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INTERVAL–TYPE THEOREMS

CONCERNING QUASI–ARITHMETIC MEANS

PAWEŁ PASTECZKA

(Communicated by M. Praljak)

Abstract. Family of quasi-arithmetic means has a natural, partial order (point-wise order) A[ f ] �
A[g] if and only if A[ f ](v) � A[g](v) for all admissible vectors v ( f , g and, later, h are continuous,
monotone and defined on a common interval).

Therefore one can introduce the notion of interval-type sets (sets I such that whenever
A[ f ] � A[h] � A[g] for some A[ f ], A[g] ∈I then A[h] ∈I too).

Our aim is to give examples of interval-type sets involving vary smoothness assumptions
of generating functions.

1. Introduction

In a recent paper [7] author introduced a new definition concerning means. A
family M of means (functions) defined on a common domain is embedded in a natural
partial order, that is for every M,N ∈M we have

M � N ⇐⇒ M(x) � N(x) for all x.

In this setting we call I ⊂M to be an interval-type set in M (briefly: interval-
type set or interval) if whenever P∈M and M � P � N for some M, N ∈I then also
P ∈I .

Many families of means are linearly ordered by this process. For example one
of the most classical result in a theory of means states that power means are linearly
ordered, that is if we denote by Pp the p -th power mean, then ({Pp}p∈R,�) is iso-
morphic to (R,�) under the natural isomorphism Pp �→ p . In particular all intervals
in this family could be trivially described.

Situation becomes much more interesting if there appear means which are not
comparable among each other. Perhaps the most famous family of this type are quasi-
arithmetic means. They were introduced in series of nearly simultaneous papers in a
beginning of 1930s [1, 3, 5] as a generalization of already mentioned family of power
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means. For a continuous and strictly monotone function f : I → R ( I is an interval)
and a vector a = (a1,a2, . . . ,an) ∈ In , n ∈ N we define

A[ f ] := f−1
(

f (a1)+ f (a2)+ · · ·+ f (an)
n

)
.

It is easy to verify that for I = R+ and f = πp , where πp(x) := xp if p �= 0 and
π0(x) := lnx , the mean A[ f ] coincides with Pp (this fact had been already noticed by
Knopp [2] before quasi-arithmetic means were formally introduced).

Then, whenever f and g are defined on a common interval I , we get

A[ f ] � A[g] if and only if A[ f ](a) � A[g](a) for all a ∈
∞⋃

n=1

In.

As we do not define comparability of means defined on two different intervals, through-
out all quasi-arithmetic means are considered on an arbitrary, but common, interval
(from now on denoted by I ). We will be dealing with interval-type sets in a family
of quasi-arithmetic means defined on I (we will call them briefly interval-type sets or
intervals).

Let us recall some simple, however important, results from our previous paper [7].
It could be proved that interval-type sets inherit many properties of regular intervals in
R . For example intersection of any number of intervals are again an interval, increasing
sum of intervals are again an interval and so on – proofs of this facts are elementary
and omitted here; for detailed discussion we refer the reader to [7]. Moreover, if D ⊂⋃∞

n=1 In and L, U : D→R are arbitrary functions then both

[L,+∞) := {A[ f ] : L(v) � A[ f ](v) for all v ∈ D},
(L,+∞) := {A[ f ] : L(v) < A[ f ](v) for all v ∈ D}

are intervals. Similarly we can define all possible intervals of this type involving −∞ .
Having this we define bounded intervals of this type as an intersection; for example
[L,U) := [L,+∞)∩ (−∞,U) etc.

Furthermore, as we have only a partial order, it is reasonable to define, for every
family F of quasi-arithmetic means, the smallest interval-type set containing F . We
will denote such a set by

[[F ]] :=
⋂{

I : I is an interval and F ⊂I
}
.

In a special case when each pair of elements in F has both the lower and the upper
bound in F we obtain

[[F ]] =
⋃

X ,Y∈F
X�Y

[X ,Y ]. (1)

Proof of this equality is elementary and we omit it.
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2. Comparability among quasi-arithmetic means

It could happen that two intervals has a non-empty intersection although its sum is
not an interval. Indeed, the family

[A[ f ]]∗ := (−∞,A[ f ]]∪ [A[ f ],+∞)

is a family of all quasi-arithmetic means which are comparable with A[ f ] . Investigating
properties of this set is somehow outside the scope of the present paper, as it is not
an interval. Let us just notice that for arithmetic mean [A[π1]]∗ is a family of quasi-
arithmetic means generated by either convex functions or concave functions, which is
the classical application of Jensen inequality.

