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DUAL COMPLEMENTS FOR DOMAINS OF Cn

LEV AIZENBERG, ELIJAH LIFLYAND AND ALEŠ NEKVINDA

(Communicated by I. Perić)

Abstract. Let Ω ⊂ Cn be a bounded, strictly convex domain and Ω̃ be its dual complement.
Very few such domains with fully described dual complements have been known. We present
new types of domains for which their dual complements can be completely described.

1. Introduction

In the Grothendieck-Köthe-da Silva duality theory for the spaces of holomorphic
functions defined in a convex domain Ω ⊂ Cn containing the origin 0 ∈ Cn the notion
of dual domain is one of the important basic facts.

If 0 ∈ Ω , then its dual complement (or generalized complement, in [3], [4] it is
called the conjugate set of Ω)

Ω̃ = {w ∈ Cn : w1z1 + . . .+wnzn �= 1,z ∈ Ω}

is the set of hyperplanes that do not intersect the domain Ω . Thus 0 ∈ Ω̃ . It is also a
known fact that for the domain Ω the dual complement of its closure Ω is the interior

of the set Ω̃ , that is, Ω̃ = int(Ω̃) . In particular, when Ω has a smooth (C 2 ) boundary
then Ω̃ = int(Ω̃)∪∂Ω̃ . Furthermore, if the bounded domain Ω is convex and 0 ∈ Ω ,
then λ Ω ⊂ Ω , for every 0 < λ < 1. Thus the closed domain Ω and the open domain

Ω̃ are starlike ([3]). In general, it is not an easy task to describe the dual complement of
the domain Ω , however for the case of Reinhardt domains with center at the origin we
have very precise results. Recall that an open subset Ω of Cn is called Reinhardt do-
main if (z1, . . . ,zn) ∈ Ω implies (eiθ1z1, . . . ,eiθnzn) ∈ Ω for all real numbers θ1, . . . ,θn .
Actually, if Ω is a Reinhardt domain centered at the origin, then F(Ω) ⊂ Rn

+ , where
Rn

+ = {(x1,x2, . . . ,xn) ∈ Rn : xi � 0} , F(z1,z2, . . . ,zn) = (|z1|, |z2|, . . . , |zn|) . For any
B ⊂ Rn

+ , its inverse image by F−1 is defined to be the set F−1(B) = {(z1,z2, . . . ,zn) ∈
Cn : F(z1,z2, . . . ,zn) ∈ B} . It is straightforward to verify that domain Ω ⊂ Cn is Rein-
hardt if and only if Ω = F−1(F(Ω)) . Hence, any Reinhardt domain Ω is determined
completely by its absolute image F(Ω) . Thus we have the following definition
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DEFINITION 1. Let Ω⊂Cn be a Reinhardt domain centered at the origin 0∈Cn .

We say that the point (y1, . . . ,yn) ∈ F̃(Ω) ⊂ Rn
+ if and only if

n
∑
i=1

xiyi < 1 for every

(x1,x2, . . . ,xn) ∈ F(Ω) . Then the dual complement of Ω is the set Ω̃ = F−1(F̃(Ω)) .

The most recent example of the dual domain is given in the following statement
[5, Lemma 1.1].

LEMMA 1. For r > 0 , p > 1 and ki ∈ R+ \ {0} , i = 1,2, . . . ,n, fixed numbers,
let

Ω =
{

z ∈ Cn :
n

∑
i=1

ki|zi|p < rp
}
, (1)

be a Reinhardt domain centered at the origin. Then, for q = p
p−1 ,

Ω̃ =
{

ζ ∈ Cn :
n

∑
i=1

(ki)
1

1−p |ζi|q � 1
rq

}
. (2)

Recall that the known cases of ki = 1, (i = 1, . . . ,n) to be found in ([2, 3]). The
appropriate case where p = 1 corresponds to that where Ω is a hypercone, whose dual
complement Ω̃ is the closed polydisk. When p = 2, the appropriate domain Ω is a ball
about the origin of radius r , whose dual complement is the closed ball about the origin
of radius 1

r . In the case p = ∞ , the dual complement Ω̃ is the closed hypercone. So
the above lemma gave new results for 1 < p < ∞ and p �= 2, or for all p , with some
ki �= 1.

