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LOCAL ONE–SIDED MAXIMAL FUNCTION

ON FRACTIONAL SOBOLEV SPACES

ABHISHEK GHOSH AND KALACHAND SHUIN

(Communicated by I. Perić)

Abstract. In this article we study the boundedness of local one sided maximal operators on
weighted fractional Sobolev Spaces. As a consequence we obtain a Lebesgue differentiation
theorem for functions in fractional Sobolev spaces.

1. Introduction and preliminaries

Let Ω ⊂ Rn be an open set. For f ∈ L1,loc(Ω) and x ∈ Ω , the centered local
Hardy-Littlewood maximal operator MΩ is defined as

MΩ f (x) := sup
0<r<dist(x,∂Ω)

1
|B(x,r)|

ˆ
B(x,r)

| f (y)|dy, x ∈ Ω (1)

where B(x,r) denotes the ball centered at x of radius r and |B(x,r)| denotes the volume
of the ball. When Ω = Rn , then the supremum is over all r > 0 and in that case we
denote MΩ simply by M .

Maximal operators play a very crucial part in differentiation theory and are often
used in establishing the different kind of convergences for certain integral averages.
Over the last two decades, there has also been considerable development in under-
standing boundedness and smoothness properties of the maximal operators defined on
Sobolev spaces. In this direction, the first remarkable achievement was by J. Kinnunen
in [3], where he proved that M is a bounded operator on the classical Sobolev spaces
W 1,p(Rn) for p > 1. Then in [2], the authors observed this phenomenon for any trans-
lation invariant operator. More precisely, they proved

THEOREM 1.1. ([2]) Assume T : Lp(Rn) → Lp(Rn), 1 < p < ∞ , is bounded and
sub-linear. If T (τy f ) = τy(T f ) for all f ∈ Lp(Rn) and for every y ∈ Rn , where
τy f (.) = f (.− y) . Then T is bounded on W 1,p(Rn) .
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Naturally, for p = 1, M cannot be bounded on W 1,1(Rn) . However, in [14], H.
Tanaka proved that the operator f → |∇(M̃ f )| is bounded from W 1,1(R) to L1(R) ,
where M̃ is the uncentered Hardy-Littlewood maximal operator defined by

M̃ f (x) := sup
B�x

1
|B|

ˆ
B
| f (y)|dy,

where the supremum is over all balls B containing x . Recently, in [11], Tanaka’s result
was extended for the centered maximal function M on R , which completely answers a
question raised by Hajłasz and Onninen in [2].

When it comes to the study of MΩ , the supremum in (1) is taken only over those
balls which are contained in Ω , so one of the main difficulties in handling this operator
is that it does not commute with translation. In [5], J. Kinnunen and P. Lindqvist estab-
lished the boundedness of MΩ on W 1,p(Ω) . Then the continuity of MΩ on W 1,p(Ω)
was elegantly achieved in [6]. In recent times the study of local maximal function
is a growing area of interest. In their two consecutive articles ([8, 9]), H.Luiro and
A.V.Vähäkangas explored the local maximal operator on fractional Sobolev spaces.
First in [8], they proved the boundedness result on fractional Sobolev spaces Ws,p(Ω) .
To describe these results in full glory we need to first recall the following preliminaries.

DEFINITION 1.2. A weight w on Rn is a locally integrable function such that
w(x) > 0 a.e on Rn .

In his celebrated article [12], B. Muckenhoupt characterized the weights w for
which the classical Hardy-Littlewood maximal operator is bounded on Lp(w) and and
these class of weights are commonly referred as Ap weights. The result is stated as the
following theorem.

THEOREM 1.3. ([12])

1. Assume 1 < p < ∞ . There exist a constant Cp,w > 0 such that the inequality

ˆ
Rn

M f (x)pw(x)dx � Cp,w

ˆ
Rn

| f (x)|pw(x)dx

holds for all f ∈ Lp(w) if and only if w satisfies the following Ap condition

[w]Ap := sup
Q

(
1
|Q|

ˆ
Q

w

)(
1
|Q|

ˆ
Q

w− 1
p−1

)p−1

< ∞,

where the supremum is taken over all cubes with sides parallel to co-ordinate
axes.

