varepsilon w}$ similarly.
Then, a positively homogeneous operator T from $S\left(\mathbb{R}_{+}\right)$to $M\left(\mathbb{R}_{+}\right)$satisfies

$$
\begin{equation*}
\int_{\mathbb{R}_{+}} \Phi_{1}(t(x)|(T f)(x)|) w(x) d x \leqslant K \int_{\mathbb{R}_{+}} \Phi_{2}(K u(y)|f(y)|) v(y) d y \tag{3.1}
\end{equation*}
$$

if and only if it satisfies the uniform gauge inequalities

$$
\begin{equation*}
\rho_{\Phi_{1}, t, \varepsilon w}(T f) \leqslant C \rho_{\Phi_{2}, u, \varepsilon v}(f) \tag{3.2}
\end{equation*}
$$

in which $K>0$ is independent of $f \in S\left(\mathbb{R}_{+}\right)$and $C>0$ is independent of both $f \in$ $S\left(\mathbb{R}_{+}\right)$and $\varepsilon>0$.

REMARK 3.1. Taking $\Phi_{1}=\Phi_{2}=\Phi$ convex and $t=u=1$ yields a special case of Proposition 2.5 in [1]

A proof similar to the one for Proposition 3.1 yields the following result.

Proposition 3.2. Let t, u, v and w be weights on \mathbb{R}_{+}. Suppose Φ_{1} and Φ_{2} are nonnegative, nondecreasing functions from \mathbb{R}_{+}onto itself, which are s-convex for some $s, 0<s \leqslant 1$. Given $\varepsilon>0$, define the weighted s-gauge $\rho_{\Phi_{2}, u, \varepsilon v}^{(s)}$ by

$$
\rho_{\Phi_{2}, u, \varepsilon v}^{(s)}(f)=\inf \left\{\lambda>0: \int_{\mathbb{R}_{+}} \Phi_{2}\left(\frac{u(y)|f(y)|}{\lambda^{1 / s}}\right) \varepsilon v(y) d y \leqslant 1\right\}, \quad f \in M\left(\mathbb{R}_{+}\right)
$$

Define $\rho_{\Phi_{1}, t, \varepsilon w}^{(s)}$ similarly.
Then, a positively homogeneous operator T from $S\left(\mathbb{R}_{+}\right)$to $M\left(\mathbb{R}_{+}\right)$satisfies the modular inequality (3.1) if and only if it satisfies the uniform s-gauge inequalities

$$
\rho_{\Phi_{1}, t, \varepsilon w}^{(s)}(T f) \leqslant C^{(s)} \rho_{\Phi_{2}, u, \varepsilon v}^{(s)}(f)
$$

in which $C^{(s)}>0$ is independent of both $f \in S\left(\mathbb{R}_{+}\right)$and $\varepsilon>0$.
Proof of Proposition 3.1. Suppose (3.2) holds. Fix $f \in S\left(\mathbb{R}_{+}\right), f \not \equiv 0$, and put

$$
\varepsilon=\left(\int_{\mathbb{R}_{+}} \Phi_{2}(u(y)|f(y)|) v(y) d y\right)^{-1}
$$

Then,

$$
\int_{\mathbb{R}_{+}} \Phi_{2}(u(y)|f(y)|) \varepsilon v(y) d y=1
$$

so

$$
\rho_{\Phi_{2}, u, \varepsilon v}(f) \leqslant 1
$$

whence (3.2) implies

$$
\rho_{\Phi_{1}, t, \varepsilon w}(T f) \leqslant C
$$

Thus,

$$
\int_{\mathbb{R}_{+}} \Phi_{1}\left(\frac{t(x)|(T f)(x)|}{C}\right) \frac{w(x)}{C} d x \leqslant \frac{1}{\varepsilon}=\int_{\mathbb{R}_{+}} \Phi_{2}(u(y)|f(y)|) v(y) d y
$$

Replacing f by $C f$ and using the fact that T is positively homogeneous yields (3.1), with $K=C$.

For the converse, fix $f \in S\left(\mathbb{R}_{+}\right)$and $\varepsilon>0$. Let $\alpha=\rho_{\Phi_{2}, u, \varepsilon v}(f)$, so that

$$
\int_{\mathbb{R}_{+}} \Phi_{2}\left(\frac{u(y)|f(y)|}{\alpha}\right) \frac{\varepsilon}{\alpha} v(y) d y \leqslant 1 .
$$

By (3.1), then,

$$
\begin{aligned}
\int_{\mathbb{R}_{+}} \Phi_{1}\left(\frac{t(x)|(T f)(x)|}{K \alpha}\right) \frac{\varepsilon}{K \alpha} w(x) d x & =\varepsilon \int_{\mathbb{R}_{+}} \Phi_{1}\left(\frac{t(x)|(T f)(x)|}{K \alpha}\right) \frac{w(x)}{K \alpha} d x \\
& \leqslant \int_{\mathbb{R}_{+}} \Phi_{2}\left(\frac{u(y)|f(y)|}{\alpha}\right) \frac{\varepsilon}{\alpha} v(y) d y \\
& \leqslant 1
\end{aligned}
$$

which amounts to

$$
\rho_{\Phi_{1}, t, \varepsilon w}(T f) \leqslant K \alpha=C \rho_{\Phi_{2}, u, \varepsilon v}(f)
$$

with $C=K>0$ independent of $f \in S\left(\mathbb{R}_{+}\right)$and $\varepsilon>0$.
Proof of Theorem A. According to Proposition 3.1, the modular inequality (1.2) is equivalent to the family of uniform gauge inequalities

$$
\begin{equation*}
\rho_{\Phi_{1}, \varepsilon t \gamma}(T f) \leqslant C \rho_{\Phi_{2}, \varepsilon t \gamma}(f) \tag{3.3}
\end{equation*}
$$

with $C>0$ independent of both $f \in S\left(\mathbb{R}_{+}\right)$and $\varepsilon>0$.
In particular, (3.3) with $\varepsilon=1$ is (1.1), so (1.2) implies (1.1).
Next, we prove (1.1) implies (3.3), which amounts to showing

$$
\int_{\mathbb{R}_{+}} \Phi_{1}\left(\frac{|(T f)(t)|}{C \rho_{\Phi_{2}, \varepsilon s^{r}}(f)}\right) \frac{\varepsilon t^{\gamma}}{C \rho_{\Phi_{2}, \varepsilon s^{\gamma}}(f)} d t \leqslant 1
$$

Letting $z=\varepsilon^{\delta} t, \delta=\frac{1}{1+\gamma}$, the latter reads

$$
\int_{\mathbb{R}_{+}} \Phi_{1}\left(\frac{\left|(T f)\left(z / \varepsilon^{\delta}\right)\right|}{C \rho_{\Phi_{2}, \varepsilon s^{\gamma}}(f)}\right) \frac{z^{\gamma}}{C \rho_{\Phi_{2}, \varepsilon s \gamma}(f)} d z \leqslant 1
$$

or, since T commutes with dilations,

$$
\int_{\mathbb{R}_{+}} \Phi_{1}\left(\frac{\left|T\left(f\left(\frac{1}{\varepsilon^{\delta}} \cdot\right)\right)(z)\right|}{C \rho_{\Phi_{2}, \varepsilon s^{\gamma}}(f)}\right) \frac{z^{\gamma}}{C \rho_{\Phi_{2}, \varepsilon s^{\gamma}}(f)} d z \leqslant 1
$$

But,

$$
\begin{aligned}
\rho_{\Phi_{2}, \varepsilon \varepsilon \gamma}(f) & =\inf \left\{\lambda>0: \int_{\mathbb{R}_{+}} \Phi_{2}\left(\frac{|f(s)|}{\lambda}\right) \frac{\varepsilon}{\lambda} s^{\gamma} d s \leqslant 1\right\} \\
& =\inf \left\{\lambda>0: \int_{\mathbb{R}_{+}} \Phi_{2}\left(\frac{\left|\left(f\left(\frac{1}{\varepsilon^{\delta}} y\right)\right)\right|}{\lambda}\right) \frac{y^{\gamma}}{\lambda} d y \leqslant 1\right\} \\
& =\rho_{\Phi_{2}, t \gamma}\left(f\left(\frac{1}{\varepsilon^{\delta}} \cdot\right)\right)
\end{aligned}
$$

where in the first equality, we have made the change of variable $s=y / \varepsilon^{\delta}$. Altogether, then, (3.3) is the same as (1.1), with f replaced by $f\left(\frac{1}{\varepsilon^{\delta}}\right)$.

