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WEIGHTED NORM INEQUALITIES FOR
PARAMETRIC LITTLEWOOD-PALEY OPERATORS

Bo LI

(Communicated by M. Praljak)

Abstract. In this paper, we establish the boundedness of parametric Littlewood-Paley operators
from Musielak-Orlicz Hardy space to Musielak-Orlicz space. The endpoint weak type estimates
are also obtained. Part of these results are new even for classical Hardy space of Fefferman and
Stein.

1. Introduction

The impact of the theory of Hardy space H”(R") with p € (0, 1] in the last forty
years has been significant. Hardy space first appeared in the work of Hardy [13] in
1914. Its study was based on complex methods and its theory was one-dimensional.
The higher dimensional Euclidean theory of Hardy space was developed by Fefferman
and Stein [9] who proved a variety of characterizations for them. Later, the advent of
its atomic or molecular characterizations enabled the extension of H?(R") to far more
general settings such as space of homogeneous type in the sense of Coifman and Weiss
[3]. It is well-known that, when p € (0, 1], Hardy space H?(R") is a good substitate of
the Lebesgue space LP(R") in the study for the boundedness of operators. For example,
when p € (0, 1], the Riesz transforms are not bounded on LP(R"), however, they are
bounded on H?(R").

Recently, Ky [19] introduced a new Musielak-Orlicz Hardy space H?(R"), which
unifies the classical Hardy space [10], the weighted Hardy space [32], the Orlicz Hardy
space [14, 15, 16, 17], and the weighted Orlicz Hardy space, in which the spatial and the
time variables may not be separable. Apart from interesting theoretical considerations,
the motivation to study H?(R") comes from applications to elasticity, fluid dynamics,
image processing, nonlinear PDEs and the calculus of variation (see, for example, [4,
5]). More Musielak-Orlicz-type spaces are referred to [2, 8, 21, 24, 25, 35, 36, 37].

On the other hand, various fields of analysis and differential equations require the
theory of various function space, for examples, Lebesgue space, Hardy space, various
forms of Lipschitz space, BMO space and Sobolev space. From the original defini-
tions of these spaces, it may not appear that they are very closely related. There exist,
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however, various unified approaches to their study. The Littlewood-Paley theory, which
arises naturally from the consideration of the Dirichlet problem, provides one of the
most successful unifying perspectives on these function spaces (see [1 1] for more de-
tails). And, it remains closely related to the theory of Fourier multipliers (see [12,
Chapter 5]).

Suppose that §"~! is the unit sphere in the -dimensional Euclidean space R" (1 >
2). Throughout this paper let Q be a homogeneous function of degree zero on R”
which is locally integrable and satisfies the cancellation condition

lQ(x/)dO'(x/) =0,
S’l*

where do is the Lebesgue measure and x' := x/|x| for any x # 0. For a function f on
R", parametric Littlewood-Paley operators ,us’-)2 ¢ and ugj; are, respectively, defined

by setting, for any x € R",
1/2
Q(y—2) > dydr
d' -z
[T L s

o= ([,

and

uE () = [ /L (ﬁ)k

where p € (0,0) and A € (1,0). The operators uf ¢ and ugj; were first studied

by Sakamoto and Yabuta [30] in 1999. They showed that if Q € Lip,(S"~!') with
€ (0, 1], then uf ¢ and uf’; are bounded on LP(R") with p € (1, o). In 2009,

Xue and Ding [33] obtained a celebrated result that [.15 ¢ and ,ng’; are bounded on

/‘ 2073 rya

y—z|<t |y — 2P

1/2
2 dydt /
tn+2p+1 ’

L5 (R") with p € (1, e°) under weaker smoothness condition of €2, where ® € A, and
A, denotes the Muckenhoupt weight class. As for their Hardy space boundedness, Ding
et al. [6, 7] showed that, if Q satisfies some weaker smoothness condition, then ;,LS‘?2 s

and pf’; are bounded from H'(R") to L' (R"). More conclusions of Littlewood-Paley
operators are referred to [1, 26, 27, 28, 20, 22, 31, 34].

Motivated by all of the above mentioned facts, a natural and interesting problem
arises, that is to say, whether ,LL& ¢ and ugj; are bounded from Musielak-Orlicz Hardy
space H?(R") to Musielak-Orlicz space L?(R"). In this paper we shall answer this
problem affirmatively. Not only that, we also discuss boundedness of 'USPL ¢ and ,us’;;
from Musielak-Orlicz Hardy space H?(R") to weak Musielak-Orlicz space WL?(R")
at the critical index.

