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Abstract. For λ ∈ (0,1) , let ψ be a non-constant, non-negative, continuous function on (0,∞)
and let Γλ (ψ) be the set of all non-trivial operator means σ such that an inequality

ψ(A∇λ B) � ψ(A)σψ(B)

holds for all A,B ∈ B(H)++ . Then we have:
1. ψ is a decreasing operator convex function if and only if

Γλ (ψ) = {σ | !λ � σ � ∇λ }.

2. ψ is an operator convex function which is not a decreasing function if and only if

Γλ (ψ) = {∇λ }.
The first result is a weighted version of Ando and Hiai’s characterization of an operator mono-
tone decreasing function and these two results imply each other.

1. Introduction

A bounded operator A , acting on a Hilbert space H is said to be positive if
(Ax,x) � 0 for all x ∈ H . We denote this by A � 0. Let B(H)+ be the set of all
positive operators on H , and let B(H)++ be the set of all positive invertible operators
on H .

A real-valued function f on (0,∞) is called operator monotone if 0 < A � B
implies f (A) � f (B) . The two functions f (t) = ts (s ∈ [0,1]) and f (t) = logt are
well known examples of operator monotone functions.

In [8], Kubo and Ando developed an axiomatic theory concerning operator con-
nections and means for pairs of positive operators. That is, a binary operation σ acting
on the class of positive operators, (A,B) �→ AσB , is called an operator connection if the
following requirements are fulfilled:

(I) If A � C and B � D , then AσB � CσD .

(II) C(AσB)C � (CAC)σ(CBC) .
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(III) If An ↘ A and Bn ↘ B , then AnσBn ↘ AσB .

An operator mean is a connection satisfying the normalization condition:

(IV) 1σ1 = 1.

Kubo and Ando showed that an affine order-isomorphism exists from the class
of operator connections onto the class of positive operator monotone functions, by the
correspondence σ �→ fσ (t) = 1σ(t1) .

It is well known that if f : (0,∞) → (0,∞) is operator monotone, then the trans-
pose f ′(t) = t f ( 1

t ) , the adjoint f ∗(t) = 1
f ( 1

t )
, and the dual f⊥ = t

f (t) are also operator

monotone ([8]). Furthermore, we call f symmetric if f = f ′ and self-adjoint if f = f ∗ .
It was shown in [8] that if f is symmetric with f (1) = 1, then the corresponding op-
erator mean exists between the harmonic mean ! and the arithmetic mean ∇ . That is,
! � σ f � ∇ .

Let f be a non-negative continuous function f on (0,∞) . It is said that f is
operator convex if f (A∇B) � f (A)∇ f (B) holds for all A,B ∈ B(H)++ . It is also said
that f is operator monotone decreasing if A,B ∈ B(H)++ satisfy A � B , then f (A) �
f (B) holds. It is known [1] that f is operator monotone decreasing if and only if it
is operator convex and numerically non-increasing. It is also well known that f is
operator monotone if and only if it is operator cancave (i.e., − f is operator convex).

In [1], Ando and Hiai gave a characterization of an operator monotone decreasing
function by means of certain operator inequalities. In this paper, we show a weighted
version of this result. To do this, for a non-negative continuous function ψ on (0,∞)
and λ ∈ (0,1) , we consider the set Γλ (ψ) of operator means σ such that the inequality

ψ(A∇λ B) � ψ(A)σψ(B)

holds for all A,B ∈ B(H)++ . Our main results (Theorem 3.2) are the following:
(1) ψ is a decreasing operator convex function if and only if

Γλ (ψ) = {σ | !λ � σ � ∇λ}.
(2) ψ is an operator convex function which is not a decreasing function if and only

if
Γλ (ψ) = {∇λ}.

The first result is a weighted version of Ando and Hiai’s characterization of an
operator monotone decreasing function and these two results imply each other.