REMARK 3.2. Using Proposition 3.2, a proof similar to the one above yields the equivalence of (1.2) and the s-gauge inequality

$$
\begin{equation*}
\rho_{\Phi_{1}, t \gamma}^{(s)}(T f) \leqslant C^{(s)} \rho_{\Phi_{2}, t \gamma}^{(s)}(f), \tag{3.4}
\end{equation*}
$$

with $C^{(s)}>0$ independent of $f \in S\left(\mathbb{R}_{+}\right)$.
Finally, in view of Lemma 2.1 and Proposition 2.1, (3.4) is equivalent to (1.3).

4. The operators P_{p} and Q_{q}

We will sometimes need to work with nonnegative, nondecreasing Φ on \mathbb{R}_{+}that are Young functions, by which is meant

$$
\Phi(t)=\int_{0}^{t} \phi(s) d s, t \in \mathbb{R}_{+}
$$

where ϕ is nondecreasing, left-continuous function on \mathbb{R}_{+}, with $\phi\left(0^{+}\right)=0$ and $\lim _{s \rightarrow \infty} \phi(s)=\infty$. The Young function, Ψ, complementary to such a Φ is defined by

$$
\Psi(t)=\int_{0}^{t} \phi^{-1}(s) d s, t \in \mathbb{R}_{+}
$$

where ϕ^{-1} denotes the left-continuous inverse of ϕ, defined by

$$
\phi^{-1}(t)=\inf \{s \geqslant 0: \phi(s) \geqslant t\}, \quad t \in \mathbb{R}_{+}
$$

THEOREM B. Fix $p, \gamma \in \mathbb{R}, \gamma \neq-1$. Let P_{p} be defined as in the introduction. Suppose that Φ_{1} and Φ_{2} are nonnegative, nondecreasing functions from \mathbb{R}_{+}onto itself. Then, the following are equivalent:

$$
\begin{equation*}
\rho_{\Phi_{1}, \gamma^{\gamma}}\left(P_{p} f\right) \leqslant L \rho_{\Phi_{2}, r^{\prime}}(f) \tag{4.1}
\end{equation*}
$$

$L>0$ being independent of $f \in S\left(\mathbb{R}_{+}\right)$;

$$
\begin{equation*}
\int_{\mathbb{R}_{+}} \Phi_{1}\left(\left|\left(P_{p} f\right)(t)\right|\right) t^{\gamma} d t \leqslant K \int_{\mathbb{R}_{+}} \Phi_{2}(K|f(s)|) s^{\gamma} d s \tag{4.2}
\end{equation*}
$$

in which $K>0$ is independent of $f \in S\left(\mathbb{R}_{+}\right)$.
Moreover, when Φ_{2} is a Young function with complementary function Ψ_{2}, (4.1) and (4.2) are each equivalent to

$$
\begin{equation*}
\int_{0}^{t} \Psi_{2}\left(\frac{\alpha(t)}{C s^{1-\frac{1}{p}+\gamma}}\right) s^{\gamma} d s \leqslant \alpha(t)<\infty \tag{4.3}
\end{equation*}
$$

where

$$
\alpha(t)=\int_{t}^{\infty} \Phi_{1}\left(s^{-\frac{1}{p}}\right) s^{\gamma} d s, \quad t \in \mathbb{R}_{+}
$$

Finally, if Φ_{1} and Φ_{2} are s-convex for some $s, 0<s \leqslant 1$, one has (4.1) and (4.2) each equivalent to

$$
\begin{equation*}
P_{p}: \stackrel{\circ}{L}_{\Phi_{2}, t^{\gamma}}\left(\mathbb{R}_{+}\right) \rightarrow L_{\Phi_{1}, t \gamma}\left(\mathbb{R}_{+}\right) \tag{4.4}
\end{equation*}
$$

the mapping (4.4) being continuous with respect to the metrics $d_{\Phi_{2}, t \gamma}$ and $d_{\Phi_{1}, t \gamma}$.
Proof of Theorem B. Since P_{p} commutes with dilations, (4.1) and (4.2) are equivalent, in view of Theorem A.

The inequality in (4.2) reads

$$
\int_{\mathbb{R}_{+}} \Phi_{1}\left(t^{-\frac{1}{p}} \int_{0}^{t} f(s) s^{\frac{1}{p}-1} d s\right) t^{\gamma} d t \leqslant \int_{\mathbb{R}_{+}} \Phi_{2}(K f(s)) s^{\gamma} d s, 0 \leqslant f \in S\left(\mathbb{R}_{+}\right)
$$

Replacing $f(s) s^{\frac{1}{p}-1}$ by $g(s)$, we have

$$
\int_{\mathbb{R}_{+}} \Phi_{1}\left(t^{-\frac{1}{p}} \int_{0}^{t} g(s) d s\right) t^{\gamma} d t \leqslant \int_{\mathbb{R}_{+}} \Phi_{2}\left(K g(s) s^{1-\frac{1}{p}}\right) s^{\gamma} d s, 0 \leqslant f \in S\left(\mathbb{R}_{+}\right)
$$

When Φ_{2} is a Young function, then according to Proposition 7.2 (in Appendix I), this latter holds if and only if

$$
\int_{0}^{t} \Psi_{2}\left(\frac{\alpha(\lambda, t)}{C \lambda y^{1-\frac{1}{p}+\gamma}}\right) y^{\gamma} d y \leqslant \alpha(\lambda, t)<\infty
$$

where

$$
\alpha(\lambda, t)=\int_{t}^{\infty} \Phi_{1}\left(\lambda z^{-\frac{1}{p}}\right) z^{\gamma} d z
$$

the constant $C>0$ being independent of $\lambda, t \in \mathbb{R}_{+}$. Letting $y=\lambda^{p_{s}}$ and $z=\lambda^{p_{S}}$ in the above integrals we obtain

$$
\int_{0}^{\lambda^{-p} t} \Psi_{2}\left(\frac{\alpha\left(\lambda^{-p} t\right)}{C s^{1-\frac{1}{p}+\gamma}}\right) s^{\gamma} d s \leqslant \alpha\left(\lambda^{-p} t\right)<\infty
$$

Replacing $\lambda^{-p} t$ by t yields (4.3).
In case Φ_{1} and Φ_{2} are s-convex, Lemma 2.1, Proposition 2.1 and Remark 3.2 ensure that (4.1), (4.2) and (4.4) are all equivalent.

REMARK 4.1. The condition (4.3) is equivalent to the condition

$$
\begin{equation*}
\int_{0}^{t} \phi_{2}^{-1}\left(\frac{\alpha(t)}{C s^{1-\frac{1}{p}+\gamma}}\right) s^{\frac{1}{p}-1} d s \leqslant C, \quad t \in \mathbb{R}_{+} \tag{4.5}
\end{equation*}
$$

since $\Psi_{2}(t)=\int_{0}^{t} \phi_{2}^{-1}(s) d s$ satisfies

$$
\frac{1}{2} \phi_{2}^{-1}\left(\frac{t}{2}\right) \leqslant \frac{\Psi_{2}(t)}{t} \leqslant \phi_{2}^{-1}(t), \quad t \in \mathbb{R}_{+} .
$$

Using (4.5) we are able to get more precise connections between the indices p and γ.
(1) $1-\frac{1}{p}+\gamma=0$. The condition (4.5) reads

$$
p \phi_{2}^{-1}\left(\frac{\alpha(t)}{C}\right) \leqslant C t^{-\frac{1}{p}}
$$