The present paper is built up as follows. In Section 2, we recall some notions
concerning Muckenhoupt weights, growth functions and Musielak-Orlicz Hardy space
H?(R"). Then we state the boundedness of [.157 ¢ and ;,Ls’;; from H?(R") to L?(R") or
to WL?(R") (see Theorems 1-4 below), the proofs of which are given in Sections 3 and
4. In the process of the proofs of main results, some boundedness criterions of operators
on H?(R") (see [22, Lemma 3.12] and [29, Theorem 3.14]) play an indispensable role.
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Finally, we make some conventions on notation. Let Z, :={1,2,...} and N :=
{0}UZ,. For any B := (Bi,...,B:) € N, let |B| := B+ -+ B,. Throughout this
paper the letter C will denote a positive constant that may vary from line to line but will
remain independent of the main variables. The symbol P < Q stands for the inequality
P<CQ.If P< QS P, wethen write P~ Q. For any set E C R", we use E to denote
the set R"\ E, |E| its n-dimensional Lebesgue measure and g its characteristic func-
tion. For any s € R, |s] denotes the unique integer such that s — 1 < |s| < s. If there
are no special instructions, any space 2 (R") is denoted simply by 2 . For instance,
L?(R") is simply denoted by L?. For any index g € [1, 0], ¢’ denotes the conjugate
index of g, namely, 1/q+1/q' = 1. For any set E of R", 7 € [0, c°) and measurable
function @, let ¢(E,t) := [p@(x,t)dx and {|f]| >t} :={x e R": |f(x)| >1}. As
usual, for any x € R”, r € (0, ) and o € (0,00), let B(x, r) :={yeR": |x—y| <r}
and aB(x, r) := B(x, ar).

2. Notions and main results

In this section, we first recall the notion concerning the Musielak-Orlicz Hardy
space H? via the non-tangential grand maximal function, and then present the bound-
edness of parametric Littlewood-Paley operators from Musielak-Orlicz Hardy space to
Musielak-Orlicz space, or to weak Musielak-Orlicz space at the critical index.

Recall that a nonnegative function ¢ on R” x [0, ) is called a Musielak-Orlicz
function if, for any x € R", ¢(x, -) is an Orlicz function on [0, =) and, for any ¢ €
[0,0), @(-,7) is measurable on R". Here a function ¢ : [0, ) — [0, o) is called an
Orlicz function, if it is nondecreasing, ¢(0) =0, ¢(r) > 0 for any 7 € (0, ), and
limy e @ (1) = oo.

Given a Musielak-Orlicz function ¢ on R” x [0, =), ¢ is said to be of uniformly
lower (resp. upper) type p with p € R, if there exists a positive constant C := Cy such
that, for any x € R", 7 € [0, 00) and s € (0, 1] (resp. s € [1,0)),

o(x,st) <CsPo(x,1).

The critical uniformly lower type index and the critical uniformly upper type index of
¢ are, respectively, defined by

i(¢) :=sup{p € R: ¢ is of uniformly lower type p}, (D)
and
I(p) :=inf{p € R: ¢ is of uniformly upper type p}. 2)

Observe that i(¢) or I(¢) may not be attainable, namely, ¢ may not be of uniformly
lower type i(¢@) or of uniformly upper type (@) (see [23, p.415] for more details).

DEFINITION 1. Let g € [1, ). A locally integrable function ¢@(-,¢) : R" — [0, o)
is said to satisfy the uniformly Muckenhoupt condition A, denoted by ¢ € A, if there



490 B. L1

exists a positive constant C such that, for any ball B C R” and 7 € (0, o), when g =1,

ﬁ/B(p(x,t)dx{esssup [(p(y,t)}l} <C

yEB

and, when g € (1,%0),

= (,,(x,z)dx{ﬁ Loty dy}q_l <c.

For ¢ € A, with g € [1, ), we have the following properties as the classical
Muckenhoupt weight.

LEMMA 1. ([19, Lemma 4.5]) Let ¢ € A, with q € [1,0). Then the following
statements hold true:

(i) there exists a positive constant C such that, for any ball BCR", A € (1, ) and
1 €(0,0),
@(AB,1) <CA™M@(B,1).

(ii) if q # 1, there exists a positive constant C such that, for any ball B(xy, r) C R"
and t € (0, o),

/ (P(x’t) dng(p(B(xO’r)’t).
B

C |x —xo|"d ra
Define A :=Uyc1,00) Ag- Itis well-known that if ¢ € Ay with g € [1, ], then
¢ € A, forany € € (0,1] and @" € A, for some N € (1,e0). Also, if ¢ € A, with

q € (1,00),then ¢ € A, forany r € (q,°) and ¢ € A; forsome d € (1, g). Thus, the
critical weight index of ¢ € A is defined as follows:

q(p) =inf{ge[l,): @ € Ay} 3)

Observe that, if g(¢) € (1,), then ¢ ¢ Ay, and there exists ¢ ¢ A; such that
q(@) =1 (see [18] for more details).

