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COMMUTATORS OF FRACTIONAL INTEGRALS

ON MARTINGALE MORREY SPACES

EIICHI NAKAI AND GAKU SADASUE

(Communicated by L. Pick)

Abstract. On martingale Morrey spaces we give necessary and sufficient conditions for the
boundedness and compactness of the commutator generated by the fractional integral and a func-
tion in the martingale Campanato space. We also give the conditions for the boundedness and
compactness from martingale Morrey spaces to martingale Triebel-Lizorkin-Morrey spaces.

1. Introduction

It is well known as the Hardy-Littlewood-Sobolev theorem that the fractional inte-
gral operators Iα on the Euclidean space R

n is bounded from Lp to Lq for 1 < p < q <
∞ , 0 < α < n and −n/p+ α = −n/q . For any BMO function b , Chanillo [2] proved
the same boundedness of the commutator [b, Iα ] . This boundedness was extended to
Morrey spaces by Di Fazio and Ragusa [6]. See also Ragusa and Scapellato [15].
Paluszyński [14] proved that, for any β -Lipschitz function b , 0 < β < 1, the commu-
tator [b, Iα ] is bounded from Lp to Lq for −n/p+ α + β = −n/q and from Lp to the

Triebel-Lizorkin space Ḟβ
p,∞ . Further, the compactness of the commutators on Morrey

spaces was investigated by Chen, Ding and Wang [5].
In martingale theory, based on the result by Watari [18, Theorem 1.1], Chao and

Ombe [3] proved the boundedness of the fractional integrals for Hp , Lp , BMO and
Lipschitz spaces of the dyadic martingales. These fractional integrals were defined
for more general martingales in [16]. See also Hao and Jiao [7]. On the other hand,
martingale Morrey spaces and their generalization were introduced by [11] and [13],
respectively, and the boundedness of fractional integrals as martingale transforms were
established. Moreover, necessary and sufficient conditions for the boundedness of frac-
tional integrals on the martingale Morrey spaces were given in [12]. On the other hand
the compactness of the commutators of martingale transforms was investigated by Jan-
son [8] and Chao and Peng [4], etc.

In this paper, we investigate the boundedness of the commutator [b, Iα ] with a
function b in the martingale Campanato spaces introduced in [11]. We give necessary
and sufficient conditions for the boundedness of [b, Iα ] from a martingale Morrey space
to another martingale Morrey space or to a martingale Triebel-Lizorkin-Morrey space
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(Theorems 1.1 and 1.2). As a corollary we get the martingale version of Paluszyński’s
result (Corollary 1.3). Further, we give the conditions for the compactness of the com-
mutators (Theorems 1.4 and 1.5 and Corollary 1.6).

Let (Ω,F ,P) be a probability space and let {Fn}n�0 be a nondecreasing se-
quence of sub-σ -algebras of F such that F = σ(

⋃
n Fn) . We suppose that every

σ -algebra Fn is generated by countable atoms, where B ∈ Fn is called an atom
(more precisely a (Fn,P)-atom), if any A ⊂ B with A ∈ Fn satisfies P(A) = P(B)
or P(A) = 0. Denote by A(Fn) the set of all atoms in Fn . We also suppose that
(Ω,F ,P) is non-atomic.

The expectation operator is denoted by E . For a measurable set G ∈ F , its char-
acteristic function is denoted by χG . Let Lp,loc be the set of all measurable functions
such that | f |pχB is integrable for all B∈ A(F0) . If F0 = {Ω, /0} , then Lp,loc = Lp . An
Fn -measurable function g ∈ L1,loc is called the conditional expectation of f ∈ L1,loc

relative to Fn if

E[gχBχG] = E[ f χBχG] for all B ∈ A(F0) and G ∈ Fn.

We denote by En f the conditional expectation of f relative to Fn . We say a sequence
( fn)n�0 in L1,loc is a martingale relative to {Fn}n�0 if it is adapted to {Fn}n�0 and
satisfies En[ fm] = fn for every n � m .

We first recall the definition of fractional integrals. Let

βn = ∑
B∈A(Fn)

P(B)χB, n = 0,1,2, · · · . (1.1)

For α > 0 and a martingale f = ( fn)n�0 relative to {Fn}n�0 , we define the fractional
integral Iα f = ((Iα f )n)n�0 of f by

(Iα f )n =
n

∑
k=0

(βk−1)α( fk − fk−1) (1.2)

with the conventions β−1 = β0 and f−1 = 0. In what follows we always use these con-
ventions and E−1 f = 0. As is shown in [11, Remark 5.3], the series χB ∑∞

k=0(βk−1)α( fk−
fk−1) converges in L1 for every B ∈ A(F0) . By this reason, for a function f ∈ L1,loc

with its corresponding martingale f = (En f )n�0 , we define

Iα f =
∞

∑
k=0

(βk−1)α (Ek f −Ek−1 f ), (1.3)

which is in L1,loc . By this definition the commutator

[b, Iα ] f = bIα f − Iα(b f )

is well-defined for f ∈ Lp,loc and b ∈ Lp′,loc , where p, p′ ∈ [1,∞] and 1/p+1/p′ = 1.
Next, we recall the definition of martingale Morrey and Campanato spaces.
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DEFINITION 1.1. Let p ∈ [1,∞) and λ ∈ (−∞,∞) . For f ∈ L1,loc , let

‖ f‖Lp,λ = sup
n�0

sup
B∈A(Fn)

1

P(B)λ

(
1

P(B)

∫
B
| f |p dP

)1/p

,

‖ f‖Lp,λ = sup
n�0

sup
B∈A(Fn)

1

P(B)λ

(
1

P(B)

∫
B
| f −En f |p dP

)1/p

,

and define

Lp,λ = { f ∈ Lp,loc : ‖ f‖Lp,λ < ∞}, Lp,λ = { f ∈ Lp,loc : ‖ f‖Lp,λ < ∞}.

If p = 1 and λ = 0, then L1,0 is the martingale BMO space and ‖ f‖BMO =
‖ f‖L1,0 .

The stochastic basis {Fn}n�0 is said to be regular, if there exists a constant R � 2
such that

fn � R fn−1 (1.4)

holds for all n � 1 and all nonnegative martingales ( fn)n�0 . It was shown in [10] that,
if {Fn}n�0 is regular, then ‖ f‖Lp,λ is equivalent to

‖ f‖L−
p,λ

= sup
n�0

sup
B∈A(Fn)

1

P(B)λ

(
1

P(B)

∫
B
| f −En−1 f |p dP

)1/p

,

if E0 f = 0.
We next recall the definition of sharp functions. Let δ � 0. For f ∈ L1,loc , let

M�
δ f = sup

n�0
(βn)−δ En| f −En−1 f |, (1.5)

with the convention E−1 f = 0. If δ = 0 we denote M�
0 by M� , that is,

M� f = sup
n�0

En| f −En−1 f |. (1.6)

DEFINITION 1.2. Let p ∈ [1,∞) and δ ∈ [0,∞) . For f ∈ L1,loc , let

‖ f‖Fδ
Lp,λ

= ‖M�
δ f‖Lp,λ ,

and define
Fδ

Lp,λ
= { f ∈ Lp,loc : ‖M�

δ f‖Lp,λ < ∞}.