(2) $1-\frac{1}{p}+\gamma \neq 0$. We set $y=\frac{\alpha(t)}{s^{1-\frac{1}{p}+\gamma}}$ in the integral on the left side of the condition to get, with $\lambda(t)=\frac{\alpha(t)}{t^{1-\frac{1}{p}+\gamma}}$,

$$
\begin{equation*}
\int_{\lambda(t)}^{\infty} \phi_{2}^{-1}\left(\frac{y}{C}\right) \frac{d y}{y^{\frac{\gamma+1}{1-\frac{1}{p}+\gamma}}} \leqslant\left(1-\frac{1}{p}+\gamma\right) \alpha(t)^{\frac{1}{1-(1+\gamma) p}} \tag{4.6}
\end{equation*}
$$

when $1-\frac{1}{p}+\gamma>0$, and

$$
\begin{equation*}
\int_{0}^{\lambda(t)} \phi_{2}^{-1}\left(\frac{y}{C}\right) \frac{d y}{y^{\frac{\gamma+1}{1-\frac{1}{p}+\gamma}}} \leqslant-\left(1-\frac{1}{p}+\gamma\right) \alpha(t)^{\frac{1}{1-(1+\gamma) p}} \tag{4.7}
\end{equation*}
$$

when $1-\frac{1}{p}+\gamma<0$.
Observe that for the integral in (4.6) to make sense we require $\gamma+1>0$ or $\gamma>-1$.
Again, the change of variable $y=s^{-\frac{1}{p}}$ in the integral giving $\alpha(t)$ yields

$$
\begin{equation*}
\alpha(t)=p \int_{0}^{t^{-\frac{1}{p}}} \frac{\Phi_{1}(y)}{y} \frac{d y}{y^{(\gamma+1) p}}, \quad \text { when } p>0 \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(t)=-p \int_{t}^{\infty} \frac{1}{p} \frac{\Phi_{1}(y)}{y} \frac{d y}{y^{(\gamma+1) p}}, \quad \text { when } \quad p<0 \tag{4.9}
\end{equation*}
$$

In (4.9) we need $\gamma+1<0$ or $\gamma<-1$.
Altogether, then, (4.3) amounts to (4.6) with $\alpha(t)$ given by (4.8), when $p>0$ and $\gamma>-1+\frac{1}{p}$ and to (4.7) with $\alpha(t)$ given by (4.9) when $p<0$ and $\gamma<-1+\frac{1}{p}$.

REMARK 4.2. Theorem B , with $\gamma=0$, helps to greatly simplify the proof of Proposition 6.2 in [7], in which proposition the condition (4.3), in the equivalent form (4.7), was used to construct the essentially largest Young function, Φ_{1}, that can appear with a fixed Young function, Φ_{2}, in an Orlicz-Sobolev inequality such as

$$
\rho_{\Phi_{1}}(u) \leqslant \rho_{\Phi_{2}}(|\nabla u|)
$$

here $C>0$ is independent of all infinitely differentiable u supported in a given bounded domain Ω of \mathbb{R}^{n} with a Lipschitz boundary and $|\nabla u|^{2}=\left(\frac{\partial u}{\partial x_{1}}\right)^{2}+\ldots+\left(\frac{\partial u}{\partial x_{n}}\right)^{2}$.

Corollary 4.1. Fix $q, \gamma \in \mathbb{R}, \gamma \neq-1$. Let Q_{q} be defined as in the introduction. Suppose that Φ_{1} and Φ_{2} are nonnegative, nondecreasing functions from \mathbb{R}_{+}onto itself. Then, the following are equivalent:

$$
\begin{equation*}
\rho_{\Phi_{1}, t \gamma}\left(Q_{q} f\right) \leqslant L \rho_{\Phi_{2}, t^{\gamma}}(f) \tag{4.10}
\end{equation*}
$$

$L>0$ being independent of $f \in S\left(\mathbb{R}_{+}\right)$;

$$
\begin{equation*}
\int_{\mathbb{R}_{+}} \Phi_{1}\left(\left|\left(Q_{q} f\right)(t)\right|\right) t^{\gamma} d t \leqslant K \int_{\mathbb{R}_{+}} \Phi_{2}(K|f(s)|) s^{\gamma} d s \tag{4.11}
\end{equation*}
$$

in which $K>0$ is independent of $f \in S\left(\mathbb{R}_{+}\right)$.
Moreover, when Φ_{1} and Φ_{2} are Young functions with complementary functions Ψ_{1} and Ψ_{2}, respectively, and $\gamma+\frac{1}{q}-1 \neq 0$, (4.10) and (4.11) are each equivalent to

$$
\begin{equation*}
\int_{0}^{t} \Phi_{1}\left(\frac{\beta(t)}{C s^{\frac{1}{q}}}\right) s^{\gamma} d s \leqslant \beta(t) \tag{4.12}
\end{equation*}
$$

where

$$
\beta(t)=\int_{t}^{\infty} \Psi_{2}\left(s^{\frac{1}{q}-1-\gamma}\right) s^{\gamma} d s<\infty, t \in \mathbb{R}_{+}
$$

Finally, if Φ_{1} and Φ_{2} are s-convex for some $s, 0<s \leqslant 1$, one has (4.10) and (4.11) each equivalent to

$$
\begin{equation*}
Q_{q}: \stackrel{\circ}{L}_{\Phi_{2}, \gamma \gamma}\left(\mathbb{R}_{+}\right) \rightarrow L_{\Phi_{1}, t \gamma}\left(\mathbb{R}_{+}\right) \tag{4.13}
\end{equation*}
$$

the mapping (4.13) being continuous with respect to the metrics $d_{\Phi_{2}, t \gamma}$ and $d_{\Phi_{1}, \gamma}$.
Proof. In view of Theorem A, (4.10) and (4.11) are equivalent, since Q_{q} commutes with dilations.

Given that Φ_{1} and Φ_{2} are s-convex, $0<s \leqslant 1$, Proposition 3.2 ensures (4.11), hence (4.10), is equivalent to

$$
\begin{equation*}
\rho_{\Phi_{1}, t \gamma}^{(s)}\left(Q_{q} f\right) \leqslant L^{(s)} \rho_{\Phi_{2}, t^{\gamma}}^{(s)}(f), \quad f \in S\left(\mathbb{R}_{+}\right) \tag{4.14}
\end{equation*}
$$

and hence, by Proposition 2.1, to

$$
Q_{q}: \stackrel{\circ}{L}_{\Phi_{2}, t^{\gamma}}\left(\mathbb{R}_{+}\right) \rightarrow L_{\Phi_{1}, t \gamma}\left(\mathbb{R}_{+}\right)
$$

In particular, if $s=1$, namely, Φ_{1} and Φ_{2} are Young functions, having complementary functions Ψ_{1} and Ψ_{2}, respectively, (4.14), with $s=1$, is equivalent to

$$
\begin{equation*}
\rho_{\Psi_{2}, \gamma \gamma}^{(1)}\left(P_{r} g\right) \leqslant K \rho_{\Psi_{1}, t \gamma}^{(1)}(g), \quad g \in S\left(\mathbb{R}_{+}\right) \tag{4.15}
\end{equation*}
$$

where $\frac{1}{r}=1-\frac{1}{q}+\gamma$. Theorem B ensures (4.15) holds if and only if (4.12) does. This completes the proof.

5. The Hardy-Littlewood maximal operator M

Theorem C. Fix $\gamma>-1$. Let M be the Hardy-Littlewood maximal operator. Suppose Φ_{1} and Φ_{2} are nonnegative, nondecreasing functions from \mathbb{R}_{+}onto itself. Then, the following are equivalent:

$$
\begin{equation*}
\rho_{\Phi_{1},|x| \gamma}(M f) \leqslant L \rho_{\Phi_{2},|x| \gamma}(f), \tag{5.1}
\end{equation*}
$$

$L>0$ being independent of $f \in L_{\Phi_{2},|x| \gamma}(\mathbb{R})$;

$$
\begin{equation*}
\int_{\mathbb{R}} \Phi_{1}((M f)(x))|x|^{\gamma} d x \leqslant K \int_{\mathbb{R}} \Phi_{2}(K|f(y)|)|y|^{\gamma} d y<\infty, \tag{5.2}
\end{equation*}
$$

in which $K>0$ is independent on $f \in M(\mathbb{R})$.
Moreover, when $\Phi_{1}=\Phi_{2}=\Phi$ is a Young function with complementary function Ψ, (5.1) and (5.2) are each equivalent to
(5.3) (a)

$$
\Psi(2 t) \leqslant C \Psi(t), \quad t \in \mathbb{R}_{+}
$$

and
(b) $-1<\gamma<0$ or, if $\gamma \geqslant 0$,

$$
\frac{1}{t} \int_{0}^{t} \phi^{-1}\left(s^{-\gamma}\right) d s \leqslant C \phi^{-1}\left(C t^{-\gamma}\right), \quad \phi=\frac{d \Phi}{d t}
$$

for some $C \geqslant 1$ independent of $t \in \mathbb{R}_{+}$.
Proof of Theorem C. In view of Theorem A, (5.1) and (5.2) are equivalent. When $\Phi_{1}=\Phi_{2}=\Phi$ is a Young function, a special case of Theorem 1 in [2] ensures that (5.2) (hence (5.1)) holds if and only if

$$
\Psi(2 t) \leqslant C \Psi(t), \quad t \in \mathbb{R}_{+}
$$

and

$$
\begin{equation*}
\frac{1}{\mu_{\gamma}(I)} \int_{I} \Psi\left(\frac{1}{C} \frac{\Phi(\lambda)}{\lambda} \frac{\mu_{\gamma}(I)}{|I||x|^{\gamma}}\right)|x|^{\gamma} d x \leqslant \Phi(\lambda) \tag{5.4}
\end{equation*}
$$

where $C \geqslant 1$ is independent of the bounded interval $I \subset \mathbb{R}$ and $\lambda \in \mathbb{R}_{+}$; here

$$
\mu_{\gamma}(I)=\int_{I}|x|^{\gamma} d x
$$

Since

$$
\frac{t}{2} \phi^{-1}\left(\frac{t}{2}\right) \leqslant \Psi(t) \leqslant t \phi^{-1}(t), t \in \mathbb{R}_{+}
$$