2. Let p = 1 . There exists a constant Cw > 0 such that

||M f ||L1,∞(w) � Cw|| f ||L1(w)
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holds for all f ∈ L1(w) if and only if w satisfies the following A1 condition

1
|Q|

ˆ
Q

w � ess inf
y∈Q

w(y)

for all cubes Q with sides parallel to coordinate axes.

It is very natural to ask whether the local Hardy-Littlewood maximal operator is
bounded on fractional Sobolev spaces for Ap weights. In [9], the authors answered
the above question affirmatively by defining a proper weighted analogue of fractional
Sobolev spaces. These spaces appear naturally in the study of fractional weighted
Hardy-type inequalities and potential theory.

DEFINITION 1.4. [8, 9] Let s > 0, 1 � p < ∞ , and w be a weight on Rn . Fix an
open set Ω � Rn . Then we define the fractional weighted Sobolev space Zs,p,w(Ω) as

Zs,p,w(Ω) = { f ∈ Lp(Ω) : || f ||pZs,p,w(Ω) = || f ||pLp(Ω) + | f |pZs,p,w(Ω) < ∞},

where,

| f |Zs,p,w(Ω) =

⎛
⎝ˆ

Ω

ˆ

Ω

| f (x)− f (y)|p
|x− y|sp w(x− y)dydx

⎞
⎠

1
p

. (2)

Among other facts, it is also shown in [9] that || f ||Zs,p,w(Ω) is a semi-norm on
Zs,p,w(Ω) . One can observe that if we take w(x) = |x|ε−n then we recover classical
fractional Sobolev spaces. For more in this direction we encourage the reader to consult
[9, 15] and the references therein. Now we are in a position to state the main result in
[9].

THEOREM 1.5. [9] Assume /0 �= Ω⊂Rn is an open set, 0 � s � 2 and 1 < p < ∞ .
Fix a measurable function R : Ω → [0,∞) satisfying 0 � R(x) � dist(x,∂Ω) for every
x ∈ Ω . Let MR denotes the following maximal function

MR f (x) := sup
0�r�R(x)

1
|B(x,r)|

ˆ
B(x,r)

| f (y)|dy.

Then for every Ap weight w in Rn , there exists a constant C =C(n, p, [w]Ap) > 0 such
that
ˆ

Ω

ˆ

Ω

|MR f (x)−MR f (y)|p
(|x− y|+ |R(x)−R(y)|)spw(x− y)dydx � C

ˆ

Ω

ˆ

Ω

| f (x)− f (y)|p
|x− y|sp w(x− y)dydx

for all f ∈ Zs,p,w(Ω) . Here we follow the convention 1
B(x,0)

´
B(x,0) | f (y)| = | f (x)| .
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When R := dist(x,∂Ω) , MR is the standard local maximal function MΩ . The
proof of the above result requires a very insightful analysis involving the radius and the
position of the point x ∈ Ω in (1).

The aim of this article is to study the local one-sided maximal function and its
boundedness on fractional Sobolev spaces and weighted fractional Sobolev spaces. The
classical one-sided maximal function, for f ∈ L1,loc(Rn) , is defined as

M+ f (x1,x2, . . . ,xn) := sup
r>0

 
Q(x,r)

| f (y)|dy

where
ffl
E f = 1

|E|
´
E f for any measurable set E with 0 < |E| < ∞ and Q(x,r) =

[x1,x1 + r)× [x2,x2 + r) . . .× [xn,xn + r) . In his remarkable article [13], E. Sawyer
characterized weights w on R for which M+ is bounded on Lp(w) . These classes of
weights are known as A+

p weights and are defined as follows :

