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(Communicated by M. A. Hernández Cifre)

Abstract. Sangwine-Yager conjectured in [9] that if r1 � . . . � rn are the real parts of the roots of
the (formal) alternating Steiner polynomial of V(K−tE) , then 0< r1 � r(K;E) � R(K;E) � rn ,
where r(K;E) and R(K;E) are the inradius, respectively, outradius, or circumradius, of K
relative to E . We present here a new counterexample to this conjecture in dimension 3 when
none of the bodies is a Euclidean ball. Previous examples due to Henk and Hernández Cifre,
and, respectively, to Hernández Cifre and Saorı́n, were constructed with fairly technical tools.
Our example is non-trivial in the sense that both K and E are top dimensional convex bodies,
yet it is easy to present.

1. Introduction

A staple of Euclidean planar geometry, Bonnesen’s inequality [1], [2] states that if
C is a Jordan curve of length L which bounds a domain of area A , then

tL−A− t2π � 0, for any t ∈ [r,R],

where r , called inradius, is the radius of the largest disk included in the domain K
bounded by C

r = sup{ρ � 0 : ∃p ∈ R
2 such that ρB2 + p ⊂ K}

and R , called circumradius or outradius, is the radius of the smallest disk containing C

R = inf{ρ � 0 : ∃p ∈ R
2 such that K ⊂ ρB2 + p}.

The power of this inequality is more evident when considering its immediate corol-
lary

L2 −4πA � π2(R− r)2

which provides a qualitative version of the planar isoperimetric inequality, a characteri-
zation of its equality case, and stability estimates for the planar isoperimetric inequality.
For a nice survey on Bonnesen’s inequality, we direct the reader to [8].
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Restricting K to be convex, there exists an anisotropic version of the Bonnesen in-
equality which one can regard as a version of Bonnesen inequality in the two-dimensional
plane whose unit ball is an arbitrary compact convex set E containing the origin, but
not necessarily symmetric with respect to the origin. We call the classical case, when
the unit ball is the Euclidean unit ball centred at the origin, isotropic. Below, we will
state this generalized (anisotropic) inequality following Flanders [4].

Let C0 and C1 be two Jordan curves bounding convex domains E and K with ar-
eas A(E) and A(K) respectively. Let r(K;E) and R(K;E) be the inradius, respectively
circumradius, of K relative to E , more precisely,

r(K;E) = sup{ρ � 0 : ∃p ∈ R
2 such that ρE + p ⊂ K}, (1)

respectively,

R(K;E) = inf{ρ � 0 : ∃p ∈ R
2 such that K ⊂ ρE + p}. (2)

Let V (K,E) denote the mixed volume of K and E defined by

V (K,E) = lim
ε↘0

A(K + εE)−A(K)
ε

,

where + denotes the usual vector addition.
Then, the anisotropic Bonnesen inequality states that

tV (K,E)−A(K)− t2A(E) � 0, ∀t ∈ [r(K;E),R(K;E)].

Bonnesen’s inequality, isotropic and anisotropic alike, does not hold for, even reg-
ular, domains in dimension n > 2 when L is replaced by surface area (or V (K,E) is
replaced by a weighted surface area in the anisotropic case) and A is replaced by the
volume as the Lebesgue measure in R

n . However, there are several results in the lit-
erature on estimating the (relative) inradius and circumradius in higher dimension via
certain Bonnesen-type inequalities and we mention in particular those of Sangwine-
Yager [9], [10], and Zhou et al. [16]. Jiazu Zhou, alone or with collaborators, has in
fact obtained also many generalizations of the planar Bonnesen inequality, isotropic and
anisotropic, including some for domains in planes of constant curvature, among which
we mention [14], [15].

This reinforced the interest in having a result relating the roots of a polynomial
to the values of the inradius and circumradius of convex bodies in the n -dimensional
Euclidean space. We will start by presenting an early conjecture in this direction. Let
K and E be two convex bodies in R

n , thus two compact convex sets of R
n with non-

empty interior. It was shown by Steiner in early 1800’s that, in any dimension n � 2,
the volume (area if n = 2) of the set K + tE , t > 0, is a polynomial in t :

V (K + tE) =
n

∑
i=0

(
n
i

)
tiV (K, . . . ,K︸ ︷︷ ︸

n−i

,E, . . . ,E︸ ︷︷ ︸
i

), (3)
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where the quantities V (K, . . . ,K,E, . . . ,E) , sometime denoted by Vi(K,E) , are mixed
volumes of K and E defined precisely as coefficients of the Steiner polynomial, see
[12].

In reference to Bonnesen’s inequality, a first conjecture in higher dimension stated
that for n > 2 the alternating Steiner polynomial

n

∑
i=0

(
n
k

)
(−t)iV (K, . . . ,K,E, . . . ,E), (4)

formally V (K− tE) , is negative on the closed interval [r(K;E),R(K;E)] . This conjec-
ture was shown to be false by a counterexample constructed by Sangwine-Yager in [10]
employing cap bodies.