2. λ -weighted means and operator convexity

From the theory of operator means, an operator mean σ is identified with an
operator monotone function t �→ 1σ t on (0,∞) . Specifically, a non-negative value
d(1σ t)

dt

∣∣∣
t=1

often indicates some properties of σ (see [2]). We call this value the

weight of σ . Since 1 � 1σ t � t for all t � 1, we have

d(1σ t)
dt

∣∣∣
t=1

� lim
t→1+

t −1
t −1

= 1.
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DEFINITION 2.1. Let λ ∈ [0,1] . An operator mean σ is called λ -weighted if

d(1σ t)
dt

∣∣∣
t=1

= λ

and is called non-trivial if the weight of σ is in (0,1) .

Note that σ is the left trivial mean (AσB = A) if λ = 0 and the right trivial mean
(AσB) = B if λ = 1.

In the rest of the paper, we consider a continuous function ψ satisfying

ψ(A∇λ B) � ψ(A)σψ(B) (2.1)

for all A,B ∈ B(H)++ and for a certain operator mean σ . From the following result, it
is natural to assume that ψ is operator convex.

PROPOSITION 2.2. Let ψ be a non-negative continuous function on (0,∞) . Then
the following are equivalent:

(1) ψ is operator convex;

(2) ψ(A∇λ B) � ψ(A)∇λ ψ(B) for all A,B ∈ B(H)++ and for all λ ∈ (0,1);

(3) ψ(A∇λ B) � ψ(A)∇λ ψ(B) for all A,B ∈ B(H)++ and for some λ ∈ (0,1);

(4) ψ(A∇λ B) � ψ(A)σψ(B) for all A,B ∈ B(H)++ and for some λ ∈ (0,1) and
for some non-trivial operator mean σ .

Proof. It is sufficient to show (4) → (1) . For every A,B ∈ B(H)++ , we define
sequences by

A0 := A, B0 := B,

An := (An−1∇1−λ Bn−1)∇λ (An−1∇λ Bn−1),

Bn := A+B−An

for n � 1. Since [
An

Bn

]
=

[
2λ (1−λ ) λ 2 +(1−λ )2

λ 2 +(1−λ )2 2λ (1−λ )

][
An−1

Bn−1

]

=
[

2λ (1−λ ) λ 2 +(1−λ )2

λ 2 +(1−λ )2 2λ (1−λ )

]n [
A
B

]

=
1
2

[
1 1
1 −1

][
1 0
0 (−(2λ −1)2)n

][
1 1
1 −1

][
A
B

]
,

the sequences {An} and {Bn} have the same limit A∇B in the operator norm topology.

Put γ =
d(1σ t)

dt

∣∣∣
t=1

. We define sequences {A(n)} and {B(n)} by

A(0) := ψ(A), B(0) := ψ(B),
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A(n) := (A(n−1)∇1−γB
(n−1))∇γ (A(n−1)∇γB

(n−1)),

B(n) := ψ(A)+ ψ(B)−A(n).

These sequences tend to ψ(A)∇ψ(B) using the same argument as in the preceding
sequence.

It follows from the assumption that

ψ(An) = ψ((An−1∇1−λ Bn−1)∇λ (An−1∇λ Bn−1))
� ψ(An−1∇1−λ Bn−1) σ ψ(An−1∇λ Bn−1)
� ψ(An−1∇1−λ Bn−1) ∇γ ψ(An−1∇λ Bn−1)
= ψ(Bn−1∇λ An−1) ∇γ ψ(An−1∇λ Bn−1)
� (ψ(Bn−1)σψ(An−1)) ∇γ (ψ(An−1)σψ(Bn−1))

�
(
ψ(Bn−1)∇γ ψ(An−1)

)
∇γ

(
ψ(An−1)∇γ ψ(Bn−1)

)
�

(
ψ(An−1)∇1−γ ψ(Bn−1)

)
∇γ

(
ψ(An−1)∇γ ψ(Bn−1)

)
� A(n),

which implies that

ψ(A∇B) = lim
n→∞

ψ(An) � lim
n→∞

A(n) = ψ(A)∇ψ(B),

where limn→∞ is the limit in the operator norm topology. �

PROPOSITION 2.3. For λ ∈ (0,1) , let ψ be a non-negative, non-constant, con-
tinuous function on (0,∞) and let σ be a non-trivial operator mean. Suppose that

ψ(A∇λ B) � ψ(A)σψ(B)

for all A,B ∈ B(H)++ . Then, σ is λ -weighted.