DEFINITION 2. ([19, Definition 2.1]) A function ¢ : R" X [0, o) — [0, e0) is
called a growth function if the following conditions are satisfied:

(i) ¢ is a Musielak-Orlicz function;
(i) @ €A

(iii) @ is of uniformly lower type p for some p € (0, 1] and of uniformly upper type
1.
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Throughout the paper, we always assume that ¢ is a growth function.
Recall that the Musielak-Orlicz space L? is defined to be the space of all measur-
able functions f such that, for some 1 € (0, o),

/n(p<x, %) dx < oo

equipped with the (quasi-)norm

1£llze :=inf{n € (0,00): /n(p ()C, %) dx < 1}.

Similarly, the weak Musielak-Orlicz space WL? is defined to be the space of all
measurable functions f such that, for some 1 € (0, ),

swp o ({1111}, 1 ) <=
1€(0,00)
equipped with the quasi-norm
[ fllwee :=inf{n €(0,%0): sup ¢ <{|f| >}, —) 1}~
1€(0,00)

In what follows, we denote by . the space of all Schwartz functions and by "
its dual space (namely, the space of all tempered distributions). For any m € N, let
7, < 1, where

sup sup (1 [x]) "2 9% y(x)
oeNt |a|<m+1xeR?

Then, forany m € N and f € .9, the non-tangential grand maximal function f;; of f
is defined by setting, for all x € R",

fi(x):= sup sup fxw ()],
VeI [y—x|<t,1€(0,0)

where, for any 7 € (0,e0), y;(-) :=¢"y(:). When

e (3]

we denote f,; simply by f*, where g(¢) and i(¢) are as in (3) and (1), respectively.

DEFINITION 3. ([19, Definition 2.2]) Let ¢ be a growth function as in Definition
2. The Musielak-Orlicz Hardy space H® is defined as the space of all f € .’ such
that f* € L? endowed with the (quasi-)norm

1 o = 11" o -
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Below we recall some notions about the kernel Q. Let « € (0, 1]. A function Q
is said to satisfy the Lipschitz condition of order o if there exists a positive constant C
such that
Q) — Q)| <Cly' —Z|* forany y', 2 € S"~ 1.
A function Q € L?(8"~1) is said to satisfy the L>*-Dini condition (when o = 0, it is
called the L2 -Dini condition) if

L n(0)
0 51+a

dé < oo,

where

on(3) = sup ([ 10 - )P0t
Iri<s \/s"!
and y denotes a rotation on §"~! with [|y]| := supycg1 [ — ).
The relationship between the Lipschitz condition and the Dini-type condition is
not clear up to now.
The main results of this paper are as follows, the proofs of which are given in
Sections 3 and 4.

THEOREM 1. Let ov € (0, 1], p € (n/2,e0) and B € (0, min{1/2, ¢, p —n/2}).
Suppose @ is a growth function as in Definition 2 with p € (n/(n+ ), 1] and ¢ €
Ap+/n)- If

(1) Q satisfies the Lipschitz condition of order o, or
(ii) Q satisfies the L>%*-Dini condition,

then there exists a positive constant C independent of f such that

|68 50|, <Clfle.

L

THEOREM 2. Let ov € (0, 1], p € (n/2,e0) and B € (0, min{1/2, ot, p —n/2}).
Suppose @ is a growth function as in Definition 2 with p:=n/(n+ ), ¢ € Ay and
I(p) € (0, 1), where I(@) is as in (2). If

(1) Q satisfies the Lipschitz condition of order o, or
(i) Q satisfies the L>%*-Dini condition,

then there exists a positive constant C independent of f such that

185 ., < Cllrlae.

THEOREM 3. Let a € (0, 1], p € (n/2,0), A € (2, ) and B € (0, min{1/2, e,
p—n/2,(A—2)n/3}). Suppose @ is a growth function as in Definition 2 with p €
(n/(n+P),1] and ¢ € Ay p/my- If
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(1) Q satisfies the Lipschitz condition of order o, or
(i) Q satisfies the 2% _Dini condition,

then there exists a positive constant C independent of f such that

6850, <CUsle.

THEOREM 4. Let 0. € (0, 1], p € (n/2,), A € (2,) and B € (0, min{1/2, c,
p—n/2,(A—2)n/3}). Suppose ¢ is a growth function as in Definition 2 with p :=
n/(n+B), @ € Ay and I() € (0, 1), where 1(p) is as in (2). If

(1) Q satisfies the Lipschitz condition of order o, or
(i) Q satisfies the %% _Dini condition,

then there exists a positive constant C independent of f such that

[ug5.0)|, . <Clifllno.

REMARK 1.

(i) Let o be a classic Muckenhoupt weight and ¢ an Orlicz function.

(a) When @(x, 1) := @(x)¢(¢) forall (x,1) € R" x [0, o), we have H? = HJ).
In this case, Theorems 1-4 hold true for weighted Orlicz Hardy space. Even when
©(x, 1) := ¢(1), the above results are also new.