(5.4) is equivalent to

$$
\begin{equation*}
\frac{1}{|I|} \int_{I} \phi^{-1}\left(\frac{1}{C} \phi(\lambda) \frac{\mu_{\gamma}(I)}{|I|} \frac{1}{|x|^{\gamma}}\right) d x \leqslant C \lambda \tag{5.5}
\end{equation*}
$$

in which $C \geqslant 1$ does not depend on $I \subset \mathbb{R}$ or $\lambda \in \mathbb{R}_{+}$.

We observe that the assumption $\gamma>-1$ is necessary to guarantee $\mu_{\gamma}(I)<\infty$ for all intervals $I \subset \mathbb{R}$.

One readily shows that for $I=[a, b]$,

$$
\frac{\mu_{\gamma}(I)}{|I|} \leqslant \max \left[1, \frac{1}{1+\gamma}\right] d^{\gamma}
$$

where $d=\max [|a|,|b|]$.
Assume, first that $a b \geqslant 0$, say $0 \leqslant a<b$. Then, (5.5) holds if

$$
\frac{1}{b-a} \int_{a}^{b} \phi^{-1}\left(\phi(\lambda) \max \left[\frac{1}{C}, \frac{1}{C(1+\gamma)}\right]\left(\frac{b}{x}\right)^{\gamma}\right) d x \leqslant C \lambda,
$$

which, when $-1<\gamma<0$, automatically holds with $C=\frac{1}{1+\gamma}$, since then $\frac{1}{C(\gamma+1)}\left(\frac{b}{x}\right)^{\gamma} \leqslant$ 1. The same is true when $\gamma \geqslant 0$ and $a>\frac{b}{2}$ with $C=2^{\gamma}$.

So, assume $\gamma \geqslant 0$ and $0 \leqslant a \leqslant \frac{b}{2}$. It suffices to show

$$
\frac{1}{b} \int_{0}^{b} \phi^{-1}\left(\phi(\lambda) \frac{2}{C}\left(\frac{b}{x}\right)^{\gamma}\right) d x \leqslant \frac{C}{2} \lambda
$$

or, setting $x=b y$,

$$
\int_{0}^{1} \phi^{-1}\left(\phi(\lambda) \frac{2}{C} y^{-\gamma}\right) d y \leqslant \frac{C}{2} \lambda
$$

Let $s=\phi(\boldsymbol{\lambda})^{-\frac{1}{\gamma}}\left(\frac{2}{C}\right)^{-\frac{1}{\gamma}} y$ to get

Taking $t=\phi(\lambda)^{-\frac{1}{\gamma}}\left(\frac{2}{C}\right)^{-\frac{1}{\gamma}}$, whence $\lambda=\phi^{-1}\left(\frac{C}{2} t^{-\gamma}\right)$, we then arrive at (5.3) (C), with C replaced by $\frac{C}{2}$.

Finally, suppose $a b<0$, say $a<0<b$. In that case,

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} \phi^{-1} & \left(\phi(\lambda) \max \left[\frac{1}{C}, \frac{1}{C(1+\gamma)}\right]\left(\frac{d}{x}\right)^{\gamma}\right) d x \\
& =\frac{1}{|a|+|b|}\left(\int_{0}^{|a|}+\int_{0}^{|b|}\right) \phi^{-1}\left(\phi(\lambda) \max \left[\frac{1}{C}, \frac{1}{C(1+\gamma)}\right]\left(\frac{d}{x}\right)^{\gamma}\right) d x \\
& \leqslant \frac{2}{d} \int_{0}^{d} \phi^{-1}\left(\phi(\lambda)\left[\frac{1}{C}, \frac{1}{C(1+\gamma)}\right]\left(\frac{d}{x}\right)^{\gamma}\right) d x
\end{aligned}
$$

whence (5.5) reduces to

$$
\frac{1}{d} \int_{0}^{d} \phi^{-1}\left(\phi(\lambda) \max \left[\frac{2}{C}, \frac{2}{C(1+\gamma)}\right]\left(\frac{d}{x}\right)^{\gamma}\right) d x \leqslant \frac{C}{2} \lambda
$$

namely, to the previous case.

It only remains to show that (5.5) implies (5.3) (C). To this end, take $I=(0, t)$, $t>0$ in the equivalent form of (5.5) to get

$$
\frac{1}{t} \int_{0}^{t} \phi^{-1}\left(\frac{1}{C} \phi(\lambda) \frac{1}{\gamma+1}\left(\frac{t}{x}\right)^{\gamma}\right) d x \leqslant C \lambda
$$

Taking $\lambda=\phi^{-1}\left(C(\gamma+1) t^{-\gamma}\right)$ yields

$$
\begin{aligned}
\frac{1}{t} \int_{0}^{t} \phi^{-1}\left(x^{-\gamma}\right) d x & \leqslant C \phi^{-1}\left(C(\gamma+1) t^{-\gamma}\right) \\
& \leqslant C^{\prime} \phi^{-1}\left(C^{\prime} t^{-\gamma}\right)
\end{aligned}
$$

with $C^{\prime}=\max [1, \gamma+1] C$.

6. The Hilbert transform H

Theorem D. Fix $\gamma \in \mathbb{R}, \gamma>-1$. Let H be the Hilbert transform. Suppose Φ_{1} and Φ_{2} are nonnegative, nondecreasing functions from \mathbb{R}_{+}onto itself. Then, the following are equivalent:
(6.1)

$$
\rho_{\Phi_{1},|x| \gamma}(H f) \leqslant L \rho_{\Phi_{2},|x| \gamma}(f)
$$

$L>0$ being independent of $f \in L_{1}\left(\frac{1}{1+|x|}\right) \cap L_{\Phi_{2},|x| \gamma}(\mathbb{R})$,

$$
L_{1}\left(\frac{1}{1+|x|}\right)=\left\{f \in M(\mathbb{R}): \int_{\mathbb{R}} \frac{|f(x)|}{1+|x|} d x<\infty\right\}
$$

$$
\begin{equation*}
\int_{\mathbb{R}} \Phi_{1}(|(H f)(x)|)|x|^{\gamma} d x \leqslant K \int_{\mathbb{R}} \Phi_{2}(K|f(y)|)|y|^{\gamma} d y<\infty \tag{6.2}
\end{equation*}
$$

in which $K>0$ is independent of $f \in L_{1}\left(\frac{1}{1+|x|}\right)$.
Moreover, when $\Phi_{1}=\Phi_{2}=\Phi$ is a Young function with complementary function Ψ, (6.1) and (6.2) are each equivalent to
(6.3) (a)

$$
\Phi(2 t) \leqslant C \Phi(t)
$$

(b)

$$
\Psi(2 t) \leqslant C \Psi(t), \quad t \in \mathbb{R}_{+}
$$

and
(c) $-1<\gamma<0$ or, if $\gamma \geqslant 0$,

$$
\frac{1}{t} \int_{0}^{t} \phi^{-1}\left(s^{-\gamma}\right) d s \leqslant \phi^{-1}\left(C t^{-\gamma}\right), \quad \phi=\frac{d \Phi}{d t}
$$

for some $C \geqslant 1$ independent of $t \in \mathbb{R}_{+}$.