If λ =−1/p and the number of the elements in A(F0) is finite, then we use the symbol
Fδ

p,∞ instead of Fδ
Lp,λ

because it coincides with the martingale Triebel-Lizorkin space
introduced in [17].

Our main results are the following:
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THEOREM 1.1. Let α > 0 , 1 < p < q < ∞ , −1/p � λ < 0 , δ � 0 , and

λ + α + δ < 0, pλ = q(λ + α + δ ).

Assume that {Fn}n�0 is regular and that b is in L1,loc and satisfies

‖b‖L1,δ (F0) := sup
B∈A(F0)

1

P(B)1+δ

∫
B
|b−E0b|dP < ∞. (1.7)

(i) If b ∈ L1,δ , then the commutator [b, Iα ] is bounded from Lp,λ to Lq,λ+α+δ and

‖[b, Iα ] f‖Lq,λ+α+δ � C‖b‖L1,δ‖ f‖Lp,λ , f ∈ Lp,λ ,

where the constant C is independent of b and f .

(ii) Conversely, if [b, Iα ] is bounded from Lp,λ to Lq,λ+α+δ with the operator norm
‖[b, Iα ]‖Lp,λ→Lq,λ+α+δ , then b ∈ L1,δ and

‖b‖L1,δ � C(‖[b, Iα ]‖Lp,λ→Lq,λ+α+δ +‖b‖L1,δ (F0)),

where the constant C is independent of b .

REMARK 1.1. (i) If b ∈ L1,δ , then b satisfies (1.7) with ‖b‖L1,δ (F0) � ‖b‖L1,δ .
(ii) If the number of the elements in A(F0) is finite, then L1,loc = L1 and every

b ∈ L1 satisfies (1.7) with ‖b‖L1,δ (F0) � 2(minB∈A(F0) P(B))−1−δ‖b‖L1 .

THEOREM 1.2. Let α > 0 , 1 < p < q < ∞ , −1/p � λ < 0 , δ � 0 , and

λ + α < 0, pλ = q(λ + α).

Assume that {Fn}n�0 is regular and that b is in L1,loc and satisfies (1.7).

(i) If b ∈ L1,δ , then the commutator [b, Iα ] is bounded from Lp,λ to Fδ
Lq,λ+α

and

‖[b, Iα ] f‖Fδ
Lq,λ+α

� C‖b‖L1,δ‖ f‖Lp,λ , f ∈ Lp,λ ,

where the constant C is independent of b and f .

(ii) Conversely, if [b, Iα ] is bounded from Lp,λ to Fδ
Lq,λ+α

with the operator norm

‖[b, Iα ]‖Lp,λ→Fδ
Lq,λ+α

, then b ∈ L1,δ and

‖b‖L1,δ � C(‖[b, Iα ]‖Lp,λ→Fδ
Lq,λ+α

+‖b‖L1,δ (F0)),

where the constant C is independent of b .

COROLLARY 1.3. Let α > 0 , 1 < p < q < ∞ and δ � 0 . Assume that {Fn}n�0

is regular and b ∈ L1 . If the number of the elements in A(F0) is finite, then, the
following conditions are equivalent:
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(i) b ∈ L1,δ .

(ii) [b, Iα ] is bounded from Lp to Fδ
q,∞ , if −1/p+ α = −1/q.

(iii) [b, Iα ] is bounded from Lp to Lq , if −1/p+ α + δ = −1/q.

Next we state the compactness of the commutators. Let L0 be the set of all F -
measurable functions. Let

L = { f ∈ L0 : f is Fn -measurable for some n � 0},
and define

W1,δ = L1,δ ∩L,

where L1,δ ∩L stands for the closure of L1,δ ∩ L in L1,δ . Further, let A(F0) =
{An}∞

n=1 and let Dn =
⋃n

k=1 Ak . Let

LC = { f ∈ L0 : f = χDn f for some n � 0},
and define

C1,δ = L1,δ ∩L∩LC,

where L1,δ ∩L∩LC stands for the closure of L1,δ ∩L∩LC in L1,δ . If the number of
the elements in A(F0) is finite, then LC = L0 and W1,δ = C1,δ .

THEOREM 1.4. Let α > 0 , 1 < p < q < ∞ , −1/p � λ < 0 , δ � 0 , and

λ + α + δ < 0, pλ = q(λ + α + δ ).

Assume that {Fn}n�0 is regular and that b is in L1,δ and satisfies

lim
n→∞

‖b−bχDn‖L1,δ (F0) = 0. (1.8)

Then, b∈C1,δ if and only if the commutator [b, Iα ] is compact from Lp,λ to Lq,λ+α+δ .

REMARK 1.2. (i) If b ∈ C1,δ , then b satisfies (1.8).
(ii) If the number of the elements in A(F0) is finite, then L1,loc = L1 and every

b ∈ L1 satisfies (1.8).

THEOREM 1.5. Let α > 0 , 1 < p < q < ∞ , −1/p � λ < 0 , δ � 0 , and

λ + α < 0, pλ = q(λ + α).

Assume that {Fn}n�0 is regular and that b is in L1,δ and satisfies (1.8). Then, b ∈
C1,δ if and only if the commutator [b, Iα ] is compact from Lp,λ to Fδ

Lq,λ+α
.

COROLLARY 1.6. Let α > 0 , 1 < p < q < ∞ and δ � 0 . Assume that {Fn}n�0

is regular and b ∈ L1 . If the number of the elements in A(F0) is finite, then, the
following conditions are equivalent:



636 E. NAKAI AND G. SADASUE

(i) b ∈ W1,δ .

(ii) [b, Iα ] is compact from Lp to Fδ
q,∞ , if −1/p+ α = −1/q.

(iii) [b, Iα ] is compact from Lp to Lq , if −1/p+ α + δ = −1/q.

In the second section we recall the boundedness of the fractional integrals and
prove the boundedness of the fractional maximal functions. In Sections 3 and 4 we
show the Morrey norm estimate of the sharp maximal function and the pointwise esti-
mate for the sharp maximal function of the commutator, respectively. Then, using these
results, we prove the main results in Sections 5 and 6.

At the end of this section, we make some conventions. Throughout this paper, we
always use C to denote a positive constant that is independent of the main parameters
involved but whose value may differ from line to line. Constants with subscripts, such
as Cp , is dependent on the subscripts. If f �Cg , we then write f � g or g � f ; and if
f � g � f , we then write f ∼ g .

2. Fractional integrals and fractional maximal functions

First we recall the boundedness of the maximal operator M and the fractional
integral Iα on Morrey spaces Lp,λ .