Inspired by a problem proposed by Teissier in the realm of algebraic geometry,
[13], Sangwine-Yager stated in [9] the following conjecture: if r1 � . . . � rn are the
real parts of the roots of the alternating Steiner polynomial as above in (4), then 0 <
r1 � r(K;E) � R(K;E) � rn .

Unfortunately, also this conjecture has been shown recently to be false. Henk and
Hernández Cifre have shown that, in any dimension, the conjecture holds for bodies E
and cap bodies of E which are also known as 1-tangential bodies of E - result known
to Sangwine-Yager in dimension 3, [11], but it does not hold for 2-tangential bodies,
[6]. Their examples are (in the isotropic case): planar bodies (a symmetric planar lens)
in R

3 , a 2-tangential body of the Euclidean ball B15 in dimension 15 and B15 , and
a 3-tangential body of B12 in dimension 12 and B12 . For definitions of p -tangential
bodies (1 � p � n− 1), we direct the reader to [12]. As a side remark, note that the
roots of the Steiner polynomial are the opposite of the roots of the alternating Steiner
polynomial which has been the context in which Henk and Hernández Cifre worked
on. Until more recently, there was hope for a partial validity of the isotropic version of
Sangwine-Yager’s conjecture for the inequality 0 < r1 � r(K;E = Bn) . However, this
has been disproved also in 2014 by Hernández Cifre and Saorı́n, [7].

In this paper, we present a new counterexample to Sangwine-Yager’s conjecture
in dimension 3. The counterexample is fairly simple and is a result of trying to find a
Bonnesen-type inequality for a class of polyhedra. We have started investigating the in-
radius and circumradius for pairs of polyhedra with parallel corresponding sides (same
set of outernormals to the top dimensional faces). We have quickly reached the conclu-
sion that such an inequality cannot hold in general, but, in the process, we have shown
that if K is a cube with a cut-off corner and E is a parallelepiped whose outernormals
to the faces are those of the cube, the inradius r(K;E) violates the conjecture. Switch-
ing K and E between them, the circumradius R(E;K) will violate the conjecture as
well.

Acknowledgements. We would like to thank Marı́a Hernández Cifre for useful
discussions. Special and sincere thanks go to the referee for the careful reading given
to the manuscript which led to many invaluable improvements a well as for bringing to
our attention references that we were not aware of.
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2. Main results

We call a convex body in R
n a compact convex set in R

n with non-empty interior.
The support function of a convex body K as a function on the unit sphere S

n−1 =
{(u1, . . . ,un) ∈ R

n : ∑n
i=1 u2

i = 1} assigns to each unit vector u ∈ S
n−1 the number

hK(u) = max
x∈K

(x ·u),

where · denotes the usual scalar product in R
n . Note that, if K contains the origin of

R
n in its interior, then the support function hK is positive on its domain.

Now, let us consider two convex bodies in R
3 as follows. Let the first convex

body, denoted by K , be a rectangular parallelepiped centred at the origin whose 2-
dimensional faces are parallel to the coordinate planes. Let K have length L , width
w , and height h and assume, without loss of generality, that L � w � h . Let the sec-
ond convex body, denoted by E , be the unit cube, centred at the origin and having
the 2-dimensional faces parallel to the coordinate planes, with a corner cut off by the
affine plane P intersecting the cube at the points (1/2,0,−1/2),(0,1/2,−1/2) and
(1/2,1/2,0) , so that the origin remains in the interior of E .

Our immediate goal is to compute the coefficients of the alternating Steiner poly-
nomial of K relative to the body E :

S (t) = V0(K,E)−3tV1(K,E)+3t2V2(K,E)− t3V3(K,E),

where Vi(K,E) is the i-th mixed volume of K with respect to E , 0 � i � 3, as in (3).

2.1. Alternating Steiner polynomial of K relative to E

We note from the definition of mixed volumes, see also [12], that V0(K,E) =
V (K) , the volume of K , and that V3(K,E) = V (E) , the volume of E .

Let u1, . . . ,u6 be the outer unit normals to the 2-dimensional faces Fi of K . We
denote the 2-dimensional faces Fi of E so that u1, . . . ,u6 are normals to the faces of
E in this order as well, while F7 is face of E contained in the plane P of unit outer
normal u7 = 1√

3
(1,1,−1) . Finally, hi = hK(ui) and hi = hE(ui) for each corresponding

i .
Then, following, for example, [12] formula (5.23), the first and second mixed

volumes are given by, respectively,

V1(K,E) =
1
3

6

∑
i=1

hiA(Fi) and V2(K,E) =
1
3

7

∑
i=1

hiA(Fi).

