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COMMUTATORS OF FRACTIONAL INTEGRALS
ON MARTINGALE MORREY SPACES

EIlcHI NAKAI AND GAKU SADASUE

(Communicated by L. Pick)

Abstract. On martingale Morrey spaces we give necessary and sufficient conditions for the
boundedness and compactness of the commutator generated by the fractional integral and a func-
tion in the martingale Campanato space. We also give the conditions for the boundedness and
compactness from martingale Morrey spaces to martingale Triebel-Lizorkin-Morrey spaces.

1. Introduction

It is well known as the Hardy-Littlewood-Sobolev theorem that the fractional inte-
gral operators I, on the Euclidean space R" is bounded from L, to L, for 1 <p <g <
o, 0<a<nand —n/p+ o= —n/q. For any BMO function b, Chanillo [2] proved
the same boundedness of the commutator [b,1,]. This boundedness was extended to
Morrey spaces by Di Fazio and Ragusa [6]. See also Ragusa and Scapellato [15].
Paluszynski [14] proved that, for any f -Lipschitz function b, 0 < 8 < 1, the commu-
tator [b, 1] is bounded from L, to L, for —n/p+a+ = —n/q and from L, to the

Triebel-Lizorkin space F; ﬁ . Further, the compactness of the commutators on Morrey
spaces was investigated by Chen, Ding and Wang [5].

In martingale theory, based on the result by Watari [18, Theorem 1.1], Chao and
Ombe [3] proved the boundedness of the fractional integrals for H,, L,, BMO and
Lipschitz spaces of the dyadic martingales. These fractional integrals were defined
for more general martingales in [16]. See also Hao and Jiao [7]. On the other hand,
martingale Morrey spaces and their generalization were introduced by [11] and [13],
respectively, and the boundedness of fractional integrals as martingale transforms were
established. Moreover, necessary and sufficient conditions for the boundedness of frac-
tional integrals on the martingale Morrey spaces were given in [12]. On the other hand
the compactness of the commutators of martingale transforms was investigated by Jan-
son [8] and Chao and Peng [4], etc.

In this paper, we investigate the boundedness of the commutator [b,I,] with a
function b in the martingale Campanato spaces introduced in [11]. We give necessary
and sufficient conditions for the boundedness of [b,1,] from a martingale Morrey space
to another martingale Morrey space or to a martingale Triebel-Lizorkin-Morrey space
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(Theorems 1.1 and 1.2). As a corollary we get the martingale version of Paluszynski’s
result (Corollary 1.3). Further, we give the conditions for the compactness of the com-
mutators (Theorems 1.4 and 1.5 and Corollary 1.6).

Let (Q,.%#,P) be a probability space and let {.%,},>0 be a nondecreasing se-
quence of sub- o -algebras of % such that # = o(lJ,, %,). We suppose that every
o-algebra %, is generated by countable atoms, where B € .7, is called an atom
(more precisely a (%,,P)-atom), if any A C B with A € .%, satisfies P(A) = P(B)
or P(A) =0. Denote by A(.%,) the set of all atoms in .%,. We also suppose that
(Q,.#,P) is non-atomic.

The expectation operator is denoted by E. For a measurable set G € .# , its char-
acteristic function is denoted by yg. Let L, 1oc be the set of all measurable functions
such that |f|? xp is integrable for all B € A(F). If Fo={Q,0},then L, oc =L,. An
Fn-measurable function g € Ly ¢ is called the conditional expectation of f € Lj joc
relative to .%,, if

E[g%g%g] = E[f%g%c} forall Be A(g\o) and Ge€.%,.

We denote by E,f the conditional expectation of f relative to .%,. We say a sequence
(fu)n=0 in Ly o is a martingale relative to {.%,},>¢ if it is adapted to {.%,},>0 and
satisfies Ey[fin] = f for every n <m.

We first recall the definition of fractional integrals. Let

B.= Y, PB)xs n=0,12,. (1.1)
BeA(F)

For o > 0 and a martingale f = (f,,)n>0 relative to {.%,},>0, we define the fractional

integral Iy f = ((Io.f )n)n>0 of f by

(Uafn =3 (B)* (i — fir) (1.2)

k=0

with the conventions B_; = By and f_; = 0. In what follows we always use these con-
ventionsand E_ f =0. Asis shownin[11, Remark 5.3], the series 5 Y5 _o(Br—1)* (fx —
fi—1) convergesin L; for every B € A(%). By this reason, for a function f € Lj joc
with its corresponding martingale f = (Ej,f)n>0, we define

lof = 2 (Be1)*(Exf — Ex-1f), (1.3)

which is in Lj joc. By this definition the commutator

[byla}f: blaf_la(bf)

is well-defined for f € L, joc and b € Ly joc, Where p,p' € [1,00] and 1/p+1/p' =1.
Next, we recall the definition of martingale Morrey and Campanato spaces.
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DEFINITION 1.1. Let p € [1,00) and A € (—oo,00). For f € Lj joc, let

T L egp)
Flo,, =sup sup ( /f dP) ,
Ph o uz0Bea(7,) P(B)* \P(B) /B

1 1 Ip
Il =sop swp s (s 17 Eutar)

n>0BeA(7,) P(B)*

and define
Lps = {f €Loioc: 1y, <=} Zpa ={f € Lpaoe: Ifllz,, <o}

If p=1and A =0, then % is the martingale BMO space and || f||gmo =
1£1l.2,0-

The stochastic basis {.%, },>0 is said to be regular, if there exists a constant R > 2
such that
Jn S Rfa—1 (1.4)

holds for all n > 1 and all nonnegative martingales (f5,),>0. It was shown in [10] that,
if {Fu}nzo is regular, then ||f|| &, is equivalent to