In fact Jensen inequality is closely related with comparability of quasi-arithmetic
means. In what follows we will present a number of equivalent conditions in a series of
propositions. They will be uniquely numerated, as we will refer to each of them just by
mentioning its identifier.

PROPOSITION 1. Let f ,g : I→R be a continuous and monotone functions. Then
A[ f ] � A[g] if and only if

i. g is increasing and g◦ f−1 is convex or g is decreasing and g◦ f−1 is concave,

ii. f is increasing and f ◦ g−1 is concave or f is decreasing and f ◦ g−1 is convex.

In fact this proposition possess a lot of symmetries as we have the well-known
equality condition (cf. [5])

A[ f ] = A[g] ⇐⇒
(

there exists α, β ∈ R with α �= 0
such that f = α ·g+ β

)
. (2)

It is easy to observe that g ◦ f−1 is continuous, so its convexity, t -convexity for
given t ∈ [0,1] , Jensen convexity (1/2-convexity) are all equivalent. Therefore we
obtain a number of conditions which provide comparability of quasi-arithmetic means.
This is a folk result in a theory of means

PROPOSITION 2. Let f ,g : I→R be a continuous and monotone functions. Then
the following conditions are equivalent to A[ f ] � A[g]

iii. A[ f ](a) � A[g](a) for all a ∈⋃∞
n=1 In ;

iv. A[ f ](a) � A[g](a) for some k ∈ N and all a ∈ Ik ;

v. A[ f ]
ξ (a)� A[g]

ξ (a) for some ξ ∈ (0,1) and all a∈ I2 , where A[ f ]
ξ (a) := f−1(ξ f (a1)

+ (1− ξ ) f (a2));

vi. A[ f ]
ξ (a) � A[g]

ξ (a) for all ξ ∈ (0,1) and all a ∈ I2 .

Additionally we have a condition, in the spirit of Páles [8] (see also [6])
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vii. f (y)− f (x)
f (z)− f (x) � g(y)−g(x)

g(z)−g(x) for all x, y, z ∈ I , x < y < z ;

It is worth mentioning that the substitution (x, y, z) := (a2, A[ f ]
ξ (a), a1) proves the equiv-

alence (vii) ⇐⇒ (vi). Furthermore, we know that a differentiable function is con-
vex/concave if and only if its derivative is non-decreasing/non-increasing. Applying
this we get next comparability conditions.

PROPOSITION 3. Let f ,g : I→R be a monotone and differentiable functions with
f ′ ·g′ �= 0 . Then A[ f ] � A[g] if and only if one of the following conditions is satisfied

viii. f and g are of the same monotonicity (both increasing or both decreasing) and
f ′/g′ is non-increasing (equivalently g′/ f ′ is non-decreasing)

viii’. f and g are of the converse monotonicity (one increasing, second decreasing)
and f ′/g′ is non-decreasing (equivalently g′/ f ′ is non-increasing).

Now we turn into the result of Mikusiński [4]. He, and independently Łojasiewicz
(compare [4, footnote 2]), expressed handy tool to compare quasi-arithmetic means
in terms of operator f �→ f ′′/ f ′ (the negative of this operator is used to be called an
Arrow-Pratt index). More precisely their result reads

PROPOSITION 4. Let I be an interval, f , g∈C 2(I) , f ′ ·g′ �= 0 on I . Then A[ f ] �
A[g] if and only if

ix. f ′′(x)
f ′(x) � g′′(x)

g′(x) for all x ∈ I .

Using this result we immediately obtain some “Mikusiński-type intervals”

M̃ (x0,U) :=

{
A[ f ] :

f is twice continuously differentiable in some

neighborhood of x0, f ′(x0) �= 0, f ′′(x0)
f ′(x0) ∈U

}
,

where x0 ∈ I and U ⊂ R is an interval. Nevertheless M̃ (x0,U) is usually not an
interval-type set, therefore we extend this set to an interval in the way that was described
in the introduction

M (x0,U) :=
[[

M̃ (x0,U)
]]

.

This lead us to the following problem. A family M̃ (x0,U) contains only C 2

functions around x0 with f ′(x0) �= 0. But what about M (x0,U)?
By (1) we know that for all A[h] ∈M (x0,U) we have

A[ f ] � A[h] � A[g] (3)

for some f , g ∈ C 2(V ) , f ′ ·g′ �= 0 and open interval V � x0 .
In fact it does not imply that the second derivative of h at x0 exists, which can be

illustrated in a simple example
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EXAMPLE 1. Let I = (0,2) , f (x) = x , g(x) = x2 , x0 = 1,

h(x) =

{
x x ∈ (0,1] ,
x2+1

2 x ∈ (1,2) .