For a martingale f = ( fn)n�0 relative to {Fn}n�0 , the maximal functions are
defined by

M f = sup
n�0

| fn|, Mn f = sup
0�m�n

| fm|, M(n) f = sup
m�n

| fm|.

For a function f ∈ Lp,loc with p ∈ [1,∞) , let fn = En f , n � 0. Then ( fn)n�0 is a
martingale and lim

n→∞
fn = f in Lp(B) for each B ∈ A(F0) . For this reason a function

f ∈ L1,loc and its corresponding martingale ( fn)n�0 with fn = En f will be denoted by
the same symbol f . In this case, for f ∈ L1,loc ,

M f = sup
n�0

|En f |, Mn f = sup
0�m�n

|Em f |, M(n) f = sup
m�n

|Em f |.

It is known as Doob’s inequality that (see for example [19, pages 20–21])

‖M f‖Lp � p
p−1

‖ f‖Lp , f ∈ Lp (p > 1), (2.1)

‖M f‖wL1 � ‖ f‖L1 , f ∈ L1. (2.2)

Since M(n)( f χB) = (M(n) f )χB for B ∈ A(Fn) , we deduce

E[(M(n) f )pχB]1/p � p
p−1

E[| f |pχB]1/p, f ∈ Lp,loc (p > 1), (2.3)

sup
t>0

tE[χ{M(n) f>t}χB] � E[| f |χB], f ∈ L1,loc, (2.4)
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from (2.1) and (2.2), respectively. Furthermore, since P(B)En[g]χB = E[gχB]χB for
any g ∈ L1,loc and B ∈ A(Fn) , we have

En[(M(n) f )pχB]1/pχB � p
p−1

En[| f |p]1/pχB, f ∈ Lp,loc (p > 1), (2.5)

sup
t�0

tP(B∩{M(n) f > t})χB � P(B)En[| f |]χB, f ∈ L1,loc (2.6)

from (2.3) and (2.4) respectively.
For the boundedness of M on Morrey spaces, we have the following theorem:

THEOREM 2.1. ([11, 12]) Let 1 < p < ∞ and λ < 0 . Then M is bounded from
Lp,λ to itself.

For the boundedness of Iα we have the following theorem:

THEOREM 2.2. ([11, 12]) Let 1 < p < q < ∞ , −1/p � λ < λ +α < 0 and pλ =
q(λ + α) . Assume that {Fn}n�0 is regular. Then Iα is bounded from Lp,λ to Lq,λ+α .

In the above theorem, if λ = −1/p and F0 = { /0,Ω} , then −1/p+ α = −1/q ,
Lp,λ = Lp and Lq,λ+α = Lq . Then we have the following corollary:

COROLLARY 2.3. ([11]) Let F0 = { /0,Ω} , 1 < p < q < ∞ and −1/p + α =
−1/q. Then Iα is bounded from Lp to Lq .

This boundedness proved by [3] in the case of dyadic martingale.
For α > 0 and for f ∈ L1,loc , let

I(n)
α f = Iα f −En[Iα f ] = ∑

k>n

(βk−1)α(Ek f −Ek−1 f ). (2.7)

Then we have the following corollary:

COROLLARY 2.4. Let 1 < p < q < ∞ and −1/p+ α = −1/q. Let R be the
constant in (1.4). Then there exists a positive constant Cp,q,R such that, for all n � 0
and B ∈ A(Fn) ,

(
En
[|I(n)

α f |q])1/q
χB � Cp,q,RP(B)α (En[| f |p])1/p χB. (2.8)

Proof. For B ∈ A(Fn) , we denote {A∩B : A ∈ F} and {A∩B : A ∈ Fk} by
F ∩B and Fk ∩B respectively. Note that Fn ∩B = { /0,B} . Then, on the probability
space (B,F ∩B,P/P(B)) with filtration {Fk∩B}k�n , the fractional integral is defined
by

IB
α f = (βn/P(B))α(En f −0)+ ∑

k>n

(βk−1/P(B))α(Ek f −Ek−1 f ) on B .
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By Corollary 2.3 with the fact I(n)
α f = P(B)α IB

α( f −En f ) on B , we have

(
En
[|I(n)

α f |q])1/q
= ‖I(n)

α f‖Lq(B,P/P(B)) = P(B)α‖IB
α( f −En f )‖Lq(B,P/P(B))

� CP(B)α‖ f −En f‖Lp(B,P/P(B)) � 2CP(B)α (En[| f |p])1/p on B,

where C is a constant depending only on p , q and R . �
We also note that, if g is Fn -measurable, then

I(n)
α ( f g) = (I(n)

α f )g. (2.9)

For f ∈ L1,loc , its fractional maximal function Mα f is defined by

Mα f = sup
n�0

(βn)α |En f |. (2.10)

As a corollary of Theorems 2.1 and 2.2 we have the boundedness of Mα .

COROLLARY 2.5. Assume that {Fn}n�0 is regular. Let α > 0 , 1 < p < q < ∞ ,
−1/p � λ < 0 . If λ + α < 0 and pλ = q(λ + α) , then Mα is bounded from Lp,λ to
Lq,λ+α . If λ + α = 0 , then Mα is bounded from Lp,λ to L∞ .

Proof. Let λ + α = 0. Then, for any B ∈ A(Fn) ,

(βn)α |En f |χB � (βn)α
(

1
P(B)

∫
B
| f |p

)1/p

� ‖ f‖Lp,λ .

This shows that
‖Mα f‖L∞ � ‖ f‖Lp,λ .

Let λ + α < 0 and pλ = q(λ + α) . By a simple calculation, we have

E0(Iα | f |) = (β0)αE0| f | � (β0)α |E0 f |,
E1(Iα | f |) = (β0)αE1| f | � (β1)α |E1 f |,

En(Iα | f |) = (β0)αE0| f |+
n

∑
k=1

(βk−1)α(Ek| f |−Ek−1| f |)

=
n

∑
k=1

((βk−1)α − (βk)α )Ek| f |+(βn−1)αEn| f |

� (βn−1)α |En f | � (βn)α |En f |, if n � 2.

That is,
Mα f � M(Iα | f |).

Therefore, by Theorems 2.1 and 2.2, we have

‖Mα f‖Lq,λ+α � Cp,q‖ f‖Lp,λ . �
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3. Sharp maximal functions

Recall that the sharp maximal functions M�
δ f and M� f are defined by (1.5) and

(1.6), respectively.
For f ∈ L1,loc and B ∈⋃∞

n=0 A(Fn) , let

fB =
1

P(B)

∫
B

f dP. (3.1)

First we show the following good λ inequality.

PROPOSITION 3.1. Let f ∈ L1,loc and B ∈ A(Fn) . Then, for any λ ∈ [| fB|,∞)
and θ ∈ (0,∞) ,

P(B∩{M(n) f > 2λ ,M� f � θλ}) � θP(B∩{M(n) f > λ}). (3.2)

Proof. Let τ(n)
λ ( f ) = inf{m � n : |Em f | > λ} , and let ΩB

λ ,m = B∩{τ(n)
λ ( f ) = m} .