Our goal is to seriously extend the collection of domains for which certain descrip-
tion of their dual complements is possible. What is of additional interest is that not only
convex or linearly convex (which is the same for Reinhardt domains) are considered.

2. General norms

Say that ‖ · ‖ is a Reinhardt type norm on Cn if there exists a norm ‖ · ‖1 on Rn

such that ‖z‖ = ‖ |z| ‖1 , z = (z1,z2, . . . ,zn) ∈ Cn , |z| = (|z1|, |z2|, . . . , |zn|) ∈ Rn . In
general, a domain generated by such a norm need not be Reinhardt, say take all z j to
be real. However, for r > 0, denote

Ωr = {z ∈ Cn : ‖z‖ < r}.
Evidently, Ω is a Reinhardt domain. Define a dual (associate, see [8]) norm ‖ · ‖∗ by

‖w‖∗ = sup
{∣∣∣ n

∑
k=1

zkwk

∣∣∣ : ‖z‖ � 1
}

and set

Gr = {z ∈ Cn : ‖z‖∗ � r}.
Recall some well-known facts on norms.
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LEMMA 2. Let z,w ∈ Cn . Then the Hölder inequality∣∣∣ n

∑
k=1

zkwk

∣∣∣� ‖z‖‖w‖∗

holds. Moreover, this inequality is saturated, i.e., for the v ∈ Cn there exists a u ∈ Cn

with ‖u‖ = 1 such that

‖v‖∗ =
∣∣∣ n

∑
k=1

ukvk

∣∣∣.
Proof. The Hölder inequality is an easy consequence of the definition of the dual

norm. Indeed,∣∣∣ n

∑
k=1

zkwk

∣∣∣= ‖z‖
∣∣∣ n

∑
k=1

zk

‖z‖wk

∣∣∣� ‖z‖sup
{ n

∑
k=1

ckwk;‖c‖ � 1
}

= ‖z‖‖w‖∗.

Now assume v ∈ Cn . By the definition of the dual norm we have

‖v‖∗ = sup
{∣∣∣ n

∑
k=1

ukvk

∣∣∣;‖u‖ � 1
}

which can be easily rewritten as

‖v‖∗ = sup
{∣∣∣ n

∑
k=1

ukvk

∣∣∣;‖u‖ = 1
}
.

From the definition of supremum we can find a sequence u(m) = (u(m)
1 ,u(m)

2 , . . . ,u(m)
n ) ∈

Cn , m = 1,2, . . . with ‖u(m)‖ = 1 and

‖v‖∗− 1
m

<
∣∣∣ n

∑
k=1

u(m)
k vk

∣∣∣.
Choose a subsequence u(ms) of u(m) such that u(ms)

k → wk . Then ‖w‖ = 1 and

‖v‖∗ �
∣∣∣ n

∑
k=1

wkvk

∣∣∣,
which finishes the proof. �

THEOREM 1. Let ‖ · ‖ be a Reinhardt type norm and r > 0 . Then Ω̃r = G 1
r
.

Proof. Prove first G 1
r
⊂ Ω̃r . Let w ∈ G 1

r
. Then for each z ∈ Ωr , we have, by the

Hölder inequality, ∣∣∣ n

∑
k=1

zkwk

∣∣∣� ‖z‖‖w‖∗ < r
1
r

= 1,
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therefore w ∈ Ω̃r .
Let us now prove the converse inequality. Suppose w /∈ G 1

r
. Rewriting it we

have ‖w‖∗ > 1
r . It follows from the saturation of the Hölder inequality that there exists

a ∈ Cn with ‖a‖ = 1 and ∣∣∣ n

∑
k=1

akwk

∣∣∣= ‖w‖∗.

Set ρ = 1
‖w‖∗ , ck = ρak , k = 1,2, . . . ,n . Then ‖c‖ = ρ = 1

‖w‖∗ < r and

∣∣∣ n

∑
i=1

ckwk

∣∣∣= ρ
∣∣∣ n

∑
k=1

akwk

∣∣∣= 1
‖w‖∗ ‖w‖

∗ = 1.

Find 0 � ϕ < 2π with

eiϕ =
n

∑
k=1

ckwk.