1 1 1/p
fll o~ =sup sup —(—/f—E_fde) ,
| H’s’ppl n>08eA(7,) P(B)* \ P(B) B‘ -1/l

if Eof =0.
We next recall the definition of sharp functions. Let § > 0. For f € Lj joc, let

Mif= sgg(ﬁnréEnlf—En_lf\, (1.5)

with the convention E_1f = 0. If 6 =0 we denote Mg by M?, that is,

M* f = supE,|f — Ep_1f]. (1.6)
n=0

DEFINITION 1.2. Let p € [1,00) and & € [0,0). For f € L joc, let
—_ gt
||fHFL6p,A - HMSfHLplv

and define
[
F , ={f € Lpjoc: M3 fle, , <o}

If A = —1/p and the number of the elements in A(.%) is finite, then we use the symbol
Fli,x, instead of FL‘sp N because it coincides with the martingale Triebel-Lizorkin space
introduced in [17]. ‘

Our main results are the following:



634 E. NAKAI AND G. SADASUE

THEOREM 1.1. Let 00 >0, l <p<g<oeo, —1/p<A<0,06>=0,and
A+o+8<0, pA=gA+a+09).

Assume that { %, },>¢ is regular and that b is in Ly ). and satisfies

1
16l 5(%0) == SUPO)W/B|1?—EOde<°°~ (1.7)

BeA(F
() If b€ &, 5, then the commutator [b,lq] is bounded from Ly, 5 to Ly ; (g5 and
”[b?IOC}f”Lq‘)HaJr,s < CHbelts Hf”Lp‘)L’ fe Lp.,?u
where the constant C is independent of b and f.

(ii) Conversely, if [b,1y] is bounded from L, ; to Ly o5 With the operator norm
1, 14] HLp,l‘)LqJWDHS , then b € £ 5 and

”b”fflﬁ < C(”[bvla} “Lp,x—’Lq‘;LJraJr,s + Hbeflﬁ(ﬁ‘\o)%

where the constant C is independent of b.

REMARK 1.1. () If b € & 5, then b satisfies (1.7) with ||| &, .z < [[bll.# 5-
(ii) If the number of the elements in A(%) is finite, then Ly joc = Ly and every
b e Ly satisfies (1.7) with [|b]| ¢, (7, < 2(mingea(z,) P(B) ™' 2[1b|1, -
THEOREM 1.2. Let 00 >0, l <p<g<oeo, —1/p<A<0,6>0,and
A+a<0, pA=qA+a).
Assume that {F,}n>0 is regular and that b is in Ly ). and satisfies (1.7).

() If b€ £, 5, then the commutator [b, o] is bounded from L,, ; to FL‘s 1o ANd
; ; .

||[b,la}f||F§ < C”b”ffl‘,s”fHLp)p feL A

LqJLJrOt
where the constant C is independent of b and f.
(ii) Conversely, if [b,14] is bounded from Ly, to FL‘S w with the operator norm
s .

116, 1o , then b € £, 5 and

HLI’J*)FLE,I‘;LJr
1Bl 5 < CUBLall, , pp  + 1Bl 550))
v g A+
where the constant C is independent of b.
COROLLARY 1.3. Let >0, 1 <p < g <o and & > 0. Assume that {F, }n>0

is regular and b € Ly. If the number of the elements in A(F) is finite, then, the
following conditions are equivalent:



COMMUTATORS OF FRACTIONAL INTEGRALS ON MARTINGALE MORREY SPACES 635

@) be.,?m.
(ii) [b,1y] is bounded from L, to F‘?M, if —1/pt+a=-1/q.
(iii) [b,1q] is bounded from L, to Ly, if —1/p+o0+8 =—1/q.

Next we state the compactness of the commutators. Let Ly be the set of all .7 -
measurable functions. Let

L={f€Ly: fis .Z,-measurable for some n > 0},

and define
Mes=2L15NL,

where .Z} 5 ML stands for the closure of £} sNL in %) 5. Further, let A(%y) =
{An}r, and let D, = U Ax. Let

Le={f€Ly: f=xp,f forsomen >0},

and define
¢15=215NLNLe,

where £} s "L N L¢ stands for the closure of %} s NLNLc in .Z] 5. If the number of
the elements in A(.%) is finite, then Le = Lo and MNs=C15-

THEOREM 1.4. Let 00 >0, l <p<g<eo, —1/p<A<0,5>0,and
A+a+8<0, pA=qg(A+a+9).
Assume that {7, } >0 is regular and that b is in ) 5 and satisfies
lim [[b—byp, |2, 5(7) = 0- (1.8)
Then, b € 6, s if and only if the commutator [b,1y] is compact from LyptoLgjiors-

REMARK 1.2. (i) If b € €] 5, then b satisfies (1.8).
(i) If the number of the elements in A(%y) is finite, then L joc = L; and every
b € L satisfies (1.8).

THEOREM 1.5. Let 00 >0, l <p<g<oeo, —1/p<A<0,06>=0,and
A+o0<0, pA=g(A+a).

Assume that {.F,} >0 is regular and that b is in £, 5 and satisfies (1.8). Then, b €
©1,5 if and only if the commutator [b,1y] is compact from L,, ; to Fp e’
: : "

COROLLARY 1.6. Let >0, 1 <p < g <eoand & > 0. Assume that {F, }n>0
is regular and b € Ly. If the number of the elements in A(F) is finite, then, the
following conditions are equivalent:
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1) be %75.
(ii) [b,1y] is compact from L, to F‘?w if —1/pt+a=-1/q.
(iii) [b,1q] is compact from Ly, to Ly, if —1/p+oa+06=—1/q.