Then, by (viii) , assertion (3) holds but h is C 1 only.

Despiting this drawback, it can be proved that if f , g ∈ C 2(I) with nonvanishing
derivative and (3) holds, then h is continuously differentiable for all x ∈U and also h′
is nowhere vanishing.

Nevertheless to obtain an interval-type set assumption on f , g , and h have to be
the same. Thus we want to prove that if f and g are continuously differentiable with
nonvanishing derivative, then so is h . Equivalently, family of quasi-arithmetic means
generated by C 1 functions with nonvanishing derivative is an interval (it will be done
in Theorem 9).

3. Interval-type sets in a family quasi-arithmetic means

In the following section we will prove a number of examples of interval-type sets
involving vary smoothness assumptions of generating functions. Let us first prove some
abstract theorem.

THEOREM 5. Let I be a compact interval, x0 ∈ I , f0 : I → R with f0(x0) = 0 .
Let F ⊂ C (I) be an interval such that F ⊆ o( f0) in a right/left neighborhood of x0 .
Then the family

A[ f0+F ] := {A[ f0+ f ] : f ∈F and f0 + f is strictly monotone on I}.

is an interval.

Proof. We want to bind the cases where x0 is in the interior of the interval and is
the endpoint. In the proof we will concern right neighborhood of the point, therefore
we have x0 �= sup I . Second case is completely analogous. Similarly assume that f0 is
increasing.

Take any x1 ∈ I such that x1 > x0 . Let r1,r2 ∈F and f := f0 + r1 , g := f0 + r2 .
By the definition there holds f (x0) = g(x0) = 0. Denote

f̂ (x) :=
f (x)− f (x0)
f (x1)− f (x0)

=
f (x)
f (x1)

, ĝ(x) :=
g(x)−g(x0)
g(x1)−g(x0)

=
g(x)
g(x1)

.

Let us consider an arbitrary function h̃ : I→ R satisfying

A[ f ] � A[h̃] � A[g].

By (2), there exists a unique function h such that h(x0) = 0, h(x1) = 1, and A[h̃] = A[h] .
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Then, by (vii) , we get ĝ(x) � h(x) � f̂ (x) for all x ∈ (x0,x1) . Thus

g(x)
g(x1)

� h(x) � f (x)
f (x1)

, x ∈ (x0,x1).

Therefore
f0(x)+ r2(x)

g(x1)
� h(x) � f0(x)+ r1(x)

f (x1)
, x ∈ (x0,x1).

Then
f0(x)
g(x1)

+
1

g(x1)
· r2(x) � h(x) � f0(x)

f (x1)
+

1
f (x1)

· r1(x) (4)

It implies (
1

g(x1)
− 1

f (x1)

)
f0(x) � 1

f (x1)
· r1(x)− 1

g(x1)
· r2(x)

But 1
f (x1)

r1(x)− 1
g(x1)

r2(x) ∈ o( f0) in a right neighborhood of x0 . Thus

1
g(x1)

− 1
f (x1)

� 0.

Consequently g(x1) � f (x1) . As x1 was an arbitrary number greater than x0 we obtain
g(x) � f (x) for x > x0 . Thus

r2(x) � r1(x) for x > x0. (5)

Now observe that

f (x)
f (x1)

� h(x) � g(x)
g(x1)

for x > x1.

f0(x)+ r1(x)
f0(x1)+ r1(x1)

� h(x) � f0(x)+ r2(x)
f0(x1)+ r2(x1)

for x > x1.

Denote
rβ = (β −1)r2 +(2−β )r1 ∈F , β ∈ [1,2].

Then there exists β (x,x1) ∈ [1,2] such that

h(x) =
f0(x)+ rβ (x,x1)(x)

f0(x1)+ rβ (x,x1)(x1)
for x > x1.

For x1 � x0 and x � x0 we have

F (x) � r1(x) � rβ (x,x1)(x) � r2(x) ∈F (x).