Then
B∩{M(n) f > 2λ} ⊂ B∩{M(n) f > λ} =

⋃
m�n

ΩB
λ ,m.

Hence, it is enough to prove that, for each m � n ,

P(ΩB
λ ,m∩{M(n) f > 2λ ,M� f � θλ}) � θP(ΩB

λ ,m). (3.3)

Note that ΩB
λ ,n = /0 , since |En f (ω)| = | fB| � λ if ω ∈ B . Let ΩB

λ ,m 	= /0 . Then there
exist atoms Bν ∈ A(Fm) , ν = 1,2, · · · , such that

ΩB
λ ,m =

⋃
ν

Bν .

Hence, for (3.3) it is enough to prove that, for each ν ,

P(Bν ∩{M(n) f > 2λ ,M� f � θλ}) � θP(Bν). (3.4)

Now, if k � m , then

|Ek f |χBν = |Ek[ f χBν ]|
� Ek[|( f −Em−1 f )χBν |]+ |Em−1 f |χBν

� M(m)[|( f −Em−1 f )χBν |]χBν + λ χBν .

Then
(M(m) f )χBν � M(m)[|( f −Em−1 f )χBν |]χBν + λ χBν . (3.5)

If ω ∈ Bν and M(n) f (ω) > 2λ , then M(m) f (ω) > 2λ , and then

M(m)[|( f −Em−1 f )χBν |](ω) � M(m) f (ω)−λ > λ
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by (3.5). Hence, we have

Bν ∩{M(n) f > 2λ} ⊂ Bν ∩{M(m)[|( f −Em−1 f )χBν |] > λ}.

By Doob’s inequality (2.6) for M(m) on Bν , we have

P(Bν ∩{M(n) f > 2λ})χBν � P(Bν ∩{M(m)[|( f −Em−1 f )χBν |] > λ})χBν

� P(Bν)
λ

Em[|( f −Em−1 f )|]χBν

� P(Bν)
λ

(M� f )χBν .

If P(Bν ∩{M� f (ω) � θλ}) = 0, then the left hand side of (3.4) is zero. If P(Bν ∩
{M� f (ω) � θλ}) > 0, then we have ess infω∈Bν M� f (ω) � θλ and

P(Bν ∩{M(n) f > 2λ ,M� f � θλ}) � P(Bν)
λ

ess inf
ω∈Bν

M� f (ω) � θP(Bν).

Therefore, we have (3.4) and the conclusion. �

Next, by using the good λ inequality and ideas in [1] and [9], we show the fol-
lowing proposition.

PROPOSITION 3.2. Assume that {Fn}n�0 is regular. Let f ∈ Lp,loc . Let 1 � p <
∞ and λ < 0 . If M� f ∈ Lp,λ , then f ∈ Lp,λ and

‖ f‖Lp,λ � C‖M� f‖Lp,λ , (3.6)

where the constant C is independent of f .

To show the proposition we use the following two lemmas.

LEMMA 3.3. Let 1 � p < ∞ , λ < 0 and n � 0 . Let f ∈ Lp,loc and B ∈ A(Fn) .
If M� f ∈ Lp,λ , then

(∫
B
| f − fB|p dP

)1/p

� C

((∫
B
(M� f )p dP

)1/p

+P(B)1/p| fB|
)

, (3.7)

where the constant C is independent of f and B.

Proof. First we show that, for all B ∈ A(Fn) ,

(∫
B
(M(n) f )p dP

)1/p

� C

((∫
B
(M� f )p dP

)1/p

+P(B)1/p| fB|
)

. (3.8)
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For any L > 2| fB| ,
∫ L

0
pλ p−1P(B∩{M(n) f > λ})dλ

=
∫ 2| fB|

0
pλ p−1P(B∩{M(n) f > λ})dλ

+
∫ L

2| fB|
pλ p−1P(B∩{M(n) f > λ})dλ

� (2| fB|)pP(B)+2p
∫ L/2

| fB|
pλ p−1P(B∩{M(n) f > 2λ})dλ .

By the good λ inequality (3.2) we have

2p
∫ L/2

| fB|
pλ p−1P(B∩{M(n) f > 2λ})dλ

� 2pθ
∫ L/2

| fB|
pλ p−1P(B∩{M(n) f > λ})dλ

+2p
∫ L/2

| fB|
pλ p−1P(B∩{M� f > θλ})dλ

� 2pθ
∫ L

0
pλ p−1P(B∩{M(n) f > λ})dλ

+2pθ−p
∫ ∞

0
pλ p−1P(B∩{M� f > θλ})dλ .

Then, for small θ > 0,

(1−2pθ )
∫ L

0
pλ p−1P(B∩{M(n) f > λ})dλ

� (2| fB|)pP(B)+2pθ−p
∫ ∞

0
pλ p−1P(B∩{M� f > λ})dλ .

Letting L → ∞ , we have (3.8).
On the other hand, noting that limn→∞ En f = f in Lp(B) , we have

(∫
B
| f − fB|p dP

)1/p

�
(∫

B
| f |p dP

)1/p

+P(B)1/p| fB|

�
(∫

B
(M(n) f )p dP

)1/p

+P(B)1/p| fB|.

Combining this with (3.8), we have the conclusion. �

LEMMA 3.4. ([11], Lemma 3.3) Let {Fn}n�0 be regular. Then every sequence

B0 ⊃ B1 ⊃ ·· · ⊃ Bn ⊃ ·· · , Bn ∈ A(Fn),
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has the following property: For each n � 1 ,

Bn = Bn−1 or (1+1/R)P(Bn) � P(Bn−1) � RP(Bn),

where R is the constant in (1.4).

Proof of Proposition 3.2. Let R be the constant in (1.4). First we show that there
exists a positive constant Cλ ,R such that, for any atom B ,

| fB| � Cλ ,R P(B)λ‖M� f‖Lp,λ . (3.9)

Note that

ess inf
ω∈B

M� f (ω) � 1
P(B)

∫
B
M� f dP

�
(

1
P(B)

∫
B
(M� f )p dP

)1/p

� P(B)λ‖M� f‖Lp,λ .

If B ∈ A(F0) , then

| fB| � 1
P(B)

∫
B
| f −E−1 f |dP � ess inf

ω∈B
M� f (ω)

� P(B)λ‖M� f‖Lp,λ ,

since E−1 f = 0. Let B ∈ A(Fn) with n � 1. Choose atoms Bk ∈ A(Fk) , k =
0,1, · · · ,n , such that B = Bn ⊂ Bn−1 ⊂ ·· · ⊂ B0 . We may assume that P(Bk) 	=
P(Bk−1) , k = 1,2, · · · ,n . Then, by Lemma 3.4,(

1+
1
R

)
P(Bk) � P(Bk−1) � RP(Bk).