(b) When ¢(x,7) := o(x)t? for all (x,7) € R" x [0,0), H? is reduced to
weighted Hardy space HJ . In this case, Theorems 1-4 are new and, even for
Hardy space H? (namely, @ = 1), Theorems 2 and 4 are also new.

(ii) We only prove Theorems 1 and 4, since the proofs of Theorems 2 and 3 are

analogous.

3. Proof of Theorem 1

To show Theorem 1, we need some notions and auxiliary lemmas.

DEFINITION 4. ([19, Definition 2.4]) Let ¢ be a growth function as in Definition
2 and s € [m(@), =) NN, where m(¢) is as in (4). A measurable function « is called a
(@, o0, s)-atom if there exists some ball B C R”" such that the following conditions are
satisfied:

(i) a is supported in B;
(i) [lall- < [lxsllza:

(ili) [fgna(x)x*dx =0 for any oo € N" with |0 <'s.
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LEMMA 2. ([6, Lemma 2.1] or [29, Lemma 4.11]) Let p € (0, o). Suppose that
Q € L2(S" 1) satisfies the L?-Dini condition. Then there exists a positive constant C
such that, for any y € B(0, R/2) with R € (0, ),

NSV
/ dx|  <Cren2 (M L [PV MdS) .
R<|x|<2R

R Jyijr 8
LEMMA 3. Let o € (0,1], p € (n/2,) and B € (0, min{1/2, &, p — n/2}).
Suppose b is a multiple of a (@, o, s)-atom associated with some ball B := B(xy, r).

If

(1) Q satisfies the Lipschitz condition of order o, or

Qx—y) Q)
pe—y[r=p Jx]np

(i) Q satisfies the 2% _Dini condition,
then there exists a positive constant C independent of b such that, for any x € (64B)C,

P

P -
B 5()0) < Clblle- g

Proof. We show this lemma by borrowing some ideas from the proof of [6, The-
orem 1]. The trick of the proof is to find a subtle segmentation. For any x € (64B)

w=(/1..
<(/frs

1/2
2 dydt /
mt2p+1

Q(y—2)
/\v d<t [y—2|"~ pb( 2z

1/2
/ Q-2 b(z)dz|2 _avar )
y—zl<t |y —2["P el

ye16B
1/2 3
AT | e ]
163 16B
t<|y x0\+8r t>|y x0\+8r

The estimates of I; and I, can be showed by the usual argument (see [6, pp.
1541-1542]) with some slight modifications. For the sake of completeness we provide
the proofs.

For I;, by x € (64B)C, y € 16B and z € B, we know that

t>|y—x| = |x—xo| — |y —xo| > |x—x0| — |x —x0|/4 > |[x—x0|/2 and |y — z| < 32r.
From this, Q € L2(S"!) and B < p —n/2, it follows that, for any x € (64B)C,

</ fonal [ D00 MY
=< |, t2ptl

Seten |/b—dl<t [y —2|"7P
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Q(y—2)| > ayar 17
y—2 y

< -

= l// yeles <~/y 7|<32r |y—z\" p| ( )|d2) l‘"+2p+1‘|

t>|x—xp|/2

Q)| . \? dydt
< ||b]|z~ l// ye16B (/Z|<32r 2P dz nt2p+l

>]x—x0|/2

- 2
S b= / ldy ! / /32r 2 ”’1dud6(z’)
~ 16B [or— Y()\ tn+2p+1 sn—1 un— p

’,.P+n/2 rn
w S || ||L 7,,_,'_[37
Jc — o [x —xo

~ 1]z~

which is desired.
For I, by x € (64B)E, yE (16B)E, z € B and the mean value theorem, we know

that
y—2[ ~ [y —xol; (5)
|y —x0| = 2r < |y —x0| — [xo — 2 <[y —z| <t <[y —xo[ +8r; (6)
|x —xo| < |x—y|+ |y —xo| <1+ |y—x0| < 2[y—x0| +8r < 3|y —xo; @)
1 1 r

i e e

~ly— x|t (®)

From Minkowski’s inequality for integrals, (5)—(8), Q € L*>(5"~!) and B < 1/2, we
deduce that, for any x € (64B)E,

1/2
// / QU3 g f i
7l —
y‘; 1)2;10 y—zl<t |y —2|"P 2+l
1<y~ X0\+8r
1/2
|Q(Y—Z)|2 dydt
< / ()] i<t 9l i
- —2p gn+2p+1
? ye(168)° ly—2 t
1< |y—xg|+8r
[y—z|<t
[ 1/2
</\b( )| / Qy—2)P (/ly—war dt )d / )
? L = {‘ifigﬁ) —x| |y XOP” 2 [y—xo|—2r t2p+l
12
Q@ —2)P r
§/B\b(z)| ye(168)S Ty — xoPi-29 [y — xg|" 2P 1 dy | dz

Pe—x0[<3[y—xol
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Q0 —2)I? v
Qy—z r

<

N/Bb(z)|</ pdzr Ty xO‘n72ﬁ+l x xO|2n+2ﬁdy> dz

Pr—xo <3|y —xol

n+1/2 oo |Q n—l , 1/2
ol ([ g audo)

n+

n+1/ l3 1 r
[ — ~ b s
H HL ‘ |n+ﬁ || ||L | xO‘rH,ﬁ

which is also desired.