Define bk = e−iϕck for k = 1,2, . . . ,n . Then ‖b‖ = ‖c‖ < r and b ∈ Ωr . Moreover,

n

∑
k=1

bkwk = e−iϕ
n

∑
k=1

ckwk = e−iϕeiϕ = 1

and so, w /∈ Ω̃r . We have proved an implication w /∈ G 1
r
⇒ w /∈ Ω̃r , which, in turn,

proves Ω̃r ⊂ G 1
r

and thus completes the proof of the theorem. �

3. Variable powers case

We are going to consider domains, more general than those in (1), generated by
a variable exponent norm. We refer to the book [7] or its textbook embodiment [8],
though we deal not with functions or sequences but with a simpler finite-dimensional
case. The needed prerequisites are as follows.

For a = (a1, . . . ,an) and p(·) = (p1, . . . , pn), with 1 � pk < ∞, k = 1,2, . . . ,n, its
variable Luxemburg norm is

‖a‖p(·) = inf
λ
{λ > 0 :

n

∑
k=1

( |ak|
λ

)pk

� 1}.

For b = (b1, . . . ,bn) , its dual norm is

‖b‖∗p(·) = sup
‖a‖p(·)�1

∣∣∣∣∣ n

∑
k=1

akbk

∣∣∣∣∣ . (3)

Obviously, ‖a‖p(·) is a Reinhardt type norm. Therefore, we are in a position to
establish a new variety of dual domains.
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THEOREM 2. For r > 0 and p(·) = (p1, . . . , pn), with 1 � pk < ∞, k = 1,2, . . . ,n,
let

Ω = {z ∈ Cn : ‖z‖p(·) < r}, (4)

be a Reinhardt domain centered at the origin. Then,

Ω̃ =
{

ζ ∈ Cn : ‖ζ‖∗q(·) � 1
r

}
. (5)

REMARK 1. Of course, for p and q constant, Lemma 1 follows from Theorem 2
as a particular case.

In the general case, we would like to express the dual complement via the ‖ · ‖q(·)
norm, with q(·) = (q1, . . . ,qn), qk = pk

pk−1 , k = 1,2, . . . ,n. We have

n

∑
k=1

( |bk|
λ

)qk

� 1

if and only if λ � ‖b‖q(·). This also means that

n

∑
k=1

( |bk|
λ

)qk−1

|bk| � λ .

On the other hand, for the same λ ,

n

∑
k=1

( |bk|
λ

)qk−1

|bk| � ‖b‖∗q(·),

since for a with ak =
( |bk|

λ

)qk−1
we obtain ‖a‖p(·) � 1. This leads to

‖b‖q(·) � ‖b‖∗q(·), (6)

and, in accordance with this, we cannot in general replace ‖ζ‖∗q(·) by ‖ζ‖q(·) in the

definition of Ω̃ in (5).
All these are well illustrated by the following example.

EXAMPLE 1. Let p1 = 3
2 and p2 = 3. Correspondingly, q1 = 3 and q2 = 3

2 . If

r = 1, then Ω = {(z1,z2) : |z1| 3
2 + |z2|3 < 1}. However, for r �= 1, we have to calculate

the norm λ from the equation ( x
λ

) 3
2
+
( y

λ

)3
= 1,

with x = |z1| and y = |z2| . Solving the corresponding quadratic equation, we arrive at

λ
3
2 =

x
3
2

2
+

√
x3

4
+ y3,
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which allows us to write

Ω = {(z1,z2) :
|z1| 3

2

2
+

√
|z1|3
4

+ |z2|3 < r
2
3 }.

It follows from the symmetry of the exponents that

‖ζ‖
3
2
q(·) =

|ζ2| 3
2

2
+

√
|ζ2|3

4
+ |ζ1|3.

We calculate the norm ‖ζ‖∗q(·) as a solution of the extremal problem sup(xu + yv) ,

where the sup is taken over (x,y) such that x
3
2 + y3 = 1. Equivalently, we are search-

ing for sup((1− y3)
2
3 u+ yv) as a function of y . Routine calculations again lead to a

quadratic equation with the solution

y3 = − v3

16u3 +

√
v6 +32u3v3

16u3 .