In the second section we recall the boundedness of the fractional integrals and
prove the boundedness of the fractional maximal functions. In Sections 3 and 4 we
show the Morrey norm estimate of the sharp maximal function and the pointwise esti-
mate for the sharp maximal function of the commutator, respectively. Then, using these
results, we prove the main results in Sections 5 and 6.

At the end of this section, we make some conventions. Throughout this paper, we
always use C to denote a positive constant that is independent of the main parameters
involved but whose value may differ from line to line. Constants with subscripts, such
as Cp, is dependent on the subscripts. If f < Cg, we then write f S g or g 2 f; and if
f<g=s f,wethen write f ~ g.

2. Fractional integrals and fractional maximal functions

First we recall the boundedness of the maximal operator M and the fractional
integral I, on Morrey spaces L, .

For a martingale f = (fu)n>0 relative to {.%,},>0, the maximal functions are
defined by

Mf=suplful, Muf = sup |ful, M f = sup |ful.
nz

o<m<n m=n

For a function f € Lpjoc With p € [1,00), let f, = E,f, n > 0. Then (f,),>0 is a
martingale and lim f, = f in L,(B) for each B € A(%). For this reason a function
n—o0

f €Ly 1oc and its corresponding martingale (f,)n>0 With f, = E,f will be denoted by
the same symbol f. In this case, for f € Lj joc,

Mf=supl|Enfl, Muf= sup |Enfl, M f = sup |E,f].
nz

o<m<n m>=n

It is known as Doob’s inequality that (see for example [19, pages 20-21])
1M1, < E Uy £ €Ly (p> 1), @.1)
IMfllwe, < | flleys  f €Lt (2.2)
Since M (fyp) = (M f)yp for B € A(%,), we deduce
E(M 1) 26" < ZZEUA 267 f€Lpioe (P> 1), (23)

SUB)IE[%{M f>z}%B] < E[|f|%3}7 f S Ll.,lOC; (24)
1>
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from (2.1) and (2.2), respectively. Furthermore, since P(B)E,[g]xs = E|gxs]xs for
any g € Ly joc and B € A(%,), we have

Eu[(M™ f)7 28] 75 < —— = Eflf1P1 725, f€Lpoc (p>1), (2.5
Sgng(Bﬂ {M" > 1))y < P(B)E,,[|f\]x37 J € Lijoc (2.6)

from (2.3) and (2.4) respectively.
For the boundedness of M on Morrey spaces, we have the following theorem:

THEOREM 2.1. ([11,12]) Let 1 < p <o and A < 0. Then M is bounded from
L, to itself.
For the boundedness of I, we have the following theorem:

THEOREM 2.2. ([11,12]) Let 1< p<q<oo, —1/p<A <A+a<0and pA =
q(A + o). Assume that {7, }p>0 is regular. Then o is bounded from Ly, 5 to Ly 4 q-

In the above theorem, if A = —1/p and %) = {0,Q}, then —1/p+a=—1/q,
L,, =1L, and L, 4 =L, Then we have the following corollary:

COROLLARY 2.3. ([11]) Let %9 ={0,Q}, 1<p<g<o and —1/p+o =
—1/q. Then 1y, is bounded from L, to L.

This boundedness proved by [3] in the case of dyadic martingale.
For oe > 0 and for f € Lj joc, let

19 f =Iof — Ellaf] = 3, (Bi1)“(Ef — Ei 1 f)- 2.7)

k>n

Then we have the following corollary:

COROLLARY 2.4. Let 1 < p<qg<e and —1/p+ o =—1/q. Let R be the
constant in (1.4). Then there exists a positive constant Cp 4 g such that, for all n > 0
and B € A(%,),

(&1 flq]) 5 < CpqkP(B) (Eal F1"])'"” 16 (2.8)

Proof. For B € A(%#,), we denote {ANB:A € %} and {ANB:A € %} by
Z NB and .%; N B respectively. Note that .%, "B = {0,B}. Then, on the probability
space (B,.# NB,P/P(B)) with filtration {.%; N B}, the fractional integral is defined
by

I5f = (Bu/P(B))* (Enf —0) + 3. (Bi—1/P(B))* (Exf — Ex—1f) on B.

k>n
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By Corollary 2.3 with the fact I f P(B)*I5(f — E,f) on B, we have

n 1/q n
<En[|lz(x)f\q]> = ”It(x)fHLq(B,P/P(B)) :P(B)ang(f_Enf)”Lq (B,P/P(B))
<CPB)*|f = Enfl,s.p/pi)) < 2CP(B)* (Eu[|f17)"/" on B,
where C is a constant depending only on p, g and R. [

We also note that, if g is .%, -measurable, then

15 (f8) = 15" f)g. (2.9)
For f € Lj joc, its fractional maximal function M f is defined by
Mo f = sup (B.)*|Enf|. (2.10)
n=0

As a corollary of Theorems 2.1 and 2.2 we have the boundedness of M, .
COROLLARY 2.5. Assume that {%,},>0 is regular. Let o0 >0, 1 < p < g < oo,

—1/p<A<0.IfA+0 <0 and pA =q(A+a), then My is bounded from L, to
Lypsa- If A+0=0, then My, is bounded from L, ; t0 L.

Proof. Let A+ o =0. Then, for any B € A(%#,),

B 5z < B (s 7)< Wl

This shows that
Mo fllr. < flle,,-

Let A +a <0 and pA = q(A + o). By a simple calculation, we have

Eo(Ix|f]) = (Bo)*Eolf| = (Bo)*|Eof],
E\(Io|f]) = (Bo)*E1lf| = (B1)*|E1 1,

En(Ialf]) = (Bo) an|f|+2 (Be—1)* (Ex|f| = Ex1lf1)

| >
| >

S

((Be=1)* = (B) ") Ex|f| + (Ba—1)“Enlf]
ﬁn 1) ‘Enf‘ ( n)a‘Enf|7 ifn>2

Il
-

—~

That is,
Mo f < M(Ig|f]).