Finally, if Φ_{1} and Φ_{2} are s-convex, for some $s, 0<s \leqslant 1$, one has (6.1) and (6.2) each equivalent to

$$
\begin{equation*}
H:{\stackrel{\circ}{\Phi_{2},|x|^{\gamma}}}(\mathbb{R}) \rightarrow L_{\Phi_{1},|x|^{\gamma}}(\mathbb{R}) \tag{6.4}
\end{equation*}
$$

the mapping (6.4) being continuous with respect to the metrics $d_{\Phi_{2}, t^{\gamma}}$ and $d_{\Phi_{1}, t \gamma}$.
The condition (6.3) (c) clearly holds if $\gamma \leqslant 0$. As for $\gamma>0$, Lemma 6.1 to follow shows (6.3) (c) amounts to the condition A_{ϕ} for $|x|^{\gamma}$ in [8], provided one has (6.3) (a).

Lemma 6.1. Fix $\gamma>0$ and let $\Phi(t)=\int_{0}^{t} \phi(s) d s$ be a Young function. Then, one has

$$
\frac{\varepsilon \mu_{\gamma}(I)}{|I|} \phi\left(\frac{1}{|I|} \int_{I} \phi^{-1}\left(\frac{1}{\varepsilon|x|^{\gamma}}\right) d x\right) \leqslant C
$$

for all bounded intervals $I \subset \mathbb{R}$ and $\varepsilon>0$ if and only if

$$
\begin{equation*}
\frac{\int_{0}^{t_{1}} \phi^{-1}\left(s^{-\gamma}\right) d s+\int_{0}^{t_{2}} \phi^{-1}\left(s^{-\gamma}\right) d s}{t_{1}+t_{2}} \leqslant \phi^{-1}\left(C t_{2}^{-\gamma}\right) \tag{6.5}
\end{equation*}
$$

for some $C>1$ independent of $0 \leqslant t_{1}<t_{2}$.
If further, one has (6.3)(a), then (6.5) can be replaced by (6.3)(c).

Proof. Given $I=[a, b]$, the change of variable $y=\varepsilon^{\frac{1}{\gamma}} x$ in the integrals $\int_{I} \varepsilon|x|^{\gamma} d x$ and $\int_{I} \phi^{-1}\left(\frac{1}{\varepsilon|x|^{\gamma}}\right) d x$ in $\left(A_{\phi}^{\gamma}\right)$ yields $\varepsilon^{-\frac{1}{\gamma}} \int_{I_{\varepsilon}}|y|^{\gamma} d y$ and $\varepsilon^{-\frac{1}{\gamma}} \int_{I_{\varepsilon}} \phi^{-1}\left(\frac{1}{|y|^{\gamma}}\right) d y$, respectively, where $I_{\varepsilon}=\left[\varepsilon^{\frac{1}{\gamma}} a, \varepsilon^{\frac{1}{\gamma}} b\right]$. So $\left(A_{\phi}^{\gamma}\right)$ becomes

$$
\frac{\mu_{\gamma}\left(I_{\varepsilon}\right)}{\left|I_{\varepsilon}\right|} \phi\left(\frac{1}{\left|I_{\varepsilon}\right|} \int_{I_{\varepsilon}} \phi^{-1}\left(\frac{1}{|y|^{\gamma}}\right) d y\right) \leqslant C
$$

Since I_{ε} is arbitrary whenever I is, it suffices to verify $\left(A_{\phi}^{\gamma}\right)$ with $\varepsilon=1$.
Now, if $a b \geqslant 0$, say, $0 \leqslant a<b$,

$$
b^{-\gamma} \leqslant \frac{|I|}{\mu_{\gamma}(I)} \leqslant 2^{\gamma+1} b^{-\gamma}
$$

while if $a b<0$ with, say, $|a|<|b|$,

$$
\frac{\gamma+1}{2}|b|^{-\gamma} \leqslant \frac{|I|}{\mu_{\gamma}(I)} \leqslant 2(\gamma+1)|b|^{-\gamma} \leqslant 2^{\gamma+1}|b|^{-\gamma} .
$$

Thus, with $I=\left(-t_{1}, t_{2}\right), 0 \leqslant t_{1}<t_{2}$, we have

$$
\frac{1}{t_{1}+t_{2}}\left[\int_{0}^{t_{1}} \phi^{-1}\left(s^{-\gamma}\right) d s+\int_{0}^{t_{2}} \phi^{-1}\left(s^{-\gamma}\right) d s\right]=\frac{1}{|I|} \int_{I} \phi^{-1}\left(|y|^{-\gamma}\right) d y
$$

and

$$
\phi^{-1}\left(C \frac{\gamma+1}{2} t_{2}^{-\gamma}\right) \leqslant \phi^{-1}\left(C \frac{|I|}{\mu_{\gamma}(I)}\right) \leqslant \phi^{-1}\left(C 2^{\gamma+1} t_{2}^{-\gamma}\right)
$$

that is, $\left(A_{\phi}^{\gamma}\right)$ is equivalent to (6.5) when $a b<0$. In particular, we have $\left(A_{\phi}^{\gamma}\right)$ implies (6.5).

It remains to show (6.5) implies $\left(A_{\phi}^{\gamma}\right)$ when $a b \geqslant 0$. In this case $\left(A_{\phi}^{\gamma}\right)$ holds if and only if

$$
\begin{equation*}
\frac{1}{b} \int_{0}^{b} \phi^{-1}\left(s^{-\gamma}\right) d s \leqslant \phi^{-1}\left(C b^{-\gamma}\right), \quad b>0 \tag{6.6}
\end{equation*}
$$

since $\phi^{-1}\left(s^{-\gamma}\right)$ decreases in s on \mathbb{R}_{+}.
Taking $t_{1}=0$ and $t_{2}=b$ in (6.5) yield (6.6).
Finally, (6.5) always implies (6.3) (c)-just take $t_{1}=0$ and $t_{2}=t$. Moreover,

$$
\begin{align*}
\frac{\int_{0}^{t_{1}} \phi^{-1}\left(s^{-\gamma}\right) d s+\int_{0}^{t_{2}} \phi^{-1}\left(s^{-\gamma}\right) d s}{t_{1}+t_{2}} & \leqslant \frac{2}{t_{2}} \int_{0}^{t_{2}} \phi^{-1}\left(s^{-\gamma}\right) d s \tag{6.7}\\
& \leqslant 2 \phi^{-1}\left(C t_{2}^{-\gamma}\right)
\end{align*}
$$

ensures (6.3) (c) when (6.3) (a) holds, since (6.3) (a) is equivalent to $\phi(2 t) \leqslant C \phi(t)$, which, on replacing t by $\phi^{-1}(t)$, yields

$$
2 \phi^{-1}(t) \leqslant \phi^{-1}(C t), \quad t>0
$$

Proof of Theorem D. The equivalence of (6.1), (6.2) and (6.4) follows from the variant of Theorem A for $|x|^{\gamma}$ on \mathbb{R}, since H is dilation-commuting.

The condition (6.3) (a) comes out of the inequality in (6.2) in the same way it comes out of the corresponding inequality for M in Theorem 7 of [2], but with

$$
\left(M f_{m}\right)(y) \geqslant C\left|E \cap B_{m}\right||x-y|^{-1}, \quad y \notin B_{m}
$$

replaced by

$$
\left(H f_{m}\right)(y) \geqslant C r_{0}|x-y|^{-1}, \quad y \notin B_{m}
$$

where $f_{m}=\chi_{B_{m}}, B_{m}=\left(x-2^{-m} r_{0}, x+2^{-m} r_{0}\right)$. Indeed, if, for instance, $y<x-2^{-m} r_{0}$,

$$
\begin{aligned}
-\left(H f_{m}\right)(y)=\frac{1}{\pi} \int_{x-2^{-m} r_{0}}^{x+2^{-m} r_{0}} \frac{1}{y-z} d z & =\frac{1}{\pi} \log \left[\frac{x-y-2^{-m} r_{0}}{x-y+2^{-m} r_{0}}\right] \\
& =\frac{1}{\pi} \log \left[1-\frac{2^{-m} r_{0}}{x-y+2^{-m} r_{0}}\right] \\
& \geqslant \frac{1}{\pi} \frac{2^{-m} r_{0}}{x-y+2^{-m} r_{0}} \\
& \geqslant \frac{1}{\pi} \frac{2^{-m-1} r_{0}}{|x-y|}
\end{aligned}
$$