LEMMA 2.4. For λ ∈ [0,1] , let ψ be a non-negative continuous function on
(0,∞) with a non-zero derivative at 1 and let σ be a non-trivial operator mean. Sup-
pose that

ψ(A∇λ B) � ψ(A)σψ(B)

for all A,B ∈ B(H)++ . Then, σ is λ -weighted.

Proof. Put γ =
d(1σ t)

dt

∣∣∣
t=1

. It follows from the fact σ � ∇γ that the inequality

ψ(A∇λ B) � ψ(A)∇γ ψ(B)

holds for all A,B ∈ B(H)++ .
Thus, it is sufficient to show the case σ = ∇γ . Moreover, since ψ ′(1) 	= 0 and

ψ is operator convex by Proposition 2.2, we may assume that ψ(1) = 1 and hence
ψ(t) > 0 for all t > 0.
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By assumption, the inequality

1σψ(t)−1σψ(1)
t−1

� ψ((1−λ )+ tλ )−ψ(1)
t −1

holds for all t > 1, which implies that

lim
t↓1

1σψ(t)−1σψ(1)
t−1

=
d
dt

(1σ t)
∣∣∣
t=1

dψ
dt

∣∣∣
t=1

� λ
dψ
dt

∣∣∣
t=1

.

We also obtain

lim
t↑1

1σψ(t)−1σψ(1)
t−1

=
d
dt

(1σ t)
∣∣∣
t=1

dψ
dt

∣∣∣
t=1

� λ
dψ
dt

∣∣∣
t=1

.

Therefore, d
dt (1σ t)

∣∣∣
t=1

dψ
dt

∣∣∣
t=1

= λ dψ
dt

∣∣∣
t=1

, which implies the desired result. �

Proof of Proposition 2.3. By Proposition 2.2, it is clear that ψ is operator convex
and is differentiable at 1 . The case when ψ has a non-zero derivative at 1 is discussed
in Lemma 2.4. Therefore, we only consider the case when ψ has a zero derivative at
1 . Considering the scalar multiple, we may assume that ψ(1) = 1.

Put ϕ(t) = ψ(t +1)−1 and γ =
d(1σ t)

dt

∣∣∣
t=1

. We show that ϕ and ∇γ satisfy the

assumption of Lemma 2.4.

From the facts that ψ is a non-negative operator convex function and dψ
dt

∣∣∣
t=1

= 0,

ϕ is a non-negative operator convex function with ϕ(0) = 0. Thus, it follows from
[3] that ϕ can be written as ϕ(t) = t f (t) by using a non-negative operator monotone
function f on (0,∞) . If f = 0, then ψ = 1 on [1,∞) , which implies ψ = 1 on (0,∞)
This contradicts the assumption. Therefore, f 	= 0 and

dϕ
dt

∣∣∣
t=1

= f (1)+
d f
dt

∣∣∣
t=1

> 0.

Furthermore,

ϕ(A∇λ B) = ψ(A∇λ B+1)−1

= ψ((A+1)∇λ (B+1))−1

� ψ(A+1)σψ(B+1)−1

� ψ(A+1)∇γψ(B+1)−1

= ϕ(A)∇γ ϕ(B)

for A,B � 0. Now, it is obtained that ϕ and ∇γ satisfy the assumption of Lemma 2.4.
Hence, ∇γ is λ -weighted, namely γ = λ . �

Now, we can characterize a non-negative operator convex function on (0,∞) .