By this,

Ω̃ = {(ζ1,ζ2) :

(
1+

|ζ2|3
16|ζ1|3 −

√|ζ2|6 +32|ζ1|3|ζ2|3
16|ζ1|3

) 2
3

|ζ1|

+

(
− |ζ2|3

16|ζ1|3 +

√|ζ2|6 +32|ζ1|3|ζ2|3
16|ζ1|3

) 1
3

|ζ2| � 1

r
2
3

}.

Taking ζ2 = 0, we arrive at the comparison of the inequalities |ζ1| � 1

r
2
3

for Ω̃ and

|ζ1|� 1

r
2
9

for the Luxemburg q(·) norm. Taking, say, r = 8 gives for |ζ1| two different

intervals: [0, 1
4 ] for Ω̃ and the wider interval [0, 1

4
1
3
] for the Luxemburg q(·) norm.

4. Weighted anisotropic case

Let p = (p1, p2, . . . , pn) , 1 < pi < ∞ , and w = (w1,w2, . . . ,wn) , wi > 0. Define
for z = (z1,z2, . . . ,zn) ∈ Cn a sequence Ak , k = 1,2, . . . ,n−1, by

A1(z) = (|z1|p1w1)
1
p1 ,

Ak+1(z) = (Apk+1
k (z)+ |zk+1|pk+1wk+1)

1
pk+1

and set
‖z‖p,w = An(z).
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THEOREM 3. Let p = (p1, p2, . . . , pn) and w = (w1,w2, . . . ,wn) be given. Define

A∗
1(z) = (|z1|p′1w

− p′1
p1

1 )
1
p′1 ,

A∗
k+1(z) = ((A∗

k(z))
p′k+1 + |zk+1|p′k+1w

− p′k+1
pk+1

k+1 )
1

p′k+1 .

Then ‖z‖∗p,w = A∗
n(z) .

Proof. Prove first by mathematical induction for 1 � k � n an inequality∣∣∣ k

∑
i=1

uivi

∣∣∣� Ak(u)A∗
k(v).

Since

|u1v1| = (|u1|p1w1)
1
p1 (|v1|p′1w

− p′1
p1

1 )
1
p
′
1 = A1(u)A∗

1(v),

the inequality holds for k = 1. Assume that the inequality holds for k− 1. Then we
have, by the Hölder inequality for sequences,∣∣∣ k

∑
i=1

uivi

∣∣∣= ∣∣∣ k−1

∑
i=1

uivi +ukvk

∣∣∣� ∣∣∣ k−1

∑
i=1

uivi

∣∣∣+ |uk||vk|

� |Ak−1(u)A∗
k−1(v)+ukvk| = |Ak−1(u)A∗

k−1(v)+ukw
1
pk
k vkw

− 1
pk |

�
(
Apk

k−1(u)+ |uk|pkwk
)1pk

(
(A∗

k−1)
p′k(v)+ |vk|p′kw

− p′k
pk

k

) 1
p′k = Ak(u)A∗

k(v).

A special case k = n gives∣∣∣ n

∑
i=1

uivi

∣∣∣� Ak(u)A∗
k(v) = ‖u‖p,w‖v‖∗p,w.

Now, we prove that ‖v‖∗p,w = sup{∑k
i=1 uivi : ‖u‖p,w � 1} . To see this it suffices to

find a vector u for a given vector v with

n

∑
i=1

uivi = An(u)A∗
n(v). (7)

Assume that v ∈ Rn be fixed. Set for j ∈ {1,2, . . . ,n}

α1 = 1,

α j =
(
A∗

j(v)
)p′j+1−p′j , j ∈ {2,3, . . . ,n−1},

αn = 1
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and define

u j =
( n

∏
s= j

αs

)
v

p′j−1
j w

1−p′j
j .