Again, by Corollary 2.7 in [1], the modular inequality in (6.2) is equivalent to

$$
\int_{\mathbb{R}} \Psi\left(|x|^{-\gamma}|(H f)(x)|\right)|x|^{\gamma} d x \leqslant \int_{\mathbb{R}} \Psi\left(K|y|^{-\gamma}|f(y)|\right)|y|^{\gamma} d y<\infty
$$

which implies, by the argument above, the condition (6.3) (b).
Next, the argument in [8, p. 280], applied to (6.4) yields the $\left(A_{\phi}^{\gamma}\right)$ condition involving $|x|^{\gamma}$, provided one can replace $(M f)(x)$ in

$$
(M f)(x) \geqslant \rho_{\Psi, \varepsilon|x| \gamma}\left(\chi_{I} / \varepsilon|\cdot| \gamma\right) \varepsilon \mu_{\gamma}(I)
$$

by $|(H f)(x)|$. In [8] f was a nonnegative, measurable function supported in I, with $\rho_{\Psi,|x| \gamma}(f)=1$ and

$$
\int_{I} f(x) d x=\rho_{\Psi,|x| \gamma}\left(\chi_{I} /|\cdot|^{\gamma}\right)
$$

But for this f and $x \in I+|I|$, one has

$$
|(H f)(x)| \geqslant \frac{1}{2 \pi} \rho_{\Psi,|x| \gamma}\left(\chi_{I} /|\cdot|^{\gamma}\right) \frac{\chi_{J}(x)}{|I|}
$$

and so, as Φ satisfies the modular inequality in (6.2),

$$
\begin{aligned}
& \int_{J} \Phi\left(\frac{\rho_{\Psi,|x|^{\gamma}}\left(\chi_{I} /\left.|\cdot|\right|^{\gamma}\right)}{|I|}\right)|y|^{\gamma} d y \\
& \leqslant C \int_{\mathbb{R}} \Phi(|f(y)|)|y|^{\gamma} d y=C
\end{aligned}
$$

that is,

$$
\Phi\left(\frac{\rho_{\Psi,|x| \gamma}\left(\chi_{I} /|\cdot|^{\gamma}\right)}{|I|}\right) \mu_{\gamma}(J) \leqslant C
$$

Similarly, there holds

$$
\Phi\left(\frac{\rho_{\Psi,|x| \gamma}\left(\chi_{J} /|\cdot|^{\gamma}\right)}{|J|}\right) \mu_{\gamma}(I) \leqslant C
$$

whence

$$
\Phi\left(\frac{\rho_{\Psi,|x| \gamma}\left(\chi_{J} /|\cdot| \gamma\right.}{|J|}\right) \mu_{\gamma}(J) \Phi\left(\frac{\rho_{\Psi,|x| \gamma}\left(\chi_{I} /|\cdot| \gamma\right.}{|I|}\right) \mu_{\gamma}(I) \leqslant C^{2}
$$

To get $\left(A_{\phi}^{\gamma}\right.$) (for $\varepsilon=1$, which is enough) it suffices to show

$$
\Phi\left(\frac{\rho_{\Psi,|x| \gamma}\left(\chi_{J} /|\cdot|^{\gamma}\right)}{|J|}\right) \mu_{\gamma}(J) \geqslant 1
$$

or, equivalently,

$$
\frac{1}{\Phi^{-1}\left(\frac{1}{\mu_{\gamma}(I)}\right)} \rho_{\Psi,|x|^{\gamma}}\left(\chi_{J} /|\cdot|^{\gamma}\right) \geqslant|J|
$$

that is,

$$
\rho_{\Phi,|x|^{\gamma}}\left(\chi_{J}\right) \rho_{\Psi,|x|^{\gamma}}\left(\chi_{J} /|\cdot|^{\gamma}\right) \geqslant|J|
$$

which inequality is essentially the generalized Hölder inequality

$$
\begin{aligned}
|J| & =\int_{\mathbb{R}} \chi_{J}(x) \frac{\chi_{J}(x)}{|x|^{\gamma}}|x|^{\gamma} d x \\
& \leqslant 2 \rho_{\Phi,|x| \gamma}\left(\chi_{J}\right) \rho_{\Psi,|x|^{\gamma}}\left(\chi_{J} /|\cdot|^{\gamma}\right) .
\end{aligned}
$$

Finally, we prove conditions (6.3) (a), (6.3) (b) and (6.3) (c) imply (6.2). According to Theorem 7 in [8], $|x|^{\gamma}$ in $\left(A_{\phi}^{\gamma}\right)$, together with (6.3) (a) and (6.3) (b), implies $|x|^{\gamma}$ satisfies the A_{∞} condition, namely, there exist constants $C, \delta>0$ so that for any interval I and any measurable subset E of I,

$$
\frac{\mu_{\gamma}(E)}{\mu_{\gamma}(I)} \leqslant C\left(\frac{|E|}{|I|}\right)^{\delta} .
$$

The argument on p. 245 of [5] then ensures the maximal Hilbert transform, H^{*}, defined at $f \in L_{1}\left(\frac{1}{1+|y|}\right)$ by

$$
\left(H^{*} f\right)(x)=\sup _{\varepsilon>0}\left|\frac{1}{\pi} \int_{|x-y|>\varepsilon} \frac{f(y)}{x-y} d y\right|, \quad x \in \mathbb{R}
$$

satisfies, for any given $\alpha>0$ and the $\delta>0$ in the A_{∞} condition,

$$
\int_{\left\{H^{*} f>2 \lambda, M f \leqslant \alpha \lambda\right\}}|x|^{\gamma} d x \leqslant C \alpha^{\delta} \int_{\{M f>\lambda\}}|x|^{\gamma} d x
$$

in which $C>0$ does not depend on α, λ or $f \in L_{1}\left(\frac{1}{1+|y|}\right)$.
We thus have, since Φ satisfies (6.3) (a),

$$
\begin{aligned}
\int_{\mathbb{R}} \Phi & \left(\left(H^{*} f\right)(x)\right)|x|^{\gamma} d x=C \int_{\mathbb{R}_{+}} \phi(\lambda) \int_{\left\{H^{*} f>2 \lambda\right\}}|x|^{\gamma} d x d \lambda \\
& \leqslant C \int_{\mathbb{R}_{+}} \phi(\lambda) \int_{\{M f>\alpha \lambda\}}|x|^{\gamma} d x d \lambda+C \alpha^{\delta} \int_{\mathbb{R}_{+}} \phi(\lambda) \int_{\left\{H^{*} f>\lambda\right\}}|x|^{\gamma} d x d \lambda \\
& =\frac{C}{\alpha} \int_{\mathbb{R}_{+}} \phi(\lambda / \alpha) \int_{\{M f>\lambda\}}|x|^{\gamma} d x d \lambda+C \alpha^{\delta} \int_{\mathbb{R}_{+}} \phi(\lambda) \int_{\left\{H^{*} f>\lambda\right\}}|x|^{\gamma} d x d \lambda \\
& \leqslant C^{\prime} \int_{\mathbb{R}_{+}} \phi(\lambda) \int_{\{M f>\lambda\}}|x|^{\gamma} d x d \lambda+C \alpha^{\delta} \int_{\mathbb{R}_{+}} \phi(\lambda) \int_{\left\{H^{*} f>\lambda\right\}}|x|^{\gamma} d x d \lambda
\end{aligned}
$$

Taking α such that $C \alpha^{\delta}<\frac{1}{2}$ we get

$$
\begin{aligned}
\int_{\mathbb{R}} \Phi(|(H f)(x)|)|x|^{\gamma} d x & \leqslant \int_{\mathbb{R}} \Phi\left(\left(H^{*} f\right)(x)\right)|x|^{\gamma} d x \\
& \leqslant K \int_{\mathbb{R}} \Phi((M f)(x))|x|^{\gamma} d x \\
& \leqslant \int_{\mathbb{R}} \Phi(K|f(x)|)|x|^{\gamma} d x
\end{aligned}
$$

by Theorem C, since (6.3) (c) implies (5.3) (C).

7. Appendix I

The two general results in this appendix are variants of Theorem 4.1 and 3.1 in [1].