It remains to estimate I3. It is apparent from ¢ > |y — xo| + 8r that B C {z € R":
|y —z| <t}. By this, the vanishing moments of b, and Minkowski’s inequality for
integrals, we obtain that, for any x € (64B)C,

12
Qly—z) Q(y—xo) 2 dydt
L= —x / ( - b(Z) dz
ylé(lg;)tﬁ b—zl<t \|y—=2["=P [y —xo|""P el
t>|y—xo|+8r

</3|b(z)| // ye(16B)

t>max{|y—x], [y—xo|+8r, [y—z[}

Qy-z  QU-x) |

ly—z[" P |y—xo|"P

</B|b(1)l<// ye(168)t

t>max{|y—x|, [y—xo[+87, [y—z|}
[x—x0[<3[y—2xo]

2
-z)  Q@—x)
\y - ZI” Py —xo"P

1/2
dydt
tn+2p+l dZ

tn+2p+1

Ind 1/2
yt) dz

12

AL - | a=mer
r>max{|y—x|, [y—xo|+8,[y—z[}
[x—xo|>3]y—xo]

For I, , we consider two cases.

Case (i). Lipschitz condition of order o.. We first claim that, for any y € (16B)E
and z € B,

Qy—z) Qy—x) | _|z—x*

ly—z["P |y —xo["P |~ |y —xp|rPre”




PARAMETRIC LITTLEWOOD-PALEY OPERATORS 497

Indeed, by the mean value theorem and the assumption that Q satisfies the Lipschitz
condition of order o, we obtain that, for any y € (16B)C and z € B,

Qy—z) Q(y—x)
y—=2"P |y—xo|"P

Qy—z) Q-2

y—=2"P  |y—xo|"P
1

y—z"P |y —xo[*P

Qy—z)  Q(y—x)
y—xo[" P [y—xo[*"P

k(5] ()
ly —xo|" P ly—z| |y — xol
|z — x| 1 y—z  y—x |”
oy =xo[" Pty —xo" P |y —z] |y —xol
< 1 \Z—XO\+ 1 (Iz—xo>“
vy =x0[" P [y—xo| ~ [y—x0[""P \ [y—xol

< lz—xol*
~ |y —xp|rmPre

This inequality and the fact that B < o yield that, for any x € (64B)E ,

1/2
2
/ —-z)  Q@y—x) dydt
I3</B|b(z)‘ // ye(16B)¢ |y—z\" P \y—xo\"—P 2P dz
t>|y—xo|
[x— XO\<3\V X0
i ) 1/2
Qy—z) Q(y—xo) o dt
:/Ib(z) 168t — - / e )dy| dz
B Y&( y—z"P [y —xo"P [y—xo| £"T7P
L - XO|<3|y x| ’
i 5 1/2
Qly—z) Q(y—xo) 1
~ [ |b(2)| 168t — - —dy|  dz
B Y&( y—z" Py —xo|"P| [y—xo|" T2
L - XO|<3|y xo

Qy—z) Q@y—x)

—z"P [y —xo["7P

12
15| / : 1
< _ d dz
~ |x—xo|" B JB \ J16B)E [y — xg|2P—n—2B Y
12

- el I =30 ! "L
~ |X—X0‘"+ﬁ B 16BC ‘y xO|2n 2p+2a |y xO|2p n— 2[3

rnJrOC 1 1/2
S 0]l s (/ n—2[3+2ady>

lx — xo B [y —xo

e “ 1 n—1 ! 1/2
~ HbHLNW </sn1/r 2o dudG(Y)>

bl e
S ~ o——.
|)c—)c0|”+/3 L \x—xo\’”fﬁ

~ 1ol
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Case (ii). L*>%-Dini condition. One may use Lemma 2 and the assumption that Q
satisfies the L>*-Dini condition to deduce that, for any x € (64B)E,

2
< _l= / Qy—z) Qy—x)
I - x0|"+ﬁ 168)¢

ly—z2"P |y—xo|"P

. 1/2
o2 dy) «

- Qv-2 Qv-w) [ 1 v
X/Z / ; . nf - i 'n)C8 2 7n72ﬂdy dz
B Sy \J2ir<ly—xol<2ir [ ly—2[" P [y —xo["P| |y —xof*
1
N”b”PW
= 1 Q Q 2\
X/Z | : / | (v f)_ (v x?) dy|  dz
B (2ir)P=1/2=B \ Jair<ly—xo|<2i+tr | [y — 2" P |y —xo["P
i _ ]
1 S (2P (e e o(8)
< 16|l —— B — + ds
121 = xo"*B Jig<r S (20r)pn 2B\ 20 T E s