Thus rβ (x,x1)(x) ∈F (x) (it means that F is considered as variable of x ). Similarly
rβ (x,x1)(x1)∈F (x1) . Furthermore, by Taylor’s theorem, 1

p+F(x) = 1
p +o(x−x0) . Thus,

for x > x1 ,

h(x) =
f0(x)+ rβ (x,x1)(x)
f0(x1)+F (x1)

= ( f0(x)+ rβ (x,x1)(x)) ·
( 1

f0(x1)
+o(x1− x0)

)
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Recall that x1 was fixed but arbitrary, so we can substitute x1 ← s , where s > x0 .
Furthermore we can consider hs(x) := f0(s) · h(x) , as their generate the same quasi-
arithetic mean. Then, for x > s > x0 ,

hs(x) = f0(s) · ( f0(x)+ rβ (x,s)(x))
( 1

f0(s)
+o(s− x0)

)
= ( f0(x)+ rβ (x,s)(x)) · (1+ f0(s) ·o(s− x0))

= ( f0(x)+ rβ (x,s)(x)) · (1+o( f0(s) · (s− x0))).

Thus we get a family of functions H = {hs(x)}s>x0

hs(x) = ( f0(x)+ rβ (x,s)(x)) · (1+o( f0(s) · (s− x0))), x > s > x0.

By the definition of β we have

hs(x) � ( f0(x)+ r1(x)) · (1+o( f0(s) · (s− x0))), x > s > x0;

hs(x) � ( f0(x)+ r2(x)) · (1+o( f0(s) · (s− x0))), x > s > x0.

We can now pass s→ x0 and obtain

hx0(x) := lim
s→x0

hs(x) ∈ [ f0(x)+ r1(x), f0(x)+ r2(x)], x > x0.

Therefore hx0 ∈ f0 +F . Furthermore, as A[h] = A[hs] for all s > x0 then, applying (vii)

, A[hx0 ] = A[h] . Finally A[h̃] = A[h] = A[hx0 ] ∈ A[ f0+F ] . �
This theorem has a very useful corollary

COROLLARY 6. Let I be an interval, x0 ∈ I . The family of quasi-arithmetic
means generated by right-(left-)sided differentiable function at x0 with f ′+(x0) = 0
( f ′−(x0) = 0 ) is an interval-type set.

Proof. Let A[ f ] � A[h] � A[g] . Suppose f (x0) = g(x0) = 1. We know that

f (x) = 1+o(x− x0) and g(x) = 1+o(x− x0) for x > x0.

Take f0 ≡ 1 and F = o(x− x0) . Then the pair f0 , F satisfies all conditions of
Theorem 5. Furthermore f ,g ∈ f0 +F , therefore we get

h ∈ f0 +F = 1+o(x− x0) for x > x0.

It implies that h′+(x0) exists and h′+(x0) = 0. �

3.1. Interval-type sets involving smoothness assumptions

In the following section we are going to present some interval-type sets in a family
of quasi-arithmetic means involving smoothness assumptions of their generating func-
tions. Recall that all means are considered on a common interval I .

First result will concern existence of one-sided derivative at certain point
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THEOREM 7. Let x0 ∈ int I and f : I → R be a continuous and monotone func-
tions which has a right-(left-)sided differentiable function at x0 with f ′+(x0) �= 0 [ f ′−(x0)
�= 0] . If A[g] ∈ [A[ f ]]∗ for some g : I → R then g is right-(left-)sided differentiable at
x0 too and g′+(x0) �= 0 [g′−(x0) �= 0] .

Proof. By (2) we may assume f (x0) = g(x0) = 0. Then we have

lim
x→x+

0

g(x)−g(x0)
x− x0

= lim
y→0+

g ◦ f−1(y)
f−1(y)− x0

= lim
y→0+

g ◦ f−1(y)
y

· lim
y→0+

y
f−1(y)− x0

= lim
y→0+

g ◦ f−1(y)
y

· lim
x→x+

0

f (x)
x− x0

But g ◦ f−1(0) = g(x0) = 0. Moreover, as A[g] is comparable with A[ f ] , we know that
g ◦ f−1 is either convex or concave (see i and ii). In particular there exists a one-side
derivative (g ◦ f−1)+(0) . Moreover, as g ◦ f−1 is strictly monotone and convex or
concave in some neighborhood of 0, we get (g ◦ f−1)+(0) �= 0. Furthermore f ′+(x0)
exists and is nonzero.

Finally we obtain that there exists g′+(x0) and

g′+(x0) = (g ◦ f−1)′+(0) · f ′+(x0) �= 0. �

Having this already proved we have an immediate corollary

COROLLARY 8. Quasi-arithmetic means generated by functions which are right-
(left-)sided differentiable functions at certain point x0 ∈ I with f ′−(x0) �= 0 [ f ′+(x0) �= 0]
is an interval.