Proposition 7.1. Let t, u, v and w be weights on \mathbb{R}_{+}. Suppose Φ_{1} and Φ_{2} are nonnegative nondecreasing functions from \mathbb{R}_{+}onto itself. Then, the general weighted modular inequality for

$$
(I f)(x)=\int_{0}^{x} f(y) d y, \quad 0 \leqslant f \in M\left(\mathbb{R}_{+}\right), x \in \mathbb{R}_{+}
$$

namely,

$$
\begin{equation*}
\int_{\mathbb{R}_{+}} \Phi_{1}(w(x) I f(x)) t(x) d x \leqslant \int_{\mathbb{R}_{+}} \Phi_{2}(K u(y) f(y)) v(y) d y \tag{7.1}
\end{equation*}
$$

is equivalent to the weighted weak-type modular inequality

$$
\begin{equation*}
\int_{\left\{x \in \mathbb{R}_{+}:(I f)(x)>\lambda\right\}} \Phi_{1}(\lambda w(x)) t(x) d x \leqslant \int_{\mathbb{R}_{+}} \Phi_{2}(K u(y) f(y)) v(y) d y \tag{7.2}
\end{equation*}
$$

in both of which $K>0$, is independent of $0 \leqslant f \in M\left(\mathbb{R}_{+}\right)$and in (7.2) is independent of λ as well.

Proof. Clearly, (7.1) implies (7.2). To prove the converse fix $f \geqslant 0$ and choose x_{k} so that $I f\left(x_{k}\right)=2^{k}, k=0, \pm 1, \pm 2, \ldots$ and set $I_{k}=\left[x_{k-1}, x_{k}\right)$ and $f_{k}=f \chi_{I_{k}}$. Then, arguing as in Proposition 4.1 in [1], we obtain, by (7.2),

$$
\begin{aligned}
\int_{\mathbb{R}_{+}} \Phi_{1}(w(x)(I f)(x)) t(x) d x & \left.\leqslant \sum_{k \in \mathbb{Z}} \int_{\left\{x \in \mathbb{R}_{+}: I\left(8 f_{k-1}\right)(x)>2^{k}\right\}} \Phi_{1}\left(2^{k} w(x)\right) t(x)\right) d x \\
& \leqslant \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}_{+}} \Phi_{2}\left(8 K f_{k-1}(x) u(x)\right) v(x) d x \\
& =\int_{\mathbb{R}_{+}} \Phi_{2}(8 K f(x) u(x)) v(x) d x
\end{aligned}
$$

Proposition 7.2. Let t, u, v, w and Φ_{1} and Φ_{2} be as in the Proposition 7.1. Assume, moreover, that Φ_{2} is a Young function. Then, (7.2) (and hence (7.1)) holds if and only if

$$
\begin{equation*}
\int_{0}^{x} \Psi_{2}\left(\frac{\alpha(\lambda, x)}{C \lambda u(y) v(y)}\right) v(y) d y \leqslant \alpha(\lambda, x)<\infty \tag{7.3}
\end{equation*}
$$

where

$$
\alpha(\lambda, x)=\int_{x}^{\infty} \Phi_{1}(\lambda w(y)) t(y) d y
$$

and $C>0$ being independent of $\lambda, x \in \mathbb{R}_{+}$.

Proof. Suppose (7.2) holds and fix $x \in \mathbb{R}_{+}$. Since u and v are weights, they are positive a.e. and so

$$
\Psi_{2}\left(\frac{1}{u(y) v(y)}\right) v(y)<\infty, \quad y \text {-a.e. }
$$

Let the set $E_{n} \subseteq(0, x)$ be such that $E_{n} \uparrow(0, x)$

$$
\int_{E_{n}} \Psi_{2}\left(\frac{1}{u(y) v(y)}\right) v(y)<\infty .
$$

Fix $n \in \mathbb{Z}_{+}$. Then, as in the proof of Theorem 3.1 in [1], given $\lambda \in \mathbb{R}_{+}$, there exists an $\varepsilon>0$ such that

$$
\int_{E_{n}} \Psi_{2}\left(\frac{\varepsilon}{u(y) v(y)}\right) \frac{v(y)}{\varepsilon} d y=2 K \lambda
$$

Setting

$$
f(y)=\frac{1}{K} \Psi_{2}\left(\frac{\varepsilon}{u(y) v(y)}\right) \frac{v(y)}{\varepsilon} \cdot \chi_{E_{n}}(y)
$$

the subsequent part of the above-mentioned proof, with $\left(\Phi_{1} \circ \Phi_{2}^{-1}\right)(z)$ replaced by z, yields

$$
\alpha(\lambda, x) \leqslant 2 K \varepsilon
$$

and then (7.3), with $C=4 K$.
The argument that (7.3) implies (7.2) is identical to the one that (3.2) implies (1.12) in [1].

8. Appendix II

Let $\Phi(t)=\int_{0}^{t} \phi(s) d s, t \in \mathbb{R}_{+}$be a Young function, with complementary function $\Psi(x)=\int_{0}^{x} \phi^{-1}(y) d y$, and let w be a weight on \mathbb{R}^{n}. The conditions

$$
\begin{equation*}
\frac{1}{w(Q)} \int_{Q} \Psi\left(\frac{1}{C} \frac{\Phi(\lambda)}{\lambda} \frac{w(Q)}{|Q|} \frac{1}{w(x)}\right) w(x) d x \leqslant \Phi(\lambda) \tag{8.1}
\end{equation*}
$$

and

$$
\frac{\varepsilon w(Q)}{|Q|} \phi\left(\frac{1}{|Q|} \int_{Q} \phi^{-1}\left(\frac{1}{\varepsilon w(x)}\right) d x\right) \leqslant C
$$

in which $C>1$ is to be independent of λ, ε in \mathbb{R}_{+}and Q is a cube in \mathbb{R}^{n}, with sides parallel to the coordinate axes, $w(Q)=\int_{Q} w(x) d x$, were introduced in [2] and [8], respectively. To put the two conditions on the same footing we will work with (8.1) in the equivalent form

$$
\frac{1}{|Q|} \int_{Q} \phi^{-1}\left(\frac{1}{C} \phi(\lambda) \frac{w(Q)}{|Q|} \frac{1}{w(x)}\right) d x \leqslant C \lambda
$$

Our aim in this section is to compare (8.1) and $\left(A_{\phi}\right)$ in the context of power weights on \mathbb{R}, namely, the conditions (5.3) (C) and (6.5). We have already observed that (6.5) implies (5.3) (C). Indeed, $\left(A_{\phi}\right)$ implies (8.1) in general, as seen in

THEOREM 8.1. Let $\Phi(t)=\int_{0}^{t} \phi(s) d s, t \in \mathbb{R}_{+}$, be a Young function and let w be a weight on \mathbb{R}^{n}. Then, $\left(A_{\phi}\right)$ implies (8.1).

Proof. Writing (A_{ϕ}) in the form

$$
\frac{1}{|Q|} \int_{Q} \phi^{-1}\left(\frac{1}{\varepsilon w(x)}\right) d x \leqslant \phi^{-1}\left(\frac{1}{\varepsilon} \frac{C|Q|}{w(Q)}\right)
$$

then setting $\frac{1}{\varepsilon}=\phi(\lambda) \frac{w(Q)}{C|Q|}$, we obtain

$$
\frac{1}{|Q|} \int_{Q} \phi^{-1}\left(\frac{1}{C} \phi(\lambda) \frac{w(Q)}{|Q|} \frac{1}{w(x)}\right) d x \leqslant \phi^{-1}(\phi(\lambda)) \leqslant \lambda
$$

which is, of course, (8.1).
We now show that to each power weight $w(x)=|x|^{\gamma}, \gamma>0$, on \mathbb{R} there corresponds a Young function, $\Phi_{\gamma}(t)=\int_{0}^{t} \phi_{\gamma}(s) d s, t \in \mathbb{R}_{+}$, for which (8.1) holds, but (A_{ϕ}) doesn't.