570 H. OSAKA, Y. TSURUMI AND S. WADA

COROLLARY 2.5. For λ ∈ (0,1) , let ψ be a non-constant, non-negative, contin-
uous function on (0,∞) and let Γλ (ψ) be the set of all non-trivial operator means σ
such that inequality (2.1) holds for all A,B ∈ B(H)++ . Then, ψ is an operator convex
function if and only if

{σ | !λ � σ � ∇λ} ⊇ Γλ (ψ) ⊇ {∇λ}.

COROLLARY 2.6. For λ ∈ (0,1) , let φ be a positive operator concave function
on (0,∞) with non-zero derivative at 1 and φ(1) = 1 and let σ be a non-trivial oper-
ator mean. Then, the following are equivalent:

(1) σ is λ -weighted;

(2) φ(A)σφ(B) � φ(A∇λ B) for all A,B ∈ B(H)++ ;

(3) φ∗(A!λ B) � φ∗(A)σ∗φ∗(B) for all A,B ∈ B(H)++ , where φ∗(x) = (φ(x−1)−1 .

Proof. (1) → (2) : Because σ is λ -weighted, we have σ � ∇λ . This means that

φ(A)σφ(B) � φ(A)∇λ φ(B) � φ(A∇λ B).

The last inequality follows from the operator concavity of φ .
(2) → (1) : Note that, because φ is non-constant positive operator concave on

(0,∞) ,
1

φ(t)
is non-constant operator convex with a non-zero derivative at 1 . From the

assumptions,

φ(A)−1σ∗φ(B)−1 � φ(A∇λ B)−1

holds for all A,B > 0, where σ∗ is the adjoint of σ , so that Aσ∗B = (A−1σB−1)−1 .
Hence, σ∗ is λ -weighted by Proposition 2.3. Because

d
dt

(1σ t)|t=1 =
d
dt

(1σ∗t)|t=1 = λ ,

σ is λ -weighted.
(2) ↔ (3) :
We have

φ(A∇λ B) � φ(A)σφ(B) for all A,B ∈ B(H)++

⇔ φ∗(A!λ B) � φ∗(A)σ∗φ∗(B) for all A,B ∈ B(H)++. �

Because φ is operator concave, equivalently operator monotone, φ∗ is operator
monotone and so operator concave, with φ∗(1) = 1.
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3. Characterization of operator convex functions

The following is a weighted version of [1, Theorem 2.1].

PROPOSITION 3.1. For λ ∈ (0,1) , let ψ be a non-negative continuous function
on (0,∞) . Then, the following conditions are equivalent:

(1) ψ is operator monotone decreasing;

(2) ψ(A∇λ B) � ψ(A)σψ(B) for all A,B ∈ B(H)++ and for all λ -weighted opera-
tor means σ ;

(3) ψ(A∇λ B) � ψ(A)#λ ψ(B) for all A,B ∈ B(H)++ ;

(4) ψ(A∇λ B) � ψ(A)σψ(B) for all A,B ∈ B(H)++ and for some λ -weighted op-
erator mean σ 	= ∇λ ,

where A#λB = A
1
2 (A− 1

2 BA− 1
2 )λ A

1
2 .

Proof. We first demonstrate (1) → (2) . It is sufficient to prove the case ψ > 0.
Since a mapping t �→ 1

ψ(t) is an operator concave function on (0,∞) , we have

1
ψ(A∇λ B)

� 1
ψ(A)

∇λ
1

ψ(B)

for A,B ∈ B(H)++ . This implies ψ(A∇λ B) � ψ(A)!λ ψ(B) � ψ(A)σψ(B) .
The implications of (2) → (3) → (4) are trivial. Lastly, we demonstrate (4) →

(1) . By Proposition 2.2, the operator convexity of ψ is obtained. Therefore, we have

ψ(A∇B) = ψ
(

A∇λ B+A∇1−λB
2

)

� 1
2

ψ(A∇λ B)+
1
2

ψ(A∇1−λ B)

� ψ(A)τψ(B)

for all A,B∈ B(H)++ , where τ is a symmetric operator mean such that 1τt = 1σt+tσ1
2 .