This result can be somehow improved. Namely if both derivatives f ′(x0) and
g′(x0) exists, are nonzero and (3) holds, then it is also the case in h . In can be formally
expressed in term of the following

THEOREM 9. Quasi-arithmetic means generated by a functions differentiable at
certain point x0 ∈ I with f ′(x0) �= 0 is an interval.

Proof. Let f , g , and h be strictly increasing, and A[ f ] � A[h] � A[g] . If f , g
are differentiable at x0 and f ′(x0)g′(x0) �= 0 then, by Corollary 8, we know that both
h′+(x0) and h′−(x0) exists and are nonzero. Now, by ii, h is convex with respect to f .
Thus h′−(x0) � h′+(x0) .

Similarly, by i, h is concave with respect to g and, consequently, h′−(x0) �
h′+(x0) . �

Furthermore, this result could be rearrange in the case of continuous derivative
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PROPOSITION 10. Quasi-arithmetic means generated by a functions belonging to
C 1(I) with nowhere vanishing derivative is an interval.

Proof. Suppose that f , g, h are increasing, f , g ∈ C 1(I) , f ′ · g′ �= 0 and A[ f ] �
A[h] � A[g] . Then, by Theorem 9, h is differentiable and h′ �= 0. Moreover, by (viii) ,
we know that h′/ f ′ is non-decreasing and h′/g′ is non-increasing.

Let x0 ∈ I . We can take affine transformations such that f (x0) = g(x0) = h(x0) = 0
and f ′(x0) = g′(x0) = h′(x0) = 1. Thus (by (viii)) f ′(x) � h′(x) � g′(x) for all x > x0 .
Similarly g′(x) � h′(x) � f ′(x) for x < x0 . Therefore

l := min( f ′,g′) � h′ � max( f ′,g′) =: u .

But l(x0) = u(x0) = 1 and both l and u are continuous so h′ is continuous at the point
x0 . But x0 was arbitrary so h ∈ C 1(I) . �

We are now heading toward one-sided differentiability in certain point (without
vanishing or nonvanishing assumptions). First we will prove a very useful lemma.

LEMMA 11. If g,h : I→ R are right-(left-)sided differentiable at x0 ∈ int I with
g′+(x0) = 0 and h′+(x0) �= 0 (g′−(x0) = 0 and h′−(x0) �= 0 ) then A[g] is not comparable
with A[h] .

Proof. Take ε > 0 such that x0 + ε ∈ I . There exist affine transformations ĝ and
ĥ of g and h , respectively, such that

• ĝ(x0) = ĥ(x0) = 0,

• ĥ(x0 + ε) = 1,

• ĝ(x0 + ε) = 2.

We obviously have ĥ′(x0) > 0 and ĝ′(x0) = 0. It implies that ĝ(x) < ĥ(x) is some right
neighborhood of x0 . Let ξ > x0 be the smallest number such that ĝ(ξ ) = ĥ(ξ ) . Now,
as ĝ(x) < ĥ(x) for all x ∈ (x0,ξ ) we obtain

ĝ−1(y) > ĥ−1(y) for all y ∈ (
0, ĝ(ξ )

)
.

in particular, for y := ĝ(ξ )/2 we get

A[g]
1/2(x0,ξ ) = A[ĝ]

1/2(x0,ξ ) = ĝ−1(ĝ(ξ )/2) = ĝ−1(y)

> ĥ−1(y) = ĥ−1
( ĥ(x0)+ ĥ(ξ )

2

)
= A[ĥ]

1/2(x0,ξ ) = A[h]
1/2(x0,ξ )

Therefore A[g] �� A[h] . To obtain the converse we can adapt this proof assuming ε < 0
(regarding we will consider maximal ξ and some sings will be changed). �

Having this already proved we can skip the assumption about nonvanishing one-
sided derivative and obtain
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THEOREM 12. The family of quasi-arithmetic means generated by functions dif-
ferentiable at some point x0 ∈ intI is an interval-type set.

Proof. Suppose that f and g are differentiable at x0 and A[ f ] � A[h] � A[g] . As
A[ f ] and A[g] are comparable, by Lemma 11 we get that either f ′(x0) = g′(x0) = 0 or
f ′(x0) ·g′(x0) �= 0. In the first case we can use Corollary 6 to obtain differentiability of
h at x0 , while in the second case we use Theorem 9. �

In the case when I is open we can take an intersection of these interval-type sets
over all x0 ∈ I to obtain

COROLLARY 13. The family of quasi-arithmetic means defined on an open inter-
val I generated by differentiable functions is an interval-type set.
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