Clearly, V (K) = Lwh and, as E is the unit cube without a pyramidal corner, we have

that V (E) = 1− 1
3 ·

( 1
2

)4 = 47
48 .

Furthermore, assuming the ordering of the faces due to the relation between their
outernormals as follows u1 = −u6, u2 = −u4, u3 = −u5 , we have that

h1 =
h
2

= h6, h2 =
L
2

= h4, h3 =
w
2

= h5, h1 = . . . = h6 =
1
2
,
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and
A(F1) = Lw = A(F6), A(F2) = wh = A(F4), A(F3) = Lh = A(F5).

Moreover,

A(Fi) = 1, for i = 1,2,3, and A(Fi) =
7
8
, for i = 4,5,6,

while F7 is an equilateral triangle with side
√

2
2 , thus height

√
6

4 and area A(F7) =
√

3
8 .

Finally, to proceed with the calculation of V2(K,E) , we still need the value h7 ,
which is the distance from the origin to the plane P , which has the same normal as P
but passes through the vertex of coordinates (w

2 , L
2 , −h

2 ) of K .

The plane P has equation x+ y− z = L+w+h
2 , so by minimizing

√
x2 + y2 + z2

subject to (x,y,z) ∈ P , we get h7 =
√

3
6 (L+w+h) .

We can now compute the values of the mixed volumes. Using (5), we get

V1(K,E) =
Lw+Lh+wh

3
and V2(K,E) =

(L+w+h)
3

.

The alternating Steiner polynomial of K relative to E is then:

S (t) = Lwh− (Lw+Lh+wh)t +(L+w+h)t2− 47
48

t3. (5)

From the fundamental theorem of algebra, this polynomial may have three real roots or
one real root and two complex conjugate roots.

2.2. A specific counter-example to Sangwine-Yager’s conjecture concerning the
inradius

Let us consider K as the body described earlier with the specific values L = 4,
w = 3, and h = 2.

Using the definitions of the inradius, respectively outradius, of K relative to E ,
(1), (2), we have that r(K;E) = 2 and R(K;E) = 4.

From (5), the alternating Steiner polynomial for the bodies K and E is

S (t) = 24−26t +9 t2− 47
48

t3.

This polynomial has three real roots: r1 ≈ 2.1200, r2 ≈ 2.5663 and r3 ≈ 4.5052 (where
exact formulas can be found in [3] and approximations were performed with Wolfra-
mAlpha).

Thus, for our pair of convex bodies K and E as before, we have

r(K;E) < r1 < R(K;E) < r3,

contradicting Sangwine-Yager’s conjecture in that r(K;E) < r1 , a result that we will
state formally below.

THEOREM 1. There exist non-spherical convex bodies K and E in R
3 such that

the inradius r(K;E) is smaller than the smallest real part of the roots of the alternating
Steiner polynomial of K with respect to E .
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2.3. Reversing the roles. A specific counter-example to Sangwine-Yager’s conjec-
ture concerning the circumradius

We are interested in confirming that we get a counter-example in the opposite
direction by taking now K as the body of reference, and by noting that, for any two
convex bodies E and K , we have

r(E;K) ·R(K;E) = 1. (6)

Thus, r(E;K) = 1
4 and R(E;K) = 1

2 and the alternating Steiner polynomial is:

S (t) =
47
48

−9 t +26t2−24 t3.

This polynomial has also three real roots: r1 ≈ 0.22197, r2 ≈ 0.38966 and r3 ≈
0.47170.

In this case, we see that

r1 < r(E;K) < r3 < R(E;K),

where the fact that r3 < R(E;K) contradicts the right-side inequality of Sangwine-
Yager’s conjecture. We have thus proved:

THEOREM 2. There exist non-spherical convex bodies E and K in R
3 such that

the circumradius R(E;K) is larger than the largest real part of the roots of the alter-
nating Steiner polynomial of E with respect to K .

Note that the key argument here is related to the reciprocity condition (6) that
holds for any two convex bodies K and E . This is precisely the argument that led to
the anisotropic result by Henk and Hernández Cifre which makes the second body still
being a ball.
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[1] T. BONNESEN, Les problèmes des isopérimètres et des isépiphanes, Gauthier-Villars, Paris, 1929.
[2] T. BONNESEN AND W. FENCHEL, Theorie der konvexen Körper, Berlin, 1934.
[3] G. CARDANO, The Great Art (Ars Magna), Dover, New York, 1993.
[4] H. FLANDERS, A proof of Minkowski’s inequality for convex curves, Amer. Math. Monthly 75 (1968),

581–593.
[5] H. HADWIGER, Altes und Neues über konvexe Körper, Birkhäuser Verlag, Basel und Stuttgart, 1955.
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