1 S (2P Tz (=
< Il ——— )T 1\,
~ || ||L |x—xo\"+/3 |Z‘<rj§l- (er) —n/2—-pB 2/r+ 2lr ‘

< 1|l ;/ i(er)ﬁZ‘jo‘d ]| Lﬂs
~ L |x—xo\"+ﬁ |z\<rj=4 ¢ L ‘x—xo‘"+ﬁ7

where the last “~” is due to ff < c.
Now we are interested in I . Noticing that r > max{|y — x|, [y — xo| + 8r, [y — 2|}
and |x —xg| > 3|y — xo|, we see that

t>|y—x| =[x —xo| — [y —xo0| > |x—x0[/2.

From this, § < p —n/2 and the argument same as in I}, it follows that, for any x €

(64B)C,
s 12
dt
Ig’</\b(z)| [/ (/ 7> dy] dz
C t>[y—xo| n+2p+1
B (165) ishexol2 |

1/2
1))~ / ? /°° dt
< 7 — = Nay| d
~ ‘x_xO|n+/3 B |.J(168) y—xo| 12p—n—2B+1 Y Z

1/2
S L / Qy-z)  Qur-x) | 1 o)
x—xo"B Jo \ Juemt |y — 2" |y —xo["P| |y—xol2p—"—2B

n+p

Qy—-z) Qy—x)
=P |y —xo|"P

Qy—z) Q@—x)

—re " =P

7
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Combining the estimates of I, I, 1’3 and 1’3’ , we obtain the desired inequality.
This finishes the proof of Lemma 3. [J

Proof of Theorem 1. Obviously, Ng")z. 5 18 a positive sublinear operator and bounded
on L?>. Thus, by the boundedness criterions of operators from H? to L? (see [22,
Lemma 3.12] or [29, Theorem 3.11]), Theorem 1 will be proved by showing that ,u& s
maps all multiple of a (@, e, s)-atoms into the bounded elements of L? uniformly,
namely, there exists a positive constant C such that, for any 1 € (0, o) and multiple of
a (@, 0, s)-atom b associated with some ball B := B(xp, r) C R",

/n 0] (x, 7”5’51(;7)()6)) dx < Co (B, %) .

For any 1 € (0, e), write

WY b (0)) B
/n(P (x, T) dx—/64B(p (x, T) dx+ (643)[3'” —.P1+P2.

For P;, noticing that p > n/(n+ ), we see that ¢ € A,. From the uniformly
upper type 1 property of ¢, the weighted L?-boundedness of ,us’-)2 ¢ with ¢ € Ay (see
[33, Theorem 1]), and Lemma 1(i) with @ € A,, it follows that, for any 1 € (0, ),

2
1§, 5(b) ()] 6|
P < 1+ —" X, dx
e 64B< [ll- “’( n )
P (b)(x)|? -
< 1+7|“Q’5( 3( ) ® (x, Iblle )dx
648 16]7-- n
bLm) 1 P 6]
<o (048,120 ) i [ d 010 (5 120 ) ax
n IIbII% @5 n
<o (o Y L F g (s 12 o
n ||b||L°° n
”b”L‘”)
<o(B 12l
(,0( n

For P,, by Lemma 3, the uniformly lower type p property of ¢, and Lemma 1(ii)
with @ € Ap(14p/n), we know that, for any 1 € (0, =),

bl P
P, < , ——|d
2 (64B)U(p (X 1 \x—xo\"‘*‘ﬁ X

1 6] 16| -
< <n+/3>p/ <
~7 BC \x—xo\("'*‘ﬁ)l?(p (x, n xS ¢ | B, n '

Combining the estimates of P; and P,, we obtain the desired inequality. This
finishes the proof of Theorem 1. [
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4. Proof of Theorem 4

To show Theorem 4, we need to establish the following lemma.

LEMMA 4. Let o € (0, 1], p € (n/2,00), A € (2,) and B € (0, min{1/2, e,
p—n/2,(A—2)n/3}). Suppose b is a multiple of a (@, =, s)-atom associated with
some ball B := B(xg, r). If

(1) Q satisfies the Lipschitz condition of order o, or
(i) Q satisfies the L>%*-Dini condition,
then there exists a positive constant C independent of b such that, for any x € (64B)E,

B

py* < -
B 0)() < Clplie g

Proof. We show this lemma by borrowing some ideas from the proof of [7, Theo-
rem 1.1]. By Lemma 3, we know that, for any x € (64B)C,

0= [ Lo (i) o s

y—z|<t |y—z.\ L
//— ( )A
[y—x|<t -+ ‘.X y\

1/2
2 dyat /
mt2p+1

<

| Mb(z)dzr ﬂ] .

y—z|<t ‘y_z|n7p tn+2p+l
I An 2 11/2
! Q(y—z) dydt
+// <____) / o b(2)d
| Jly=alz t+[x—y| el <t |y — 2P (2)dz tn+2p+l_
< [,L&S(b)(x)
I An 2 11/2
! Q-2 dydt
- // 7) / ———=b(z)dz
i |Y‘-X>f<f+|x—y| WﬂktU—ZVﬂ)() 2T |
B
< C”b”L""W
An )
! Q(y—z) dydt
* // (7) / ———p(z)dz
l = \+ |x =) ly—zl<t [y —z|"P (@) n+2p+1
P
:CHbHL‘”W +1J.