From the assumption σ � ∇λ , there exists t0 > 0 such that

1τt0 =
1σ t0 + t0σ1

2
<

1∇λ t0 + t0∇λ 1
2

=
1+ t0

2
,

which signifies that τ � ∇ . It follows from [1, Theorem 2.1] that ψ is operator mono-
tone decreasing. �

Combining the above results, our main theorem is obtained:
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THEOREM 3.2. For λ ∈ (0,1) , let ψ be a non-constant, non-negative, continu-
ous function on (0,∞) and let Γλ (ψ) be the set of all non-trivial operator means σ
such that the inequality

ψ(A∇λ B) � ψ(A)σψ(B)

holds for all A,B ∈ B(H)++ . Then, the following holds:
(1) ψ is a decreasing operator convex function if and only if

Γλ (ψ) = {σ | !λ � σ � ∇λ}.
(2) ψ is an operator convex function which is not a decreasing function if and only

if
Γλ (ψ) = {∇λ}.

Proof. From (2) in Proposition 3.1 and Proposition 2.3, the first statement is true.
Next, we present the second one. Assume ψ is operator convex and is not decreasing.
Then a relation Γλ (ψ) ⊇ {∇λ} holds by Proposition 2.2. If Γλ (ψ)\{∇λ} 	= /0 , then
ψ is decreasing by (4) in Proposition 3.1, which contradicts the assumption. Hence,
Γλ (ψ)\{∇λ} = /0 .

Conversely, if Γλ (ψ) = {∇λ} , then ψ is operator convex by Proposition 2.2.
From the first statement in this theorem, the operator convex function ψ with Γλ (ψ) 	=
{σ | !λ � σ � ∇λ} is not a decreasing function. �

It is known that a non-negative operator convex function ψ on [0,∞) with ψ(0) =
0 and ψ(1) = 1 is strictly increasing. Therefore, the following is a direct result of the
preceding theorem.

COROLLARY 3.3. Let λ ∈ (0,1) , and let σ be a non-trivial operator mean. Sup-
pose that ψ is a non-negative operator convex function on [0,∞) , with ψ(0) = 0 and
ψ(1) = 1 . Then, the following are equivalent:

1. σ = ∇λ ;

2. ψ(A∇λ B) � ψ(A)σψ(B) for all A,B ∈ B(H)++ .

REMARK 3.4. In Theorem 3.2, the first statement implies the second one and can
be proven using Corollary 3.3 and the arguments from the proof of [1, Theorem 2.1].
Thus, these three statements (two statements in Theorem 3.2 and Corollary 3.3) are
equivalent.

4. Matrix 2-convex functions

If ψ is a non-negative 2-convex function on [0,∞) with ψ(0) = 0, then ψ is a
C2 -function on (0,∞) , by [7] (Cf. [4, Theorem 2.4.2]). Recall that ψ is said to be
2-convex if for all A,B ∈ M2(C)+ and λ ∈ [0,1] ψ(λA+(1−λ )B) � λ ψ(A)+ (1−
λ )ψ(B) . Moreover, if ψ is non-constant, then it is strictly monotone increasing on
(0,∞) . Indeed, by [11, Theorem 2.2] there exists a monotone function f on (0,∞) ,
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such that ψ(t) = t f (t) for all t > 0. Let us show that f (t) > 0 for all t > 0. Assume
on the contrary that f (t0) = 0 for some t0 > 0. Then, since f is monotone, we have
f (t) = 0 for all t ∈ (0,t0] . By [4, Theorem 2.4.2] (or [6, Theorem 6.6.52 (2)]), ψ is
linear on (0,∞) so that ψ is constant zero, a contradiction. Then, for any 0 < x1 < x2 ,
we have

ψ(x1) = x1 f (x1) � x1 f (x2)
< x2 f (x2) = ψ(x2).

Using this, we present an extension of Corollary 3.3.