Using the inequalities

| fBk − fBk−1 | �
1

P(Bk)

∫
Bk

| f −Ek−1 f |dP � ess inf
ω∈Bk

M� f (ω)

� P(Bk)λ‖M� f‖Lp,λ , k = 1,2, · · · ,n,

and

P(Bk)λ =
1

log(P(Bk)/P(Bk+1))

∫ P(Bk)

P(Bk+1)

P(Bk)λ

t
dt

� Cλ
log(1+1/R)

∫ P(Bk)

P(Bk+1)

tλ

t
dt, k = 0,1, · · ·n−1,



COMMUTATORS OF FRACTIONAL INTEGRALS ON MARTINGALE MORREY SPACES 643

we have

| fB| � | fB0 |+
n

∑
k=1

| fBk − fBk−1 |

�
n

∑
k=0

P(Bk)λ‖M� f‖Lp,λ

�
(

Cλ
log(1+1/R)

∫ P(B0)

P(Bn)

tλ

t
dt +P(Bn)λ

)
‖M� f‖Lp,λ

� Cλ ,R P(Bn)λ‖M� f‖Lp,λ .

This shows (3.9).
Then, combining (3.9) and Lemma 3.3, we have

(
1

P(B)

∫
B
| f |p dP

)1/p

�
(

1
P(B)

∫
B
| f − fB|p dP

)1/p

+ | fB|

� P(B)λ‖M� f‖Lp,λ ,

which shows the conclusion. �

4. Pointwise estimate for the sharp maximal function

In this section we show the following proposition.

PROPOSITION 4.1. Assume that {Fn}n�0 is regular. Let δ > 0 , 1 < p � ∞ and
1 < v < p. Then there exists a positive constant C such that, for all b ∈ L1,δ and
f ∈ Lp,loc ,

M�([b, Iα ] f ) � C‖b‖L1,δ

(
Mδ (Iα f )+ (M(α+δ )v(| f |v))1/v

)
, (4.1)

and
M�

δ ([b, Iα ] f ) � C‖b‖L1,δ

(
M(Iα f )+ (Mαv(| f |v))1/v

)
. (4.2)

To prove the proposition we state two lemmas.

LEMMA 4.2. ([10, Theorem 2.9]) Assume that {Fn}n�0 is regular. Let 1 � p <
∞ and δ � 0 . Then Lp,δ = L1,δ with equivalent norms.

LEMMA 4.3. Let α > 0 , and let I(n)
α be as in (2.7), n � 0 . Let f ∈ Lp,loc and

b ∈ Lp′,loc with p, p′ ∈ [1,∞] and 1/p+1/p′ = 1 . Let bn = Enb. Then,

En
∣∣[b, Iα ] f −En([b, Iα ] f )

∣∣
� 2En

∣∣(b−bn)I
(n)
α f

∣∣+2En
∣∣I(n)

α ((b−bn) f )
∣∣+ |(Iα f )n|En|b−bn|.
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Proof. Noting that bnI
(n)
α f = I(n)

α (bn f ) , we have

[b, Iα ] f = [b, I(n)
α ] f +[b,EnIα ] f

= [b−bn, I
(n)
α ] f +b(Iα f )n − (Iα(b f ))n.

Hence, we obtain

∣∣[b, Iα ] f −En([b, Iα ] f )
∣∣� ∣∣∣[b−bn, I

(n)
α ] f −En([b−bn, I

(n)
α ] f )

∣∣∣+ |(b−bn)(Iα f )n|.

Therefore,

En
∣∣[b, Iα ] f −En[[b, Iα ] f ]

∣∣� 2En
∣∣[b−bn, I

(n)
α ] f

∣∣+ |(Iα f )n|En|b−bn|.

Since [b−bn, I
(n)
α ] f = (b−bn)I

(n)
α f − I(n)

α ((b−bn) f ) , we have the conclusion. �

Proof of Proposition 4.1. Let g = [b, Iα ] f . Then

En
∣∣g−En−1[g]

∣∣� REn−1
∣∣g−En−1[g]

∣∣
by the regularity assumption on {Fn}n�0 . Hence,

M�
δ g � (β0)−δ E0

∣∣g∣∣+R1+δ sup
n�0

(βn)−δ En
∣∣g−En[g]

∣∣,
M�g � E0

∣∣g∣∣+Rsup
n�0

En
∣∣g−En[g]

∣∣.
Let bn = Enb . By Lemma 4.3, it is enough to show that, for all n � 0 and all B ∈
A(Fn) , (

2En
∣∣(b−bn)I

(n)
α f

∣∣+2En
∣∣I(n)

α ((b−bn) f )
∣∣+ |(Iα f )n|En|b−bn|

)
χB

�

⎧⎨
⎩

CP(B)δ‖b‖L1,δ

(
M(Iα f )+ (Mαv(| f |v))1/v

)
χB,

C‖b‖L1,δ

(
Mδ (Iα f )+ (M(α+δ )v(| f |v))1/v

)
χB,

and that, for all B ∈ A(F0) ,

E0
∣∣g∣∣χB �

⎧⎨
⎩

CP(B)δ‖b‖L1,δ

(
M(Iα f )+ (Mαv(| f |v))1/v

)
χB,

C‖b‖L1,δ

(
Mδ (Iα f )+ (M(α+δ )v(| f |v))1/v

)
χB.

Let n � 0 and B ∈ A(Fn) . Choose p1 and v such that 1 < p1 < v < p , and let
−1/p1 +α =−1/q1 and 1/p1 = 1/u+1/v . Then 1 < p1 < q1 < ∞ and 1 < u,v < ∞ .

From Hölder’s inequality and the boundedness (2.8) of I(n)
α it follows that, for any
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B ∈ A(Fn) ,

En
∣∣(b−bn)I

(n)
α f

∣∣χB �
(
En
[|(b−bn)|q′1

])1/q′1 (
En
[|I(n)

α f |q1
])1/q1

χB

� CP(B)δ‖b‖Lq′1,δ
P(B)α (En

[| f |p1
])1/p1 χB

� CP(B)δ‖b‖L1,δ P(B)α (En[| f |v])1/v χB

=

⎧⎨
⎩

CP(B)δ‖b‖L1,δ (P(B)αvEn[| f |v])1/v χB,

C‖b‖L1,δ

(
P(B)(α+δ )vEn[| f |v]

)1/v
χB.

Similarly, we have

En
∣∣I(n)

α ((b−bn) f )
∣∣χB �

(
En
[|I(n)

α ((b−bn) f )|q1
])1/q1

χB

� CP(B)α (En
[|(b−bn) f )|p1

])1/p1 χB

� CP(B)α (En
[|b−bn|u

])1/u (
En
[| f |v])1/v χB

� CP(B)α+δ‖b‖Lu,δ (En[| f |v])1/vχB

=

⎧⎨
⎩

CP(B)δ‖b‖L1,δ (P(B)αvEn[| f |v])1/v χB,

C‖b‖L1,δ

(
P(B)(α+δ )vEn[| f |v]

)1/v
χB,

and

|(Iα f )n|En|b−bn|χB � ‖b‖L1,δ P(B)δ |En[Iα f ]|χB �
{

P(B)δ‖b‖L1,δ M(Iα f )χB,

‖b‖L1,δ Mδ (Iα f )χB.