For p > 1, w ∈ A+
p if and only if

[w]A+
p

:= sup
x∈R

sup
h>0

(
1
h

´ x
x−h w

)(
1
h

´ x+h
x w− 1

p−1

)p−1
< ∞

But, characterization of good weights for M+ in higher dimensions turns to be a
very difficult problem and is quite open to resolve. For more in this direction we refer
articles [10, 1] and references therein. Now motivated from [8, 9], we define the local
one-sided maximal function as

DEFINITION 1.6. Let Ω⊂Rn be any open set and R : Ω→ [0,∞) be a measurable
function such that 0 � R(x)

√
n � dist(x,∂Ω) for all x ∈ Ω . Then the local One-Sided

maximal operator M+
R is defined for x = (x1, . . . ,xn) ∈ Ω as

M+
R f (x1,x2, . . . ,xn) := sup

0�r�R(x)

 
Q(x,r)

| f (y)|dy, (3)

where Q(x,r) is as defined above and we follow the notation
ffl
Q(x,0) | f (y)| = | f (x)| .

When R(x) = dist(x,∂Ω)√
n , we denote M+

R simply by M+
Ω .

Similarly, M−
R is defined by

M−
R f (x1,x2, . . . ,xn) := sup

0�r�R(x)

 
Q−(x,r)

| f (y)|dy,

where Q−(x,r) = (x1− r,x1]× . . .× (xn− r,xn] .
The intent of this paper is to formulate the regularity properties of M+

R and M−
R

for functions in fractional Sobolev spaces and the concerning results are stated and
proved in details in the next section. Finally, in Section 3, as a consequence of our
main result, we obtain a Lebesgue differentiation theorem outside a set of zero Sobolev
capacity. Throughout this article, the abbreviation A � B means there is a constant
C (independent of A,B) satisfying A � CB . Unless mentioned otherwise, this implicit
constant will depend only on the dimension.
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2. A boundedness result for local one-sided maximal function

Here, we describe our main results. The following result establishes the bounded-
ness of local one-sided maximal function on fractional Sobolev spaces. Similar results
can be deduced for M−

R also, but from here on we will only write results about M+
R .

THEOREM 2.1. Let Ω � Rn be an open set, 0 < s < 2 and 1 < p < ∞ . Then, if
w is an Ap weight in Rn , then there exist a constant C = C(n, p, [w]Ap)ˆ

Ω

ˆ

Ω

|M+
R f (x)−M+

R f (y)|p
(|x− y|+ |R(x)−R(y)|)spw(x− y)dydx � C

ˆ

Ω

ˆ

Ω

| f (x)− f (y)|p
|x− y|sp w(x− y)dydx

(4)
holds for all f ∈ Zs,p,w(Ω) .

Let us define some notations and auxiliary maximal operators before going into the
proof of the above theorem. These maximal operators appear very naturally in different
contexts. For i, j ∈ {0,1} and for a measurable function F on R2n we define

MijF(x,y) = sup
r>0

 
B(o,r)

|F(x+ iz,y+ jz)|dz (5)

and by M+
i j and M−

i j we denote analogues maximal functions as in (5) just replacing
B(0,r) by Q(0,r) and Q−(0,r) respectively. For a weight w we denote w0(x,y) =

w(x− y)
1
p and w1(x,y) = w(y− x)

1
p . Ω ⊂ Rn be an open set and R as in (3), we write

LR(h)(x,y) = LR,Ω,s(h)(x,y) =
χΩ(x)χΩ(y)|h(x)−h(y)|
(|x− y|+ |R(x)−R(y)|)s

for (x,y) ∈ R2n and L(h) = L0,Ω,s(h) when R = 0 identically on Ω . In [5], the authors
have shown |D(MΩ f )(x)| � 2MΩ(|Df |)(x) . In that aspect our next lemma reflects a
certain pointwise relation between fractional derivative of M+

R f and that of f .

LEMMA 2.2. Let /0 �= Ω ⊂ Rn be an open set and R as in (3), 0 � s � 2 , and
1 < p < ∞ . Let w∈Ap(Rn) , then there exist a constant Cn such that for a.e (x,y)∈R2n

w0(x,y)LR(M+
R f )(x,y) � Cn[w0(x,y)M10(L f )(x,y)+M11(w1M01(L f ))(y,x)

+M11(w0M01(L f ))(x,y)] (6)

holds for all f ∈ Zs,p,w(Ω) .