It is easy to see

α j
(
A∗

j(v)
)p′j + v

p′j+1
j+1 w

1−p′j+1
j+1 =

(
A∗

j+1(v)
)p′j+1 . (8)

We now wish to prove that for 1 � k � n

k

∑
j=1

u jv j =
( n

∏
s=k

αs

)(
A∗

k(v)
)p′k , (9)

and again mathematical induction comes to play. Let k = 1. Then

u1v1 =
( n

∏
s=1

αs

)
v

p′1−1
1 w

1−p′1
1 v1 =

( n

∏
s=1

αs

)
v

p′1
1 w

1−p′1
1

=
( n

∏
s=1

αs

)(
v1w

1/p′1−1
1

)p′1 =
( n

∏
s=1

αs

)(
v1w

−1/p1
1

)p′1 =
( n

∏
s=1

αs

)(
A∗

1(v)
)p′1

and (9) holds for k = 1. Let us prove an induction step. Assume that (9) holds for
1 � k � n−1. Then

k+1

∑
j=1

u jv j =
k

∑
j=1

u jv j +uk+1vk+1

=
( n

∏
s=k

αs

)(
A∗

k(v)
)p′k +

( n

∏
s=k+1

αs

)
v

p′k+1−1
k+1 w

1−p′k+1
k+1 vk+1

=
( n

∏
s=k+1

αs

)(
αk
(
A∗

k(v)
)p′k + v

p′k+1
k+1 w

1−p′k+1
k+1

)
(8)
=
( n

∏
s=k+1

αs

)(
A∗

k+1(v)
)p′k+1 .

Setting k = n in (9), we obtain

n

∑
j=1

u jv j =
(
A∗

n(v)
)p′n . (10)

Now, prove for 1 � k � n

(
Ak(u)

)pk =
( n

∏
s=k

αs

)pk(
A∗

k(v)
)p′k , (11)

again by the mathematical induction. Let k = 1. Then

(
A1(u)

)p1 = up1
1 w1 =

(( n

∏
s=1

αs

)
v

p′1−1
1 w

1−p′1
1

)p1

w1
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=
( n

∏
s=1

αs

)p1
v

p′1
1 w

1−p′1
1 =

( n

∏
s=1

αs

)p1(
A∗

1(v)
)p′1

and hence (11) is satisfied for k = 1. Let us prove an induction step. It is easy to
calculate

(p′k+1 − p′k)(pk+1 −1)+
p′k pk+1

pk

= (p′k+1− p′k)(pk+1−1)+ pk+1(p′k −1)
= p′k+1(pk+1−1)− p′k(pk+1 −1)+ (pk+1−1)(p′k−1)+ (p′k−1)
= (p′k+1−1)(pk+1−1)+ (p′k−1) = p′k. (12)

Assume that (9) holds for 1 � k � n−1. Then(
Ak+1(u)

)pk+1 =
(
Ak(u)

)pk+1 +upk+1
k+1 wk+1

=
( n

∏
s=k

αs

)pk+1(
A∗

k(v)
) p′k pk+1

pk +

(( n

∏
s=k+1

αs

)
v

p′k+1−1
k w

1−p′k+1
k+1

)pk+1

wk+1

=
( n

∏
s=k+1

αs

)pk+1
(

α pk+1
k

(
A∗

k(v)
) p′k pk+1

pk + v
p′k+1
k w

1−p′k+1
k+1

)
=
( n

∏
s=k+1

αs

)pk+1
(

αkα pk+1−1
k

(
A∗

k(v)
) p′k pk+1

pk + v
p′k+1
k w

1−p′k+1
k+1

)
=
( n

∏
s=k+1

αs

)pk+1
(

αk
(
A∗

k(v)
)(p′k+1−p′k)(pk+1−1)(

A∗
k(v)

) p′k pk+1
pk +v

p′k+1
k w

1−p′k+1
k+1

)
=
( n

∏
s=k+1

αs

)pk+1
(

αk
(
A∗

k(v)
)(p′k+1−p′k)(pk+1−1)+

p′k pk+1
pk + v

p′k+1
k w

1−p′k+1
k+1

)
(12)=
( n

∏
s=k+1

αs

)pk+1
(

αk
(
A∗

k(v)
)p′k + v

p′k+1
k w

1−p′k+1
k+1

)
(8)=
( n

∏
s=k+1

αs

)pk+1
A∗

k+1(v)
)p′k+1 .