Next, we note that, for B ∈ A(F0) ,

E0|g|χB = E0|[b−b0, Iα ] f |χB �
(
E0
∣∣(b−b0)Iα f

∣∣+E0
∣∣Iα((b−b0) f )

∣∣)χB.

By the same way as above, we obtain

E0|g|χB �

⎧⎨
⎩

CP(B)δ‖b‖L1,δ (P(B)αvE0[| f |v])1/v χB,

C‖b‖L1,δ

(
P(B)(α+δ )vE0[| f |v]

)1/v
χB.

These show the conclusion. �

5. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. (i) Let b∈L1,δ and f ∈ Lp,λ . Then by Proposition 4.1 we
have

M�([b, Iα ] f ) � C‖b‖L1,δ

(
Mδ (Iα f )+ (M(α+δ )v(| f |v))1/v

)
.



646 E. NAKAI AND G. SADASUE

Take p0 such that pλ = p0(λ +α) = q(λ +α +δ ) . Then Iα is bounded from Lp,λ to
Lp0,λ+α and Mδ is bounded from Lp0,λ+α to Lq,λ+α+δ . That is,

‖Mδ (Iα f )‖Lq,λ+α+δ � ‖ f‖Lp,λ .

On the other hand, from pλ = q(λ + α + δ ) it follows that (p/v)λv = (q/v)(λv +
(α + δ )v) , that is, M(α+δ )v is bounded from Lp/v,λ v to Lq/v,(λ+α+δ )v . Then

‖(M(α+δ )v(| f |v))1/v‖Lq,λ+α+δ =
(
‖M(α+δ )v(| f |v)‖Lq/v,(λ+α+δ )v

)1/v

�
(
‖| f |v‖Lp/v,λv

)1/v
= ‖ f‖Lp,λ .

Combining these and Proposition 3.2, we have

‖[b, Iα ] f‖Lq,λ+α+δ � ‖M�([b, Iα ] f )‖Lq,λ+α+δ � ‖b‖L1,δ‖ f‖Lp,λ .

This is the conclusion. �

Proof of Theorem 1.2. (i) Let b∈L1,δ and f ∈ Lp,λ . Then by Proposition 4.1 we
have

M�
δ ([b, Iα ] f ) � C‖b‖L1,δ

(
M(Iα f )+ (Mαv(| f |v))1/v

)
.

Since Iα is bounded from Lp,λ to Lq,λ+α and M is bounded from Lq,λ+α to itself, we
have

‖M(Iα f )‖Lq,λ+α � ‖ f‖Lp,λ .

On the other hand, from pλ = q(λ + α) it follows that (p/v)λv = (q/v)(λv + αv) ,
that is, Mαv is bounded from Lp/v,λ v to Lq/v,(λ+α)v . Then

‖(Mαv(| f |v))1/v‖Lq,λ+α =
(
‖Mαv(| f |v)‖Lq/v,(λ+α)v

)1/v

�
(
‖| f |v‖Lp/v,λv

)1/v
= ‖ f‖Lp,λ .

Therefore, we have

‖[b, Iα ] f‖Fδ
Lq,λ+α

= ‖M�
δ ([b, Iα ] f )‖Lq,λ+α � ‖b‖L1,δ‖ f‖Lp,λ .

This is the conclusion. �

Next, to prove Theorem 1.1 (ii) and Theorem 1.2 (ii) we show the following two
lemmas.

LEMMA 5.1. Let b∈ L1,loc . Let B∈A(Fn) , n � 0 , and let f ∈ L∞ with f χB = 0 .
Then,

χBEn
∣∣[b, Iα ] f −En[[b, Iα ] f ]

∣∣= χB|Iα f |En|b−Enb|. (5.1)
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Proof. From the assumption, it follows that

Iα f = En[Iα f ], Iα( f b) = En[Iα( f b)] on B.

Hence, we have
[b, Iα ] f = bEn[Iα f ]−En[Iα(b f )] on B.

Therefore,

[b, Iα ] f −En([b, Iα ] f ) = (b−Enb)En[Iα f ] = (b−Enb)Iα f on B,

and
En
∣∣[b, Iα ] f −En[[b, Iα ] f ]

∣∣= |Iα f |En|b−Enb| on B,

which shows the conclusion. �

LEMMA 5.2. Assume that {Fn}n�0 is regular. Let B ∈ A(Fn) , n � 2 , and let

B = Bn ⊂ Bn−1 ⊂ . . . ⊂ B0, Bk ∈ A(Fk).

Assume that 0 � � < m < n, where

m = max{k : P(Bn) < P(Bk)}, � = max{k : P(Bm) < P(Bk)}.
Let h = χBm\B and let b ∈ L1,loc . Then

CRχBP(B)αEn|b−Enb| � χBEn
∣∣[b, Iα ]h−En([b, Iα ]h)

∣∣, (5.2)

where CR is a positive constant depending only on the constant R in (1.4).

Proof. Since hχB = 0, we have Iαh = En[Iαh] on B . Then, observing Lemma 3.4,
we have

χBIαh = χB

n

∑
k=0

(βk−1)α(Ekh−Ek−1h)

= χB

n−1

∑
k=1

((βk−1)α − (βk)α)Ekh+ χB(βn−1)αEnh

� χB ((β�)α − (βm)α )Emh

= χB
(
P(B�)α −P(Bm)α)(1− P(B)

P(Bm)

)
� CRχBP(B)α , (5.3)

where CR is a positive constant depending only on R . Hence, by Lemma 5.1, we have

CRχBP(B)αEn|b−Enb|� χBIαhEn|b−Enb| = χBEn
∣∣[b, Iα ]h−En([b, Iα ]h)

∣∣.
This is the conclusion. �
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Proof of Theorem 1.1. (ii) Let n � 0 and B∈A(Fn) . Let Bk ∈ A(Fk) (0 � k � n )
such that

B = Bn ⊂ Bn−1 ⊂ . . . ⊂ B0.

Let N = NB be the number of elements in the set {k : 1 � k � n,Bk 	= Bk−1} .
Case 1: N = 0.

In this case, B = B0 ∈ A(F0) . Therefore,

χBEn|b−Enb| = χBE0|b−E0b| � P(B)δ‖b‖L1,δ (F0).