Proof. Without loss of generality assume f � 0. By change of variable and the
fact that w̃(x) = w(−x) is again in Ap , so using symmetries we also assume that
M+

R f (x) > M+
R f (y) . The above assumptions allow us to find 0 < r1 � R(x) such that

M+
R f (x) =

ffl
Q(x,r1) f (z) , which implies

LR(M+
R f )(x,y) �

|fflQ(x,r1) f (z)− ffl
Q(y,r2) f (z)|

(|x− y|+ |R(x)−R(y)|)s
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for any 0 < r2 � R(y) .
Now we consider the following cases. In each case r2 will be chosen suitably

depending on the position of the points and r1 .
Case: r1 � |x− y|+ |R(x)−R(y)|
Take r2 = 0. Now observe that for all |z| < r1 we have |x+ z− y| � 2(|x− y|+

|R(x)−R(y)|) . Then

w0(x,y)LR(M+
R f )(x,y) � w0(x,y)

ffl
Q(x,r1) | f (z)− f (y)|dz

(|x− y|+ |R(x)−R(y)|)s

� w0(x,y)
 

Q(0,r1)

| f (x+ z)− f (y)|
|x+ z− y|s dz

� w0(x,y)
 

Q(0,r1)
L f (x+ z,y)dz

� w0(x,y)M10(L f )(x,y) (7)

Case: r1 > |x− y|+ |R(x)−R(y)|
Choose r2 = r1−|x− y|− |R(x)−R(y)|� R(y) . Then

|
 

Q(x,r1)
f (z)−

 
Q(y,r2)

f (z)|

= |
 

Q(0,r1)

(
f (x+ z)− f (y+

r2

r1
z)
)
|

= |
 

Q(0,r1)

[ f (x+ z)−
 

Q(y+ r2
r1

z,2(|x−y|+|R(x)−R(y)|))∩G

f (a)da

+
 

Q(y+ r2
r1

z,2(|x−y|+|R(x)−R(y)|))∩G

f (a)da− f (y+
r2

r1
z)]dz|

� K1 +K2

where,

K1 =
 

Q(0,r1)

 
Q(y+ r2

r1
z,2(|x−y|+|R(x)−R(y)|))∩Ω

| f (x+ z)dz− f (a)|dadz

K2 =
 

Q(0,r1)

 
Q(y+ r2

r1
z,2(|x−y|+|R(x)−R(y)|))∩Ω

| f (y+
r2

r1
z)− f (a)|dadz

=
 

Q(0,r2)

 
Q(y+z,2(|x−y|+|R(x)−R(y)|))∩Ω

| f (y+ z)− f (a)|dadz

Let’s estimate K1 first.

(yi + r2
r1

zi)− (xi + zi−3|x− y|−3|R(x)−R(y)|)
= 3|x− y|+3|R(x)−R(y)|+(yi− xi)+ ( r2

r1
−1)zi > 0
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and

xi + zi +3|x− y|+3|R(x)−R(y)|− (yi+ r2
r1

zi +2|x− y|+2|R(x)−R(y)|)
= |x− y|+ |R(x)−R(y)|+(1− r2

r1
)zi > 0 for all |zi| < r1 and i ∈ {1, . . . ,n}.

which implies Q(y+ r2
r1

z,2(|x−y|+ |R(x)−R(y)|))⊂Q[x+z,3(|x−y|+ |R(x)−R(y)|)]
where Q[t,r] denotes the cube centred at t with side-length 2r . Using these estimates
we obtain

w0(x,y)
K1

(|x− y|+ |R(x)−R(y)|)s

� w0(x,y)
(|x− y|+ |R(x)−R(y)|)s

 

Q(0,r1)

 