Therefore, by Theorems 2.1 and 2.2, we have

||MocfHLq,x+a < Cp,q”fHLpW U
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3. Sharp maximal functions

Recall that the sharp maximal functions Mg f and M*f are defined by (1.5) and
(1.6), respectively.
For f € L 1oc and B € J,_qA(F), let

1
= — dP. 3.1
1= 50 ! G.D
First we show the following good A inequality.

PROPOSITION 3.1. Let f € Lyoc and B € A(#,). Then, for any A € ||fz|,)
and 0 € (0,e0),

PBN{M™Mf > 20, M f <OL}) <OPBN{M™ f>1}). (3.2)
Proof. Let 1" (f) = inf{m > n:|Enf| > 1}, andlet QF =B {c\" (f) = m}.
Then 7
B{M"Wy =22y cBn{M >t =] 9f,.

mz=n

Hence, it is enough to prove that, for each m > n,
PQF N {M"f>20 M f <OA}) < OP(QF ). (3.3)

Note that Qf =0, since |E,f(®)| = |fs| <A if @ € B. Let Q¥ 0. Then there
exist atoms By € A(%#,), v=1,2,---, such that

Q7 =B
v
Hence, for (3.3) it is enough to prove that, for each v,
P(By N {M" f > 20 M*f < OAL}) < OP(By). (3.4)
Now, if k£ > m, then

\Exflxs, = |Ex[f x8,]l
S E|(f = En-1f) x|+ |En-1f1 2B,

SM|(f = Ep1 f) X, 1 X8y + A X8, -

Then
(M f)xs, <M™(|(f — Ew-rf) 28,128, + A X5, (3.5)

If o € By and M") f(w) > 22, then M"™ f(®) > 21, and then

M"(|(f = En-1 s, [ (@) =M™ f(@) =2 > A
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by (3.5). Hence, we have
By N {M"f>20} € By {M™[|(f = En1f) 28,1 > A}
By Doob’s inequality (2.6) for M ™) on B, , we have
P(By 0 {M" f > 22} 3, < P(By {M "™ [|(f — En1f) 2, ) > A}) 18,

P(Bv)EmH(f —En—1/)|xs,

<

o >

<

If P(ByN{M*f(w) < OA}) =0, then the left hand side of (3.4) is zero. If P(By N
{M*f(w) < OA}) > 0, then we have essinfyep, M*f(®) < A and

7 eas)égth f(w) < OP(By).

P(ByN{M™ f > 20 M f < OA}) <

Therefore, we have (3.4) and the conclusion. [

Next, by using the good A inequality and ideas in [1] and [9], we show the fol-
lowing proposition.

PROPOSITION 3.2. Assume that {.%,}n>0 is regular. Let f € Ly, joc. Let 1 < p <
soand L <0.If M*f €L, then f € L, and

£z, < CIM*f|L, , (3.6)
where the constant C is independent of f.

To show the proposition we use the following two lemmas.

LEMMA 3.3. Let 1 <p<oo, A<Oandn>0. Let f €Ly and B € A(F,).
IfM*feL,,, then

1/p 1/p
(flr-sirar) <c<(/3 ot pyrar) +P(B)1/”|f3>7 a7

where the constant C is independent of f and B.

Proof. First we show that, for all B € A(.%,),

( / <M<">f>PdP) e (( / (Mjf)”dP) h +P(B)1/”f3> 6y



COMMUTATORS OF FRACTIONAL INTEGRALS ON MARTINGALE MORREY SPACES

For any L > 2|f3/,
L
/ pAPIPBA MY f > A))dA
0
2|f5|
- / pAPTIP(BO{M™ £ > 1)) dA
0

L
+ ‘ Ip)Lp‘lP(Bﬁ{M(")f>?L})d7L
2(fp

L)2 1
< (2|fB\)PP(B)+2P/V CpAr PBN{M™ f>21})dA.

By the good A inequality (3.2) we have

L/2
2P . pAPTIP(BO{M™ £ > 201 )dA
/B

L/2
<2P0 [ pAPT'PBN{M™Wf > AY)dA
/5]

+27 I;/szP—IP(Bm{Mﬁp OA})dA
/s
< 2”0/0Lp?LP’1P(Bﬁ{M(")f > A})dA
+2p6_p/:p?tp_1P(Bﬂ{Mjf > OA})dA.
Then, for small 6 >0,
(1—276) /OLp)LP‘lP(Bm (MY f > 2})dA

< 2If)?P(B) + 270" /prP—IP(Bm (MPf > A})dA.
0

Letting L — oo, we have (3.8).
On the other hand, noting that lim, ... E,f = f in L,(B), we have

1/p 1/p
(fir-sarar) "< (f1s1rar) " +p@)oisa
B B

1/p
<(fwnrar) s r@ il
B

Combining this with (3.8), we have the conclusion. [J

641

LEMMA 3.4. ([11], Lemma 3.3) Let {.%,}n>0 be regular. Then every sequence

ByDBD---DB, D+, B,€A(F,),
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has the following property: For each n > 1
B,=B,_1or (1+1/R)P(B,) < P(B,—1) <RP(B,),
where R is the constant in (1.4).

Proof of Proposition 3.2. Let R be the constant in (1.4). First we show that there
exists a positive constant C; p such that, for any atom B,

/8] < Cox P(B)*|M*f |1, , - (3.9)
Note that
1
essmejf( B)/M’jfdP

1/p
< (ﬁ / (MW)PdP)
< PB M|, .