Case 2: N = 1.
In this case, there exists an integer k such that 1 � k � n and that B = Bk , B0 =

Bk−1 . Then, by Lemma 3.4, we have P(B0) � RP(B) . Using the regularity assumption
on {Fn}n�0 again, we obtain

χBEn|b−Enb| = χBEk|b−Ekb|
� χB(Ek|b−Ek−1b|+ |Ek−1b−Ekb|)
� 2χBEk|b−Ek−1b|
� 2RχBEk−1|b−Ek−1b|
� 2RχB0E0|b−E0b|
� 2RP(B0)δ‖b‖L1,δ (F0)

� 2R1+δ P(B)δ‖b‖L1,δ (F0).

Case 3: N � 2.
In this case, we can apply Lemma 5.2. Let h be as in Lemma 5.2. Then, using the

boundedness of [b, Iα ] from Lp,λ to Lq,λ+α+δ and ‖h‖Lp,λ � P(B)−λ , we have

χBEn
∣∣[b, Iα ]h−En([b, Iα ]h)

∣∣� 2χBEn(|[b, Iα ]h|q)1/q

� 2P(B)λ+α+δ‖[b, Iα ]h‖Lq,λ+α+δ

� P(B)λ+α+δ‖[b, Iα ]‖Lp,λ→Lq,λ+α+δ ‖h‖Lp,λ

� P(B)δ+α‖[b, Iα ]‖Lp,λ→Lq,λ+α+δ .

Hence, by (5.2) we have

χBEn|b−Enb| � P(B)δ‖[b, Iα ]‖Lp,λ→Lq,λ+α+δ .

Thus, we have the conclusion. �

Proof of Theorem 1.2. (ii) Let n � 0 and B ∈ A(Fn) . Define N = NB be the same
as in the proof of Theorem 1.1 (ii).

If N = 0 or N = 1, then by the same as in the proof of Theorem 1.1 (ii), we have

χBEn|b−Enb| � P(B)δ‖b‖L1,δ (F0).
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We now consider the case N � 2. Let h be as in Lemma 5.2. Then, using the
boundedness of [b, Iα ] from Lp,λ to Fδ

q,Lq,λ+α
and ‖h‖Lp,λ � P(B)−λ , we have

χBEn
∣∣[b, Iα ]h−En([b, Iα ]h)

∣∣� P(B)δ ess inf
ω∈B

M�
δ ([b, Iα ]h)

� P(B)δ

P(B)

(∫
B

[
M�

δ ([b, Iα ]h)
]q)1/q

� P(B)λ+α+δ‖M�
δ ([b, Iα ]h)‖Lq,λ+α

� P(B)λ+α+δ‖[b, Iα ]‖Lp,λ→Fδ
Lq,λ+α

‖h‖Lp,λ

� P(B)α+δ‖[b, Iα ]‖Lp,λ→Fδ
Lq,λ+α

.

Hence, by (5.2) we have

χBEn|b−Enb| � P(B)δ‖[b, Iα ]‖Lp,λ→Fδ
Lq,λ+α

,

which shows the conclusion. �

6. Proofs of Theorems 1.4 and 1.5

Recall that A(F0) = {An}∞
n=1 and that Dn =

⋃n
k=1 Ak . First we show several

lemmas to prove Theorems 1.4 and 1.5.

LEMMA 6.1. Let δ � 0 and let f ∈ L1,δ . Then, f belongs to W1,δ if and only if

lim
n→∞

‖ f −En f‖L1,δ = 0. (6.1)

Proof. It is easy to see that

‖En f‖L1,δ � ‖ f‖L1,δ (6.2)

for all n � 0. Hence, we have En f ∈ L1,δ ∩L . Therefore, (6.1) implies f ∈ W1,δ .
For the converse, let f ∈ W1,δ . Then, for any ε > 0, there exists g ∈ L1,δ such

that g is Fn0 -measurable for some n0 � 0 and that ‖ f − g‖L1,δ < ε . In this case, if
n � n0 , then

‖ f −En f‖L1,δ � ‖ f −g‖L1,δ +‖En(g− f )‖L1,δ � 2‖ f −g‖L1,δ � 2ε.

This shows the conclusion. �
Since C1,δ = L1,δ ∩L∩LC = W1,δ ∩LC , we have the following corollary:

COROLLARY 6.2. Let δ � 0 and let f ∈ L1,δ . Then, f belongs to C1,δ if and
only if

lim
n→∞

‖ f − χDnEn f‖L1,δ = 0. (6.3)
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LEMMA 6.3. Let δ � 0 and let f ∈L1,δ (F0) . Assume that {Fn}n�0 is regular.
Then

‖En f‖L1,δ � (2R1+δ )n−1‖ f‖L1,δ (F0). (6.4)

Proof. Let g = En f . Then g−Ekg = 0 for k � n . For each B ∈ A(Fk) , 1 � k �
n−1,

χBEk|g−Ekg| � χB(Ek|g−Ek−1g|+ |Ek−1g−Ekg|)
� 2χBEk|g−Ek−1g| � 2RχBEk−1|g−Ek−1g|.

Then, taking B0 ∈ A(F0) such that B ⊂ B0 , we have

χBEk|g−Ekg| � (2R)kP(B0)δ‖g‖L1,δ (F0) � (2R1+δ )kP(B)δ‖g‖L1,δ (F0),

which shows

‖g‖L1,δ = sup
0�k�n−1

sup
B∈A(Fk)

1

P(B)1+δ

∫
B
|g−Ekg|dP

� (2R1+δ )n−1‖g‖L1,δ (F0) � (2R1+δ )n−1‖ f‖L1,δ (F0).

This is the conclusion. �

LEMMA 6.4. Let δ � 0 and let f ∈ L1,δ . Assume that {Fn}n�0 is regular and
that f satisfies (1.8). Then, f belongs to C1,δ if and only if f belongs to W1,δ .

Proof. If f ∈ C1,δ , then f ∈ W1,δ by the definition. Conversely, let f ∈ W1,δ .
Then, by Lemma 6.1, for any ε > 0, there exists n � 0 such that ‖ f −En f‖L1,δ < ε . By
the assumption (1.8), there exists k0 � 0 such that, if k � k0 , then ‖ f −χDk f‖L1,δ (F0) <

ε/(2R1+δ )n−1 . That is, ‖En( f − χDk f )‖L1,δ < ε by (6.4). In this case,

‖ f − χDk f‖L1,δ � ‖ f −En f‖L1,δ +‖En f − χDkEn f‖L1,δ +‖χDk(En f − f )‖L1,δ

� ‖ f −En f‖L1,δ +‖En( f − χDk f )‖L1,δ +‖ f −En f‖L1,δ

< 3ε.

This shows that f ∈ C1,δ . Therefore, we have the desired conclusion. �

Next, we recall the notation used in the previous section. For B ∈ A(Fn) , let
Bj ∈ A(F j) , j = 0,1, . . . ,n , such that

B = Bn ⊂ Bn−1 ⊂ ·· · ⊂ B0.