Setting k = n in (11), we obtain

(An(u))pn = (A∗
n(v))

p′n

which yields with (10)

n

∑
j=1

u jv j =
(
A∗

n(v)
)p′n =

(
A∗

n(v)
)p′n−1

A∗
n(v)

=
(
An(u)

) pn(p′n−1)
p′n A∗

n(v) = An(u)A∗
n(v)

which proves (7). This finishes the proof of the theorem. �
Using Theorem 1, we readily derive from Theorem 3 the following application.
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THEOREM 4. Let p = (p1, p2, . . . , pn) and w = (w1,w2, . . . ,wn) be given and
0 < r < ∞ . Let Ωr = {z ∈ Cn : ‖z‖p,w < r} . Then Ω̃r = {z ∈ Cn : ‖z‖∗p,w � 1

r } .

5. The Orlicz case

Considering Orlicz spaces for sequences apparently goes back to J. Lindenstrauss
and L. Tsafriri [11]. As above, our case is somewhat simpler, since it is finite-dimensional.

An Orlicz function is a function M : [0,∞) → [0,∞) , which is continuous, non-
decreasing and convex, M(0) = 0 and M(t) > 0 if t > 0, and M(t) → ∞ as t → ∞ . Its
conjugate can be defined by

N(u) = sup
t�0

[tu−M(t)].

For a = (a1, . . . ,an) , its belonging to the Orlicz space generated by M can be
defined by the Luxemburg norm (with the convention that the infimum of the empty set
is infinite):

‖a‖M = inf
λ

{
λ > 0 :

n

∑
k=1

M

( |ak|
λ

)
� 1
}

< ∞.

We say that an Orlicz function M(t) satisfies the Δ2 condition (for small t ) if
for every a > 1 there exists a constant K(a) and a positive number t(a) such that
M(at) < K(a)M(t) for 0 � t � t(a) . The words ”for small x” will be omitted in the
sequel.

We say that an Orlicz function M(t) satisfies the Δ2 condition for large t if there
exist such constants k > 0 and t0 � 0 that for t � t0 ,

M(2t) � kM(t).

It is easy to see that always k > 2. All these basics can be found in the classical book
[9]. However, for the properties of the sequence Orlicz spaces, a convenient source is
[10].

THEOREM 5. Let Ωr = {z ∈ Cn : ‖z‖M < r}. Then

Ω̃r =
{

z ∈ Cn : ‖z‖∗M � 1
r

}
. (13)

Moreover, if M(t) satisfies the Δ2 condition and there are two constants l and t0 such
that for t � t0 ,

M(t) � 1
2l

M(lt), (14)

then

Ω̃r =
{

z ∈ Cn : ‖z‖N � 1
r

}
. (15)



DUAL COMPLEMENTS 563

Proof. The domain Ωr is definitely defined by means of a Reinhardt type norm
‖ · ‖M. Lemma 2 takes place (cf. [10, Proposition 2.5]). By Theorem 1, (13) follows.

Now, if M(t) satisfies the Δ2 condition and (14) holds, the associate N -norm co-
incides with the N -norm (see [9, Ch.II, §9, 5]). Therefore, (15) follows from (13). �

REMARK 2. In [18], a class of sequence spaces is studied that can be considered
as a mixture of the two cases from the last two sections. More precisely, we can study
the case where the norm is

‖a‖M,p(·) = inf
λ

{
λ > 0 :

n

∑
k=1

(
M

( |ak|
λ

))pk

� 1
}
.

Dual complements of the Reinhardt type domains defined by means of such norms can
be described along the same lines as above. We omit the details.

6. Concluding remarks

L. Maligranda brought our attention to certain sources where the Köthe duality
of ideal function spaces was investigated by several authors. First of all variable l pn

spaces appeared in Orlicz’s paper [17], with some generalizations in [6]. A proof of the
generalized duality for Orlicz spaces and their generalizations can be found in the paper
[16, Thm. 4] and the book [16, Thm. 10.5]. For a simple proof of the duality for Orlicz
spaces and their generalizations, see [13, Thms. 1–3]. It is also worth mentioning that
a simple description of Köthe duals of Nakano spaces for atomic and atomless measure
spaces can be found in [14]. An interesting article on the history of Nakano space and
about Nakano as mathematician is given in [15].
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564 L. AIZENBERG ∗ , E. LIFLYAND AND A. NEKVINDA

[8] D. V. CRUZ-URIBE AND A. FIORENZA, Introduction to the Variable Lebesgue Spaces, Topics in
Variable Lebesgue Spaces and Hyperbolic Equations, Advanced Courses in Mathematics – CRM
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