If Be A(%), then

il < P(IB 17~ E-islap < essintai (o)

< P(B) ”MijLp,p
since E_1f =0. Let B € A(%,) with n > 1. Choose atoms By € A(%;), k =

0,1,---,n, such that B=B, C B, C --- C By. We may assume that P(By) #
P(By_1), k=1,2,--- ,n. Then, by Lemma 3.4,

1
(l + E) P(By) < P(By—1) < RP(By).
Using the inequalities

1
B < —Ep 1 f]dP < infM* f(w
‘ka ka71| P(Bk) /Bk ‘f k 1f| eas)segz f( )
<P(Bk)7LHMﬁf||pr k=1,2,---.n,

and

L 1 "0 PBY*
P(By) ~ log (P(By)/P(By+1)) /P(Bm) .

- C, /P(Bk) t*
“log(1+1/R) Jp,,) t



COMMUTATORS OF FRACTIONAL INTEGRALS ON MARTINGALE MORREY SPACES 643

we have
n
|fB| < |fBo| + z |ka _ka—l‘
k=1

< Y PBY* M,
k=0

C, /P(Bo) t* a i
<N ———————— —dt+ P(B, M
<log(1+1/R> gy ¢ PO Il

<CurPB) M1, -

This shows (3.9).
Then, combining (3.9) and Lemma 3.3, we have

1 1/p 1 1/p
(s f1rar) " < (s f1r—salrar) "+ 1
SJP(B))L”MijLP,m

which shows the conclusion. [l

4. Pointwise estimate for the sharp maximal function
In this section we show the following proposition.

PROPOSITION 4.1. Assume that {%,},>0 is regular. Let § >0, 1 < p < e and
1 <v < p. Then there exists a positive constant C such that, for all b € £, s and

f € Lp,loc,
ME([b,16df) < ClblL, 5 (MsTaf) + (Mo (11, (4.1)

and
M ([b,1a)f) < Cllbll 2, 5 (MU f) + (Mo (L)) (42)

To prove the proposition we state two lemmas.

LEMMA 4.2. ([10, Theorem 2.9]) Assume that { %, }n>o is regular. Let 1 < p <
o and 6 > 0. Then £, 5 = & 5 with equivalent norms.

LEMMA 4.3. Let oo > 0, and let I((xn) beasin (2.7), n>0. Let f € L, oc and
b € Ly oc with p,p’ € [1,00] and 1/p+1/p' = 1. Let b, = E,b. Then,

Ey|[b,16)f = En([b,10] /)]
<2E,| (b= bl |+ 2B |1 (0 = ba) )| + (e )l Enlb = .
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Proof. Noting that 5,1 f = 12 (b, f), we have
(b1of = [b,15"1f + b, Ealf
= [b—bud§")f +b(Iaf n — (b))
Hence, we obtain
1. 1edf = En([b:1al )| < |[b= s 161 = Eul[b = b1 1)| 4106 = ba) (Tl
Therefore,
En|[b.1a]f — Enllb, 1] 1] < 2B [b = bu, 11| + | (e )nl Eal = bl
Since [b— by, I1f = (b — bu)IS" f — 13 ((b — b,)f), we have the conclusion. [
Proof of Proposition 4.1. Let g = [b,1,]f. Then
En|g — En-i1g]| < REq-1]g — En1[g]]
by the regularity assumption on {.%,},>0. Hence,
Mg < (Bo)""Eolg| +R™**sup (B,)°Enlg ~ Erlg]|

Mbg < Eolg| +RSliI(;En|g_En[g]|'

Let b, = E,b. By Lemma 4.3, it is enough to show that, for all » > 0 and all B €
A(Fn),

(2] (6= b))+ 2B, 157 (b= b)) + Fah Bl = b)) 28
§ CP(B)SIIbIIzL,s(Muaf)+<Mav<|f\v>>1/v)xB,
Cllell 2, (M T f) + (Miarrayul | F) ) 2,

and that, for all B € A(%),

0’8’% < ( ) H ||$1‘5<M(Iaf)+(Mav(|f‘v))l/v>XBa
B X
” ”flﬁ(M‘s( O‘f) ( (a+9) (|f‘ ))I/V>XB.

Let n >0 and B € A(%#,). Choose p; and v such that 1 < p; <v < p, and let
—1/pi+a=—1/qyand 1/py=1/u+1/v. Then 1 < p; < g; <o and 1 <u,v < co.

From Holder’s inequality and the boundedness (2.8) of I,(x") it follows that, for any
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BeA(F,),

/a1

Enl(b— b1l f o < (Eul16 )14 (£ (1 7]) " 20
< CP(B)’ bl 2, ,P(BY" (Ea[LA17)) """ 1
< CP(B)°||bll.; ,P(B)® (Eall ') x5
 [cPB? bl 2, 5 (PB“E I D”V
- {cwm (P o) VEn[IfIVD 5.
Similarly, we have

En|I((Xn)((b - bn)f)}XB < (En [|Ian)((b _ bn)f)|‘11]>l/q1 -

gCPBO‘( |: p1 )1/171

(B) 7]
< CP(B)® (Ex[|b— b\])““( DY s
< CP(B)*?||bll.¢, , (Eall FI']) " s

_ [eP@Plela s (E©E LD 2o
Clblla s (PEE111)” 2.
and

P(B)®||b|| % ;M (Io.f) x5,
Lo f)nlEnlb— bul x5 < |16 Ey[lof]xs b
(e Ealb—bilito < Pl oPE) [l 1ol 2, Ms 1 )5
Next, we note that, for B € A(%#),
Eo\g|xs = Eol[b—bo.Io) f1x5 < (Eo|(b— bo)laf| + Eollu((b— bo)f)|) 5.