PROPOSITION 4.1. Let λ ∈ (0,1) , and let σ be a non-trivial operator mean.
Suppose that ψ is a non-negative operator 2-convex function on [0,∞) , with ψ(0) = 0
and ψ(1) = 1 . Then, the following are equivalent:

(1) σ = ∇λ ;

(2) ψ(A∇λ B) � ψ(A)σψ(B) for all positive definite 2×2 matrices A,B.

Proof. It is sufficient to demonstrate (2)→ (1) . From the argument in Proposition
2.2, it follows that ψ is a 2-convex function. Let P,Q be orthogonal projections in
M2(C) with P∧Q = 0. Applying the inequality in the assumption to Aε := P + εI2
and Bε := Q+ εI2 for an arbitrary ε > 0, we obtain

ψ(Aε ∇λ Bε) � ψ(Aε) σ ψ(Bε).

Because Aε ∇λ Bε = P ∇λ Q+εIH → P ∇λ Q , ψ(Aε ∇λ Bε)→ ψ(P ∇λ Q) as ε → 0
in the operator norm topology. Furthermore, because ψ(Aε) ↘ ψ(P) = P, ψ(Bε) ↘
ψ(Q)=Q as ε → 0 in the strong operator topology and the operator mean is continuous
in it under the downward convergence, we have

ψ(P ∇λ Q) � P σ Q. (4.1)

Furthermore, P σ Q = aP+ bQ by [8, Theorem 3.7], where a = inf
x

fσ (x), b =

lim
x→∞

fσ (x)
x

, with fσ denoting the representing function on (0,∞) corresponding to σ .

Choose two orthogonal projections as

P :=
[
1 0
0 0

]
, Q :=

[
cos2 θ cosθ sinθ

cosθ sinθ sin2 θ

]
(0 < θ <

π
2

)

in the realization of the 2×2 matrix algebra in B(H) . Then, P∧Q = 0 and

ψ(P ∇λ Q) = ψ
([

(1−λ )+ λ cos2 θ λ cosθ sinθ
λ cosθ sinθ λ sin2 θ

])
.

Because ψ is continuous, letting θ → 0 gives (4.1) as

lim
θ→0

ψ(P ∇λ Q) = ψ
([

(1−λ )+ λ 0
0 0

])
=

[
1 0
0 0

]
� lim

θ→0
PσQ =

[
a+b 0

0 0

]
.
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Comparing the (1,1)-entries of both sides of the above inequality, we find that

1 � a+b. (4.2)

Furthermore, because fσ is an operator monotone function, there exists a positive
Radon measure μ on [0,∞] such that

fσ (x) = 1σx = a+bx+
∫
(0,∞)

(t +1)x
t + x

dμ(t),

where a = lim
x→0+

fσ (x) and b = lim
x→∞

fσ (x)
x

. Therefore,

fσ (1) = a+b+
∫
(0,∞)

dμ(t) = 1,

and hence μ = 0, by (4.2). Then, we have

fσ (x) = a+bx, 1 = a+b.

It follows from Proposition 2.3 that λ = b . �
Similarly, we have the following characterization of the λ -weighted harmonic

mean.

PROPOSITION 4.2. Let ψ be a non-negative continuous function on [0,∞) with
ψ(1)= 1 and limx→∞ ψ(x) = +∞ , and assume that λ ∈ (0,1) . If a non-trivial operator
mean σ satisfies

ψ(A!λ B) � ψ(A)σψ(B)

for all positive definite 2×2 matrices A,B, then σ =!λ .

Proof. We have ψ(A!λ B) � ψ(A)σψ(B) for positive definite 2×2 matrices A,B
⇔ ψ∗(A∇λ B) � ψ∗(A)σ∗ψ∗(B) for positive definite 2×2 matrices A,B , where σ∗ is
the adjoint of σ , so that Aσ∗B = (A−1σB−1)−1 and ψ∗(x) = (ψ(x−1))−1 . Thus, ψ∗
is 2-convex by Proposition 2.2. Because ψ∗(0) = limx→0 ψ∗(x) = 0 and ψ∗(1) = 1,
we have σ∗ = ∇λ by Proposition 4.1. Therefore, σ =!λ . �
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