Thus, to show Lemma 4, it suffices to prove that, for any x € (64B)C,

P

ISb||l e —————-
NH HL |x—x0|n+ﬁ
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For any x € (64B)C, write

—x|=>t —
e A
1/2
S e | S | e,

163 16B
t<|y onSr t>\y x0|+8r

/| Q0= pova

y—z|<t |y — 2P

1/2
2 dydt /
tn+2p+1

For J;, from Minkowski’s inequality for integrals, f < min{(A —2)n/3,p —
n/2}, |y —x| ~ |x—xo| with x € (64B)¢ and y € 16B, and Q € L2(S""1), it follows
that, for any x € (64B)C,

1 1y —2) dydr v
wefpollf v () d
1 B\ (Z)|[ Iia% I+ x—y| |y_z‘2n72p n2p+1 2

ly—z|<32r, [y—z| <t

§/B‘b [//y g (Iy—Z)zp_Hﬁ

ly—z|<32r
1/2
t 2536 1Q(y—2)F dydr
X dz
X — xo| |y — 2|21 2p pnt2p+1

1/2

1Q(y—2)? ( b= 5 ) }
~ [ / / Bar ay|
/B‘ (Z”[ y—zl<32r [x — x0[ 3By — 2|"=2B \ Jo o
12
y—xP1Q(»y—2)
~ [ / dy| d
/B‘ (Z)|< p—si<tzr pe—xo2 3By =28 |
/2
1 Q)P )
U S N7A / dy) d
\x—xo|"+ﬁ/s‘ “"( bi<azr |y|n*2ﬂ v)

Q)R 2
~ ol xw (L Bt auaoty)

ot
|x — xo\"+/3 ’
which is desired.

For I, write

=

ye(16B) B

~ |16l

1/2
/ Mb(z)dz'z M :
y—zl<t [y —2|"P m2p+1

t<|y— x0|+8r
[x—2x0[>3|y—x

g

Jx— x0\<3\y x\
[y—xo|—2r<t<|y—xo|+8r

dydt
tn+2p+l

/‘ Q=3 0, F

y—z|<t \y - Z|n p

1/2
] =:1,+75.
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The estimate of J5 is quite similar to that given earlier for the estimate of I, in
Lemma 3 and so is omitted. We are now turning to the estimate of Jj.

For J,, by x € (64B)¢, y € (16B)C, z € B, |x—xo| > 3|y — xo| and the mean value
theorem, we know that

ly =2l ~ |y —xol; 9)
|y =0l =2r < |y —xo| — [xo—z[ < [y —z| <t < |y —xo| +8r; (10)
v — [ =[x —xo0| — [y —xo0| > [x —x0[/2; (11)

1 1 r

12)

_ < ]
G | S

By Minkowski’s inequality for integrals, f < min{(A —2)n/3,1/2} < (A —2)n/2
and (9)—(12) and Q € L?(5"~!), we know that, for any x € (64B)E,

=[] v () o

16BB _Z|<t ‘y_z|n p

t<|y x0\+8r
lx—xo[>3[y—xo|

1/2
ol s (eim) ]
= [y—x|>t _ — |2n—2p m+2p+1 g
B seqemt N TRV ly—zr2P e
t<|y—xo|+8r
[x—2x0[>3|y—x

[y—z|<t

1/2
</|b // t NP e -9 dyar 4
~ Iy ye(16B)° x—y| |y — z2n-2p nt2p+1 z

Pe—=y|>e—xo[ /2
[y—xo[— 2r<t<|y xo|+8r

2
! Q@—dP( bowoltsr g ) ]V
S b / e / —T__ay| 4
Nx—ﬂﬂ”ﬁé;(d|[uaﬂy—d”” ygl2r 12p—n—2p1 )|
1/2
! Q(y—2)? r )
S fslP / dy) d

n+1/2 0o ‘Q . , 1/2
e
~ ||b||L — X0 ‘n+ﬁ /Sn 1/ u— 2l3+1 dudG(y)>

P
ﬁ HbHL W’

1/2
2 dydt /
tn+2p+1

n+l
||b||L"°W

which is also desired.
For J3, noticing that 7 > |y — xo| 4 8, we see that, for any y € (16B)C,