By the same way as above, we obtain

| CP(B)||b| , ; (P(B)*Eo[| f]" W
S bl (P8 (1)

These show the conclusion. [
5. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. (i) Let b€ £, s and f € L, 5 . Then by Proposition 4.1 we
have
ME (b Talf) < ClIblL 7 5 (MsTaf) + (Mg (1))
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Take po such that pA = po(A + &) = q(A + «+3). Then I is bounded from L, ; to
Ly, A+e and Ms is bounded from L, 3 o t0 Ly 3 4qq5- Thatis,

HME(IOCf)”Lq#)w,;Hg 5 Hf”L,,#)L'

On the other hand, from pA = g(A + o+ §) it follows that (p/v)Av = (¢/v)(Av+
(04 6)v), thatis, M), is bounded from L, /.3, t0 Ly, (31 a+5)y- Then

1/v
My LDy 15 = (M8 (g

. 1/v
< (I pn) - =17,

Combining these and Proposition 3.2, we have

1,10 f1l2, s S IMP(B ) )2y 55 S BN 51 f I, -

This is the conclusion. [

Proof of Theorem 1.2. (i) Let b€ £ s and f € L, ; . Then by Proposition 4.1 we
have

M5 (0,10l ) < ClIBlL 4 5 (ML f) + (Man (1)),

Since I is bounded from L, ; to L, ; 4 and M is bounded from L, 3 . to itself, we
have

IMUa)llzy ;0 S IF

On the other hand, from pA = g(A + «) it follows that (p/v)Av = (q/v)(Av+ o),
that is, M, is bounded from L, 3, t0 Ly, (2 1a)v- Then

1/v
||(MaV(|f‘v))l/vHqu+a = (”Mav('f‘v)“Lq/],‘(AJFa)v)
. 1/v
S (I eys) =17l

Therefore, we have

b, 2a)fll s = M5B 1ol )z, 0 S 1614511,

ql+a
This is the conclusion. [

Next, to prove Theorem 1.1 (ii) and Theorem 1.2 (ii) we show the following two
lemmas.

LEMMA 5.1. Let b€ Ly joc. Let BEA(F,), n 20, andlet f € Lo, with fyp=0.
Then,
XBEn| (b, 1) f — Enl[b,16)f]| = X8l1o.f|En|b — Enb|. (5.1)
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Proof. From the assumption, it follows that

Inf = Exllaf), 1u(fb) = Eulla(fb)] on B.

Hence, we have
[b,14)f = bEy[Io.f] — Ex[Ia(Df)] on B.

Therefore,
[b,1o]f — En([b,1o)f) = (b— Eub)Ey[lof] = (b — Eub)lof on B,

and
Eu|[b,10)f — En[[b.16)f]| = |lo.f|En|b— Exb| on B,

which shows the conclusion. [
LEMMA 5.2. Assume that {F,}n>0 is regular. Let B € A(%,), n > 2, and let
B=B,CB,_1 C...CBy, BicA(%).
Assume that 0 < { <m < n, where
m=max{k: P(B,) < P(Br)}, {=max{k:P(By)<P(Bi)}.
Let h= XB,\B and let b € Ly joc. Then
CrYBP(B)*En|b — Enb| < x8En|[b,1a)h — Ex([b,10]h)], (5.2)

where Cg is a positive constant depending only on the constant R in (1.4).

Proof. Since hyp =0, we have Ioh = E,[Ih] on B. Then, observing Lemma 3.4,
we have

xslah = x5 Y, (Bi—1)*(Exh — Ex_1h)
k=0

= i ﬁk 1 - ) )Ekh—’_XB(ﬁnfl)aEnh
k=1

> 28((B)" — (B)®) En
— 25(P(B)* — P(By)®) (1 _ P& )
> CrxsP(B)?, (5.3)

where Cg is a positive constant depending only on R. Hence, by Lemma 5.1, we have
CrXBP(B)*En|b — Exb| < x8lahEn|b — Enb| = xBEy|[b,Iu)h — En([b,Io)h))|.

This is the conclusion. [
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Proof of Theorem 1.1. (i) Let n >0 and B€ A(.%,). Let By € A(%;) (0<k<n)
such that
B=B,CB, | C...CB,.

Let N = Np be the number of elements in the set {k: 1 <k <n,By # Br_1}.
Case 1: N=0.
In this case, B = By € A(%). Therefore,

XBEn|b— Eub| = x8Eo|b— Eob| < P(B)°|b|| ¢, ;(,)-

Case 2: N=1.

In this case, there exists an integer k such that 1 < k < n and that B= By, By =
Bj_1. Then, by Lemma 3.4, we have P(Bg) < RP(B). Using the regularity assumption
on {%, },>0 again, we obtain

XBEu|b — Eqb| = xpEi|b— Exb|

B(Ex|b — Ex_1b| + |Ex—1b — Exb|)
XBE|b— E;_1b|

RyBEy1|b— Ex1b|

Rys,Eolb — Eob|
RP(BO)SHbeLS(fO)
R'™OP(B)?(|b] 4 5(7)-

xR

NN NN N
ST ST S I S

N

Case 3: N >2
In this case, we can apply Lemma 5.2. Let & be as in Lemma 5. 2 Then, using the
boundedness of [b,Iy] from Ly, 3 t0 L ; 4o and [[Allz,, < P(B)~*, we have

20sEn(|[b. 1oJh|*)

XBEn|[b,Ia]h— Ey([b,15]h)| <
<2P(B)*0|[b, 1)
S
S

q,A+0+06
B)* (b, 1]

P(
P(B)* | [b.dolllz, 2,1 s

12y 2—Lyzass IPlL,

Hence, by (5.2) we have

XBEn|b — Eqb| < P(B)°||[b, 1]