Example 8.1. We define Φ_{γ} in terms of decreasing function χ as

$$
\phi_{\gamma}^{-1}(t)=\chi\left(t^{-\frac{1}{\gamma}}\right), \quad t \in \mathbb{R}_{+}
$$

where

$$
\chi(t)=\log (e / t), \quad 0<t \leqslant 1
$$

and

$$
\chi(t)= \begin{cases}\frac{1}{2^{k}}\left(1-\frac{t-a_{k}}{2}\right), & a_{k}<t \leqslant a_{k}+1 \\ \frac{1}{2^{k+1}}, & a_{k}+1<t \leqslant a_{k+1}\end{cases}
$$

with $a_{0}=1$ and $a_{k}=(k+3)!, k \geqslant 1$.
If (A_{ϕ}) held, one would have, on taking $t_{1}=0, t_{2}=t$ in (6.5)

$$
\frac{1}{t} \int_{0}^{t} \chi(s) d s \leqslant \chi\left(t / C^{\frac{1}{\gamma}}\right), \quad t \in \mathbb{R}_{+}
$$

for some $C>1$. But, for $k \geqslant 1$,

$$
\frac{1}{a_{k}} \int_{0}^{a_{k}} \chi(s) d s \geqslant \chi\left(a_{k}\right)=\frac{1}{2^{k}}=\chi\left(\frac{a_{k}}{k}\right) .
$$

It thus suffices to show

$$
\frac{1}{t} \int_{0}^{t} \chi(s) d s \leqslant 4 \chi\left(t / 4^{\frac{1}{\gamma}}\right), \quad t \in \mathbb{R}_{+}
$$

This is readily done when $0<t \leqslant 1$. For $t \in\left(a_{k}, a_{k+1}\right], k \geqslant 0$, one has

$$
\frac{1}{t} \int_{0}^{t} \chi(s) d s= \begin{cases}\frac{1}{t} \int_{0}^{a_{k}} \chi(s) d s+\frac{1}{t 2^{k}}\left[\left(t-a_{k}\right)-\frac{\left(t-a_{k}\right)^{2}}{4}\right], & a_{k}<t \leqslant a_{k}+1 \\ \frac{1}{t} \int_{0}^{a_{k}} \chi(s) d s+\frac{1}{2^{k+1}}\left[\frac{3}{2 t}+1-\frac{\left(a_{k}+1\right)}{t}\right], & a_{k}+1<t \leqslant a_{k+1}\end{cases}
$$

If we can prove

$$
\begin{equation*}
\frac{1}{a_{k}} \int_{0}^{a_{k}} \chi(s) d s \leqslant 2 \chi\left(a_{k}\right) \quad \text { for each } k \tag{8.2}
\end{equation*}
$$

then the above gives: for $a_{k}<t \leqslant a_{k}+1$,

$$
\begin{aligned}
\frac{1}{t} \int_{0}^{t} \chi(s) d s & \leqslant \frac{2 a_{k}}{t} \chi\left(a_{k}\right)+\frac{1}{t 2^{k}}\left[\left(t-a_{k}\right)-\frac{\left(t-a_{k}\right)^{2}}{4}\right] \\
& =\frac{1}{2^{k+1}}\left[\frac{4 a_{k}}{t}+\frac{2}{t}\left(\left(t-a_{k}\right)-\frac{\left(t-a_{k}\right)^{2}}{4}\right)\right] \\
& =\frac{1}{2^{k+1}}\left[\frac{2 a_{k}}{t}+2-\frac{\left(t-a_{k}\right)^{2}}{2 t}\right] \\
& \leqslant \frac{4}{2^{k}} \\
& =4 \chi\left(a_{k+1}\right) \\
& \leqslant 4 \chi\left(t / 4^{\frac{1}{\gamma}}\right)
\end{aligned}
$$

and for $a_{k}+1<t \leqslant a_{k+1}$

$$
\begin{aligned}
\frac{1}{t} \int_{0}^{t} \chi(s) d s & \leqslant \frac{2 a_{k}}{t} \chi\left(a_{k}\right)+\frac{1}{2^{k+1}}\left[\frac{3}{2 t}+1-\frac{\left(a_{k}+1\right)}{t}\right] \\
& =\frac{1}{2^{k+1}}\left[\left(3 a_{k}+\frac{1}{2}\right) \frac{1}{t}+1\right] \\
& \leqslant \frac{1}{2^{k+1}}[3+1] \\
& =4 \chi\left(a_{k+1}\right) \\
& \leqslant 4 \chi\left(t / 4^{\frac{1}{\gamma}}\right)
\end{aligned}
$$

We prove (8.2) by induction. It is readily shown for $k=0$. Assuming it holds for k, we prove it for $k+1$.

Indeed,

$$
\begin{aligned}
\frac{1}{a_{k+1}} \int_{0}^{a_{k+1}} \chi(s) d s & =\frac{a_{k}}{a_{k+1}} \frac{1}{a_{k}} \int_{0}^{a_{k}} \chi(s) d s+\frac{1}{a_{k+1}} \int_{a_{k}}^{1+a_{k}} \chi(s) d s+\frac{1}{a_{k+1}} \int_{1+a_{k}}^{a_{k+1}} \chi(s) d s \\
& \leqslant \frac{a_{k}}{a_{k+1}} 2 \chi\left(a_{k}\right)+\frac{1}{a_{k+1}} \frac{1}{2^{k}} \frac{3}{4}+\frac{1}{2^{k+1}}\left(1-\frac{1+a_{k}}{a_{k+1}}\right) \\
& =\frac{a_{k}}{a_{k+1}} \frac{2}{2^{k}}+\frac{1}{a_{k+1}} \frac{1}{2^{k}} \frac{3}{4}+\frac{1}{2^{k+1}}-\frac{1}{2^{k+1}} \frac{1}{a_{k+1}}-\frac{1}{2^{k+1}} \frac{a_{k}}{a_{k+1}} \\
& =\frac{1}{2^{k}}\left(2-\frac{1}{2}\right) \frac{1}{k+4}+\frac{1}{2^{k+1}} \frac{1}{2} \frac{1}{a_{k+1}}+\frac{1}{2^{k+1}} \\
& =\frac{1}{2^{k}}\left[\frac{3}{2(k+4)}+\frac{1}{2}+\frac{1}{4((k+4)!)}\right] \\
& <\frac{1}{2^{k}}=2 \chi\left(a_{k+1}\right) .
\end{aligned}
$$

In view of [9, Theorem 1] and [2, Theorem 1], $\left(A_{\phi}\right)$ and (8.1) are equivalent if $\Psi(2 t) \leqslant C \Psi(t), t \in \mathbb{R}_{+}$, that is $\Psi \in \Delta_{2}$. Moreover, one can show this is also the case if $\Phi \in \Delta_{2}$. However, neither $\Psi \in \Delta_{2}$ nor $\Phi \in \Delta_{2}$ is necessary for the equivalence of $\left(A_{\phi}\right)$ and (8.1), since both conditions hold for all Young functions when $w(x) \equiv 1$.

Acknowledgement. The authors would like to thank the referee for helping them to clarify the presentation of this paper.

REFERENCES

[1] S. Bloom and R. Kerman, Weighted LФ integral inequalities for operators of Hardy type, Studia Math. 110, 1 (1994), 35-52.
[2] S. Bloom and R. Kerman, Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator, Studia Math. 110, 2 (1994), 149-167.
[3] C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press Inc., Boston, MA, 1988.
[4] A. Cianchi, Hardy inequalities in Orlicz spaces, Trans. Amer. Math. Soc. 351, 6 (1999), 2459-2478.
[5] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51, 3 (1974), 241-250.
[6] M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach space theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, 2011.
[7] R. KERMAN AND L. PICK, Explicit formulas for optimal rearrangement-invariant norms in Sobolev imbedding inequalities, Studia Math. 206, 2 (2011), 97-119.
[8] R. KERMAN AND A. TORChinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71, 3 (1982), 277-284.
[9] L. Maligranda, Orlicz spaces and interpolation, Sem. Math. 5, Dep. Mat., Univ. Estadual de Campinas, Campinas SP, Brazil (1989).
[10] W. Matuszewska and W. Orlicz, On certain properties of φ-functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 439-443.
[11] S. Mazur and W. Orlicz, On some classes of linear spaces, Studia Math. 17 (1958), 97-119.
[12] W. Orlicz, A note on modular spaces. I, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 157-162.
[13] A. TORCHINSKy, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986.

Ron Kerman
Department of Mathematics Brock University
St. Catharines, Ontario, L2S 3A1, Canada e-mail: rkerman@brocku.ca

Rama Rawat
Department of Mathematics and Statistics Indian Institute of Technology Kanpur-208016, India e-mail: rrawat@iitk.ac.in

Rajesh K. Singh
Department of Mathematics and Statistics Indian Institute of Technology Kanpur-208016, India
e-mail: agsinghraj@gmail.com

[^0]
[^0]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