Q[x+z,3(|x−y|+|R(x)−R(y)|)]∩Ω

| f (x+ z)− f (a)|dadz

�
 

Q(0,r1)
w0(x,y)

 
Q[x+z,3|x−y|+3|R(x)−R(y)|]

χΩ(x+ z)χΩ(a)| f (x+ z)− f (a)|
|x+ z−a|s dadz

�
 

Q(0,r1)
w0(x,y)

 
Q[y+z,4|x−y|+4|R(x)−R(y)|]

L f (x+ z,a)dadz

�
 

Q(0,r1)
w0(x+ z,y+ z)M01(L f )(x+ z,y+ z)dz

� M11(w0M01(L f ))(x,y). (8)

where we have used |x + z− a| � Cn(|x− y|+ |R(x)−R(y)|) and Q[x + z,3|x− y|+
3|R(x)−R(y)|]⊂ Q[y+ z,4|x− y|+4|R(x)−R(y)|] .

Now let’s estimate K2 . As

(yi + zi)− (xi + zi−4|x− y|−4|R(x)−R(y)|)
= 4|x− y|+4|R(x)−R(y)|+(yi− xi) > 0

and

(xi + zi +4|x− y|+4|R(x)−R(y)|)− (yi+ zi +2|x− y|+2|R(x)−R(y)|> 0

= 2|x− y|+2(xi− yi)+2|R(x)−R(y)|> 0

we have Q(y+ z,2(|x− y|+ |R(x)−R(y)|)) ⊂ Q[x+ z,4(|x− y|+ |R(x)−R(y)|] for all
i . Hence,

w0(x,y)
K2

(|x− y|+ |R(x)−R(y)|)s

�
 

Q(0,r2)
w0(x,y)

 
Q[y+z,2(|x−y|+|R(x)−R(y)|)]

χΩ(y+ z)χΩ(a)| f (y+ z)− f (a)|
(|y+ z−a|)s dadz

�
 

Q(0,r2)
w0(x,y)

 
Q(x+z,4(|x−y|+|R(x)−R(y)|))

L f (y+ z,s)dsdz

�
 

Q(0,r2)
w1(y+ z,x+ z)M01(L f )(y+ z,x+ z)dz

� M11(w1M01(L f ))(y,x). (9)
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where we have used |y + z− s| � Cn(|x− y|+ |R(x)− R(y)|) . Now combining the
estimates (7), (8), and (9), we obtain the desired inequality (6). This completes the
proof of the lemma. �

Now we are in a position to prove Theorem 2.1.

Proof. Take f ∈ Zs,p,w(Ω) . Then by Lemma 2.2,

w(x− y)
1
p LR(M+

R f )(x,y) � Cn[w(x− y)
1
p M10(L f )(x,y)+M11(w(y− x)

1
p M01(L f ))(y,x)

+M11(w(x− y)
1
p M01(L f ))(x,y)] (10)

holds for a.e in R2n . It’s easy to observe that M11 is bounded on Lp(R2n) . And
the following weighted inequality holds for the operator M10 for Ap weights as an
application of Muckenhoupt’s Theorem 1.3 and Fubini’s theorem. For a complete proof
we refer [9]. For w ∈ Ap and any measurable function F on R2n there is a constant
C = C(n, p, [w]Ap) such that

ˆ

Rn

ˆ

Rn

(M01(F)(x,y))p w(x− y)dxdy � C
ˆ

Rn

ˆ

Rn

|F(y,x)|pw(x− y)dxdy. (11)

Eventually the fact if w ∈ Ap then w̃ is also in Ap . Now our main result (4) is achieved
by applying the unweighted boundedness of M11 first and then using the result (11) for
w and w̃ in (10). This completes the proof of our main Theorem 2.1. �

Our next result, as a consequence of our main Theorem2.1, yields the boundedness
of uncentered local maximal function also in R on weighted fractional Sobolev spaces.
We define the uncentered local Hardy-Littlewood maximal function for an interval Ω
in R as

MΩ f (x) := sup
x∈I,I⊂Ω

 
I
f

where the supremum is taken over all intervals I contained in Ω . Then following the re-
lation MΩ f (x) = max{M+

Ω (x),M−
Ω f (x)} and Theorem 2.1, we obtain the boundedness

of uncentered Maximal function on fractional Sobolev spaces in the following theorem.