HLp,x —Lyita+rs-

Thus, we have the conclusion. [

Proof of Theorem 1.2. (ii) Let n > 0 and B € A(.%,)). Define N = Ng be the same
as in the proof of Theorem 1.1 (ii).
If N=0 or N =1, then by the same as in the proof of Theorem 1.1 (ii), we have

X5En|b — Eib| S P(B)? b 2, 5(70)-
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We now consider the case N > 2. Let & be as in Lemma 5. 2 Then, using the

boundedness of [b,Iy] from L, ; to Fq‘sL g, and 17lL, 5 < P(B)~*, we have

XBEn|[b,1a)h — Eu([b,1)h)| < P(B)® ei)seingg([b,Ia}h)

< P(é—i)))‘S (/ [M(js([b,la}h)r>l/q
7L+0¢+6HM11([b Io)h)

< P(B) [T
SPB T b, 1], N R (177
P Lq.}ﬁ»o{
< P(B)**9||[b,1,
SPE O Nbdall,, s
Hence, by (5.2) we have
XEn|b— Eqb| S P(B)° (b, 1]l LFS
P LqJL+11

which shows the conclusion. [l

6. Proofs of Theorems 1.4 and 1.5

Recall that A(.%)) = {A,};_, and that D, = [J;_,; Ax. First we show several
lemmas to prove Theorems 1.4 and 1.5.

LEMMA 6.1. Let 6 >0 andlet f € £, 5. Then, f belongsto W s if and only if

lim || f = Eyf]| 2,5 =0. ©6.1)

Proof. 1t is easy to see that

||E"f||f1§ Hf”flg (62)

forall n > 0. Hence, we have E, f € £} 5§ N L. Therefore, (6.1) implies f € #, 5.

For the converse, let f € 7 5. Then, for any € > 0, there exists g € .,?175 such
that g is .7, -measurable for some no > 0 and that [|f —g||.¢ ; < €. In this case, if
n > ng, then

||f_Ean$1>5 < ||f_g||f/1§ + ||En(g_f)||_‘f1§ < 2||f_gH=(Zl5 < 2e

This shows the conclusion. [

Since 6 5 = 2% s NLNLc = #} 5N Lc, we have the following corollary:

COROLLARY 6.2. Let § >0 and let f € £, 5. Then, f belongs to ¢, 5 if and
only if
1 ([~ 0, Enf L2, =0. (6.3)
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LEMMA 6.3. Let § >0 and let f € £ 5(F0). Assume that {.F, }n>0 is regular.
Then

IEfll25 < QRO £l 2, 5(50)- (6.4)

Proof. Let g=E,f. Then g— Eyg =0 for k > n. Foreach B€ A(F;), 1 <k <
n—1,

B(Ex|g — Ex—18| + |Ex—18 — Exg|)
2xBEk|8 — Ex—18| < 2RyBEx—1|g — Ex—18|-

xBEx|g —Ergl < x
<

Then, taking By € A(-%y) such that B C By, we have

XBExlg — Exg| < (2R)*P(B0)°|Igll 2, y(70) < 2RO P(B)|lgll 2, 5(70),

which shows

1
lgllz, ;= sup  sup 7/|g_Ekg‘dp
o o<k<n—1Bea(7,) P(B 1+6

< (2RO~ el 5020 < < (2RO N1z, 5(70)-

This is the conclusion. [

LEMMA 6.4. Let 6 >0 andlet f € £, 5. Assume that {.F,},>0 is regular and
that f satisfies (1.8). Then, f belongsto 6\ 5 if and only if f belongsto W, s.

Proof. If f € 6} 5, then f € #) 5 by the definition. Conversely, let f € % 5.
Then, by Lemma 6.1, for any € > 0, there exists 7 > 0 such that || f — Eifllez s <e. By
the assumption (1.8), there exists ko > 0 such that, if k > ko, then || f — xp, f|| #, 5(F0) <

g/(2R'9)"1 Thatis, ||E,(f — X f)ll s < € by (6.4). In this case,

If = xp fllz s < Nf —Enfllz 5 + |Enf — XD Enfll 2 5 + | XD (Enf — )l 5
<N f = Eafllz s + | Ea(f = X0, )|z 5 + 1f = Enfll2, 5
< 3e.

This shows that f € 4] 5. Therefore, we have the desired conclusion. [J

Next, we recall the notation used in the previous section. For B € A(.%,), let
Bj € A(F)), j=0,1,...,n, such that

B=B,CB,C--CB,.

Denote by Np the number of the set {j: 1 < j <n,P(B;)# P(Bj_1)}.
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LEMMA 6.5. Assume that {.F,},>0 is regular. Let b be in £ 5 and satisfy (1.8)
with ||b|| ¢, s = 1. For a positive constant ¢, choose an integer J such that

16— xp,bll 2, 5(7) < c/(8R"*?).
If B € A(F,) satisfies
P(B) <R *min{P(A;):A; € A(Fp),l <j<J} (6.5)
and
/B Ib— E,b|dP > cP(B)'3 /2, 6.6)
then Ng > 2.

Proof. If B C Dy, then we see that N > 2 by (6.5) and the regularity of {.%, },>0.
If BC Q\ Dy, we also conclude that Ng > 2. Indeed, if N < 1, then we have
/B \b— Eyb|dP = /B;CQ\D, b— E,b|dP
<S2R"™OP(B)'*O||b— xp,bl 2, 57 < cP(B)' 0 /4
by the same way as in the proof of Theorem 1.1 (ii), which contradict (6.6). [J

Further, we recall the following fact.

THEOREM 6.6. ([11, Theorem 5.8]) Assume that {%,},>0 is regular. Let o« >0
and 6 > 0. Then,
1o 63(31,6731,6“1)' (6.7)

We now prove Theorem 1.4.