BC{zeR": |z—y|<1} (13)
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and
t+|x—y| =1+ |x—x0| — [y —x0| = |x—x0| + 87> |x— x| (14)

From (13), the vanishing moments of b, Minkowski’s inequality for integrals, (14),
B <min{et, p —n/2, (A —2)n/3} < (A —2)n/2 and the argument same as in I; of
Lemma 3, it follows that, for any x € (64B)E ,

An 2 1/2
t Qly—z) b(d dydt
/ Iy A A P /I —5b()dz 2T

y—z|<t |y — 2P

e(168)0
t>\y x0\+8r
JAZE!
A 5 1/2
" [// - ( t ) "1Qy—z) QU-x) | dydt ] iz
y—x|=>t _ _ S|ln—p — ynln—p n+2p+1 ’
seent NVl =zl |y = ol !
1>]y—xo|+8r
y—z|<t

iy > =]

</|b // t+|x—y| 2n+2[3 t An
~Jp o\ = xol =y

ye(16B)°
t>]y— x0|+8r
ly—zl<t
ey > x|

Qy-2 QO-x) |

ly—z[" P |y—xo|"P

- b 1 t?Ln
N/B| // 16B)° X — x0[272B (1 + [x — y|)An—2n—2P

t>y x|

1/2
dydt
tn+2p+l dZ

-7 Q(y—x)
Iy—Z\"” ly — xo|"=P

Qly—z) Q(y—xo0)
—zP Jy—xoP

© dt 172
(L) e

ov-2 _ov-w[ 1\,
y—xoPpm-28 :

1/2
2 dydt /
tn+2p+1 dZ

2

1
< e[,
™~ |x—xo|" B /B| @) l 16B)C

—Z"P fy—xo["7P

.
~ |x—xo|"B JB \ J16B)

PP
S HbHL‘”W~

Combining the estimates of J;, J, and J3, we obtain the desired inequality. This
finishes the proof of Lemma 4. [
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Proof of Theorem 4. Obviously, ;,Ls’;; is a positive sublinear operator and bounded
on L?. Thus, by the boundedness criterions of operators from H? to WL? (see [29,
Theorem 3.14]), Theorem 4 will be proved by showing that ;,ng maps all multiple of
(@, o0, s)-atoms into the bounded elements of WL? uniformly, namely, there exists a
positive constant C such that, for any 1 € (0, o) and multiple of a (@, e, s)-atom b
associated with some ball B := B(xp, r) C R",

* t bl

t€(0,00)

For any 1 € (0, e), write

sup @ <{,u£;(b) > t}, %)

1€(0,00)

< sup (p({x664B: ug’;(b)(x)>t}7i>
1€(0, ) ' n

+ sup (p({x€(64B)E: ugj;(b)(x)>z}, i) = Q1+ Q.
t€(0,00) ' n

For Qy, by the uniformly upper type 1 property of ¢, the weighted L?-boundedne-
ss of ,ng’; with ¢ € A, (see [33, Theorem 1]), and Lemma 1(i) with ¢ € A,, we obtain

that, for any 1 € (0, o),

t
Q= sup / 0 (x, _> dx
1€(0, ) {xE64B: ugiz(h)(x)%} n

Py
u b)(x
< [0 ).,
64B 77
p,* b)(x 2 _
< - g ; () (x)] (p(x, 6]/
648 5] n

p,* b X 2 .
< - g 5 ( 2)( )l (p(x, 116/ )dx
648 16]7-- n

Bl 1 } 5]

< P, 2

N¢(64B, T 12 ()P (, i
n 1] Jen T2

wa) 1 2 bl
§(p<64B, + / b (x, dx
n 112 /8 n

k-
So(s 2.
qo( n
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For Q, from Lemma 4, Lemma 1(i) with ¢ € A, and the uniformly lower type
=n/(n+ B) property of ¢, we deduce that, for any n € (

Q5 sup o Jxe(64B): [|bflpe——

%),
1€(0,0) x — \"*’3 }

b t
< sup (p({xeBC x —xo|" P < 16z~ HL 7 —
1€(0,00) Tl
b oo n+/3 t
~ sup @[ SxeR": r<|x—x0<<” ”L) rp,—
1€(0,0) ! n
1
bl|g="\ "B t
< sup @ <xeR: |x—xo|<<|| I ) re,—
(€0, b]1) ! n
1
bl|g= | ntB t
- o] L
1€(0, [Bll=) ! n

<\ P
< sup (bL ) (p<B7 L)
r€(0,|bf=) N f n
< sup (bL> ( t ) (p<B, ||b||L>
1e(0, [bll=) \ 1 5]/ = n
wa)
~o|(B, )
ol

Combining the estimates of Q; and Q,, we obtain the desired inequality. This
finishes the proof of Theorem 4. [
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