THEOREM 2.3. Let Ω � R be an open set, 0 < s < 2 and 1 < p < ∞ . Then, if w
is an Ap weight in R , then there exist a constant C = C(n, p, [w]Ap)

ˆ

Ω

ˆ

Ω

|MΩ f (x)−MΩ f (y)|p
|x− y|sp w(x− y)dydx � C

ˆ

Ω

ˆ

Ω

| f (x)− f (y)|p
|x− y|sp w(x− y)dydx

(12)

holds for all f ∈ Zs,p,w(Ω) .

Finally, we end this section with the following remark which shows that if we con-
sider the global maximal function then an analogue of Theorem 2.1 can be established
without any restriction on the weight.
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REMARK 2.4. It is very interesting to observe that when Ω = Rn , M+ satisfy the
inequality 4 for any weight w . For arbitrary x,y , we assume without loss of generality
that M+ f (x) � M+ f (y) . Let {rn} be a sequence such that lim

n→∞
An( f ,x) = M+ f (x)

where,

An( f ,x) =
 

Q(x,rn)
| f (t)|dt

Using the fact that, |M+ f (x)−M+ f (y)|� (M+ f (x)−An( f ,x))+(An( f ,x)−An( f ,y)) ,
we have

|M+ f (x)−M+ f (y)|
|x− y|s w(x− y)

1
p � w(x− y)

1
p limsup

n→∞

ffl
Q(0,rn)

| f (x+z)− f (y+z)|
|x−y|s dz

� M11(w0S f )(x,y)

where w0(x,y) := w(x − y)
1
p , S f (x,y) = | f (x)− f (y)|

|x−y|s . The boundedness of M11 on

Lp(R2n) immediately implies

||M+ f ||Zs,p,w(Rn) � C|| f ||Zs,p,w(Rn)

for all f ∈ Zs,p,w(Rn) . This again suggests that the intrinsic nature of the local maximal
operator is very different from that of the global maximal operator.

3. Application to Lebesgue differentiation

In this section we study Sobolev Capacity and Lebesgue differentiation for func-
tions in weighted fractional Sobolev spaces. We state the following definition from [3]
with standard notations. For 1 < p < ∞ , a function u is called p-quasicontinuous if for
every ε > 0 there is a set F such that Cp(F) < ε and u restricted to Rn \F is continu-
ous, where Cp(F) denotes the standard Sobolev capacity. In [3], the author has proved
the Hardy-Littlewood maximal function of a Sobolev function is quasicontinuous. In
this direction we first define Sobolev Capacity

DEFINITION 3.1. ([9]) Suppose 0 < s < 1 and p � 1. Let w be a weight in Rn .
For E ⊂ Rn , then the Sobolev capacity of E is defined as

Cs,p,w(E) = inf
g∈A(E)

||g||pZs,p,w(Rn),

where A(E) = {g ∈ Zs,p,w(Rn) : g � 1 in an open set containing E} . If A(E) = /0 , we
define Cs,p,w(E) = ∞ .

In [9] the authors have proved the fact that Cs,p,w is an outer measure on Rn ,
see [[9], Lemma 24]. Here we consider Zs,p,w(Rn) only for those Ap weights w such
that C∞

0 (Rn) ⊂ Zs,p,w(Rn) . We obtain a Lebesgue differentiation with respect to the
cubes for functions in Zs,p,w(Rn) which allow us to find quasicontinuous representative
of functions in fractional weighted Sobolev spaces. Precisely, we have the following
theorem
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THEOREM 3.2. Assume 0 < s < 1 and p > 1 . Let w∈ Ap be such that C∞
0 (Rn)⊂

Zs,p,w(Rn) . Then for every f ∈ Zs,p,w(Rn) , there is a Gδ set E ⊂Rn with Cs,p,w(E) = 0
such that lim

r→0+

ffl
Q(x,r) f exists for every x ∈ Rn \E and if we define

f ∗(x) := lim
r→0+

 
Q(x,r)

f (y)dy

then for every ε > 0 , there exist an open set U ⊂ Rn such that Cs,p,w(U) < ε and
f ∗|Rn\U is well-defined and continuous on Rn \U i.e f ∗ is a quasicontinuous repre-
sentative of f .