Proof of Theorem 1.4. Let b be in £} 5 and satisfy (1.8).
Part 1. We first show that, if b € € 5, then [b,Io] is compact from L, 3 t0 Ly ; 1 g5-
Note that b € €] 5 implies that b satisfies (1.8). From

[XDnEnvaOC}f = XDnEn([En(b)vIa]f)v

we obtain that the range of the commutator [yp, Enb,l] is finite dimensional, since
the number of the elements in {B € A(%,) : B C D, } is finite for each n > 0 by the
regularity on {.%,},>0. Besides, by Theorem 1.1,

1b,1e] = (XD, Enb TalllL, 3 —L, 5 1 05 < ClID— XD, Enb 2 4-
Combining this with Corollary 6.2, we obtain

V}E];lc H [bala} - [anEanOC} HLp.l‘)LqJLJraJrS =0.



652 E. NAKAI AND G. SADASUE
Thus, we have the compactness of [b,Iy] from L, 5 to L, ;445
Part 2. For the converse, we show that, if b ¢ ) 5, then [b,I,] is not compact from

LpjtoLyyiars- Let Hngw =1.ByLemma 6.4, b ¢ ¢, 5 implies b ¢ #; 5. Then,
c:=limsup, .. [|b — E;b|| & 5 >0 by Lemma 6.1. Hence, the set

N={n>0: / |b— Eb|dP > cP(B)'* /2 for some B € A(.Z,)}
B

is infinite. By the fact lim, ... max{P(B) : B € A(%#,)} = 0 and Lemma 6.5, we can
choose an increasing sequence {n;};>1 in N and a sequence {By, };>1 of .7, -atoms,
inductively in the following manner. Let n; = minN and let B,, € A(.%,,) satisfy

/ |b— E, b|dP > cP(By, )" )2.
By,

Next, we choose n; <n3 < ... and By, EA(fnj), j=2,3,..., satisfying

/B b — E, bl dP > cP(B,,)+8 2, 6.8)
nj

P(By;) < P(By;_,), (6.9)
P(By) > —2 |l P(Bay ) (6.10)

& R-Cp Lpa=Lgyava” \Pnj1 ’ )

8

P(an))L > EHIOCH“(fl.a—’f/l‘aJr,sP(anq)lv (6.11)
N, >2, 6.12)

n:

where Cg is the constant in Lemma 5.2, g; is the number defined by pA = ¢ (A +
o), and, ||Iy ||Lp‘lﬁqu‘“a and | Io| #, 5~ .5 are the operator norms determined by
Theorems 2.2 and 6.6, respectively. Note that we do not assume B,; C By, .

For each n; above, we define an integer m; by

mj=max{m:m<n;j,B,, CB,P(By;) # P(B),B €A(Fn)}.

and let
h/ = P(Bn/)}t’ (Xij - xan ) .

By the regularity on {.%, },>0, it is easy to see that
Ihjle,, <R forall j=>1. (6.13)
Therefore, to prove that [b,1,] is not compact, we only have to show

eI Ta) (=Rl 5> O (6.14)
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In the following we show (6.14). Let k < j. Then hj —hy and Ig(h; — hy) are Fy,;-
measurable. Hence

XanEn, |[b710€](hj - hk) _E"j [[bv[a](hj - hk)”
= 25, En, [|bla(hj — ) = En, (B — )

— {Talb(hs — 1)) ~ En(Talb(h; — b))}
> 2, o (hj = i) |y |0 — En bl = x5, 1y — hi|Eny [1a(0) = Ey (I ()] (6.15)

In the above we use the property (2.9). By the same way as (5.3) in the proof of
Lemma 5.2, we have

X5, /Tahjl = 26, CrP(By, ). (6.16)
Further, by (6.13) and (6.10),
28, il < 2, R lallL, L, . P(Ba) (6.17)
<, R Ml 1y, 40 PBay )
<5 (;RP(an)QH-a'
Combining (6.8), (6.16) and (6.17), we have
i s = )| Eny b~ Enb| > o, PB4 618)

Besides, using Theorem 6.6, we have
X8, |hj = el Enjllo (D) = En (I (D)) = X8, V1| Enj|ler(b) — En (I (b)) (6.19)
< )cBn,P(Bnk)AP(Bn,‘)‘“‘S e (D) 1|2, 4
S XBy; P(B, )AP(

cC
< 1, 8RP(B"I)A+O(+8'

1)
B”j)o{Jr HIaHiﬂ,aﬂfst

Thus, combining (6.15), (6.18) and (6.19), we have

C
X8, En; |16, 16) (hj — i) — En [[b, o] (hj = hi)]| = 23, g RP(B VAT (6.20)

that is,
CCR

115, L) (= Bz, 5 0v5 R =5

Therefore, we have (6.14). The proof is complete. [

Proof of Theorem 1.5. The necessity part is obtained by the same way as in The-
orem 1.4
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For the converse part, let b be in .Z| 5 and satisfy (1.8) with [|b]| ¢ , =1. We
show that, if b & % 5, then [b,I,] is not compact from L, ; to Fp roo Wetake a
: : At

sequence (h;);>1 by a similar way to the proof of Theorem 1.4. Then, we obtain that,
for k< j,

28, P(Buy M (b o) (s = i) 5

| 1/q

[ £ o q
= xBﬂjP(an) P(Bn_,') A"/’ [Mg([b,]a}(hj hk))} dP
> XB"J'P(B”/‘)S ei,seingg([bJa](hj —hy))

b xBn_,-En_,' Hbvl&}(hj — i) — Enj [[bv[a](hj - hk)H

CCR
2 Xan TP(an))L+OC+5.

In the above we use (6.20). This shows the conclusion. [
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