Proof. The proof mostly follows the ideas of Theorem 21 in [9]. We provide a
sketch of the proof for readers convenience. Take f ∈ Zs,p,w(Rn) then for each integer
k � 1 there exist fk ∈C∞

0 (Rn) such that

|| f − fk||pZs,p,w(Rn) � 2−k(p+1).

Define Ek = {x ∈ Rn : M+
1 ( f − fk)(x) > 2−k} , where M+

1 is the local one-sided max-
imal function with respect to R = 1 and Ω = Rn . Ek ’s are open set and using the
boundedness of M+ and theorem 2.1, there exist C = C(p,n, [w]Ap)

Cs,p,w(Ek) � ||2kM+
1 ( f − fk)||Zs,p,w(Rn)

� C2kp|| f − fk||pZs,p,w(Rn) � C2−k

Now for all x ∈ Ec
k and 0 < r � 1 we observe

limsup
r→0

| fk(x)−
ffl

Q(x,r) f |

� limsup
r→0

( 
Q(x,r)

| fk(x)− fk(y)|+
 

Q(x,r)
| fk(y)− f (y)|dy

)

� M+
1 ( fk − f )(x) � C2−k

Let Fm :=
⋃

k�m
Ek , then Fm ’s are open set and using sub-additivity of Sobolev Capacity

we obtain Cs,p,w(Fm) � ∑
k�m

Cs,p,w(Ek) � C ∑
k�m

2−k . Then for i, j � m and for all x ∈
Rn \Fm we have

| f j(x)− fi(x)| � limsup
r→0

| f j(x)−
ffl

Q(x,r) f |+ limsup
r→0

| fi(x)−
ffl

Q(x,r) f |

� 2−i +2− j.

hence ( f j) converges uniformly to some continuous function, let’s say gm , on Rn \Fm .
It’s easy to observe that if x ∈ Rn \Fm then

limsup
r→0

|gm(x)− ffl
Q(x,r) f |

� |gm(x)− fi(x)|+ limsup
r→0

| fi(x)−
ffl

Q(x,r) f | → 0 as i → ∞
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Hence, we obtain

gm(x) = lim
r→0+

 
Q(x,r)

f (y) for all x ∈ Rn \Fm

Let E :=
⋂

m�1
Fm , then by construction E is an Gδ set and by monotonicity Cs,p,w(E) =

0 and

f ∗(x) = lim
r→0+

 
Q(x,r)

f (y) for all x ∈ Rn \E

And for the last part, take any ε > 0 then choose m ∈N such that Cs,p,w(Fm) < ε . Take
U := Fm and it’s easy to see that f ∗ = gm on Rn \U which is continuous on Rn \U .
Hence we obtain the theorem. �

Conclusion. Our approach yields the boundedness of M+
R on weighted fractional

Sobolev spaces provided that the weight belongs to Ap classes. But it’s not yet known
whether it is possible to extend Theorem 2.1 for a bigger class of weights. For example
if w ∈ A+

p on R , then we are able to prove a better analogue of Lemma 2.2, namely

w0(x,y)L(M+
Ω f )(x,y) � C[w0(x,y)M+

10(L f )(x,y)+M11(w1M
+
01(L f ))(y,x)

+M11(w0M
−
01(L f ))(x,y)]

everywhere except for the case when x > y together with M+
R f (y) > M+

R f (x) . One
major difficulty in this case is that w ∈ A+

p implies w̃ ∈ A−
p (see[10]) and thus we lose

the symmetry.
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