Denote by NB the number of the set { j : 1 � j � n,P(Bj) 	= P(Bj−1)} .
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LEMMA 6.5. Assume that {Fn}n�0 is regular. Let b be in L1,δ and satisfy (1.8)
with ‖b‖L1,δ = 1 . For a positive constant c, choose an integer J such that

‖b− χDJb‖L1,δ (F0) � c/(8R1+δ).

If B ∈ A(Fn) satisfies

P(B) � R−2 min{P(Aj) : Aj ∈ A(F0),1 � j � J} (6.5)

and

∫
B
|b−Enb|dP � cP(B)1+δ/2, (6.6)

then NB � 2 .

Proof. If B⊂DJ , then we see that NB � 2 by (6.5) and the regularity of {Fn}n�0 .
If B ⊂ Ω\DJ , we also conclude that NB � 2. Indeed, if NB � 1, then we have∫

B
|b−Enb|dP =

∫
B

χΩ\DJ
|b−Enb|dP

� 2R1+δP(B)1+δ‖b− χDJb‖L1,δ (F0) � cP(B)1+δ/4

by the same way as in the proof of Theorem 1.1 (ii), which contradict (6.6). �
Further, we recall the following fact.

THEOREM 6.6. ([11, Theorem 5.8]) Assume that {Fn}n�0 is regular. Let α > 0
and δ � 0 . Then,

Iα ∈ B(L1,δ , L1,δ+α). (6.7)

We now prove Theorem 1.4.

Proof of Theorem 1.4. Let b be in L1,δ and satisfy (1.8).
Part 1. We first show that, if b ∈ C1,δ , then [b, Iα ] is compact from Lp,λ to Lq,λ+α+δ .
Note that b ∈ C1,δ implies that b satisfies (1.8). From

[χDnEnb, Iα ] f = χDnEn([En(b), Iα ] f ),

we obtain that the range of the commutator [χDnEnb, Iα ] is finite dimensional, since
the number of the elements in {B ∈ A(Fn) : B ⊂ Dn} is finite for each n � 0 by the
regularity on {Fn}n�0 . Besides, by Theorem 1.1,

‖[b, Iα ]− [χDnEnb, Iα ]‖Lp,λ→Lq,λ+α+δ � C‖b− χDnEnb‖L1,δ .

Combining this with Corollary 6.2, we obtain

lim
n→∞

‖[b, Iα ]− [χDnEnb, Iα ]‖Lp,λ→Lq,λ+α+δ = 0.
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Thus, we have the compactness of [b, Iα ] from Lp,λ to Lq,λ+α+δ .
Part 2. For the converse, we show that, if b /∈ C1,δ , then [b, Iα ] is not compact from
Lp,λ to Lq,λ+α+δ . Let ‖b‖L1,δ = 1. By Lemma 6.4, b /∈ C1,δ implies b /∈ W1,δ . Then,
c := limsupn→∞ ‖b−Enb‖L1,δ > 0 by Lemma 6.1. Hence, the set

N = {n � 0 :
∫

B
|b−Enb|dP � cP(B)1+δ/2 for some B ∈ A(Fn)}

is infinite. By the fact limn→∞ max{P(B) : B ∈ A(Fn)} = 0 and Lemma 6.5, we can
choose an increasing sequence {n j} j�1 in N and a sequence {Bnj} j�1 of Fn j -atoms,
inductively in the following manner. Let n1 = minN and let Bn1 ∈ A(Fn1) satisfy

∫
Bn1

|b−En1b|dP � cP(Bn1)
1+δ /2.

Next, we choose n2 < n3 < .. . and Bnj ∈ A(Fn j ) , j = 2,3, . . . , satisfying

∫
Bn j

|b−Enjb|dP � cP(Bnj)
1+δ /2, (6.8)

P(Bnj) < P(Bnj−1), (6.9)

P(Bnj)
λ+α >

2

RλCR
‖Iα‖Lp,λ→Lq1,λ+α P(Bnj−1)

λ+α , (6.10)

P(Bnj)
λ >

8
cCR

‖Iα‖L1,δ→L1,α+δ P(Bnj−1)
λ , (6.11)

NBnj
� 2, (6.12)

where CR is the constant in Lemma 5.2, q1 is the number defined by pλ = q1(λ +
α) , and, ‖Iα‖Lp,λ→Lq1 ,λ+α and ‖Iα‖L1,δ→L1,α+δ are the operator norms determined by
Theorems 2.2 and 6.6, respectively. Note that we do not assume Bnj ⊂ Bnj−1 .

For each n j above, we define an integer mj by

mj = max{m : m < n j,Bnj ⊂ B,P(Bnj ) 	= P(B),B ∈ A(Fm)}.

and let

h j = P(Bnj)
λ (χBmj

− χBn j
).

By the regularity on {Fn}n�0 , it is easy to see that

‖h j‖Lp,λ � R−λ for all j � 1. (6.13)

Therefore, to prove that [b, Iα ] is not compact, we only have to show

inf
k 	= j

‖[b, Iα ](h j −hk)‖Lq,λ+α+δ > 0. (6.14)
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In the following we show (6.14). Let k < j . Then h j − hk and Iα(h j − hk) are Fn j -
measurable. Hence

χBn j
En j

∣∣[b, Iα ](h j −hk)−Enj [[b, Iα ](h j −hk)]
∣∣

= χBn j
En j

[
|bIα(h j −hk)−Enj [b]Iα(h j −hk)

−{Iα [b(h j −hk)]−Enj(Iα [b(h j −hk)])}|
]

� χBn j
|Iα(h j −hk)|Enj |b−Enjb|− χBn j

|h j −hk|Enj

∣∣Iα(b)−Enj(Iα(b))
∣∣. (6.15)

In the above we use the property (2.9). By the same way as (5.3) in the proof of
Lemma 5.2, we have

χBn j
|Iαh j| � χBn j

CRP(Bnj)
λ+α . (6.16)

Further, by (6.13) and (6.10),

χBn j
|Iαhk| � χBn j

R−λ‖Iα‖Lp,λ→Lq1,λ+α P(Bnk)
λ+α (6.17)

� χBn j
R−λ‖Iα‖Lp,λ→Lq1,λ+α P(Bnj−1)

λ+α .

� χBn j

CR

2
P(Bnj)

λ+α .

Combining (6.8), (6.16) and (6.17), we have

χBn j
|Iα(h j −hk)|Enj |b−Enjb| � χBn j

cCR

4
P(Bnj)

λ+α+δ . (6.18)

Besides, using Theorem 6.6, we have

χBn j
|h j −hk|Enj |Iα(b)−Enj(Iα(b))| = χBn j

|hk|Enj |Iα(b)−Enj(Iα(b))| (6.19)

� χBn j
P(Bnk)

λ P(Bnj )
α+δ‖Iα(b)‖L1,α+δ

� χBn j
P(Bnk)

λ P(Bnj )
α+δ‖Iα‖L1,δ→L1,α+δ

� χBn j

cCR

8
P(Bnj)

λ+α+δ .

Thus, combining (6.15), (6.18) and (6.19), we have

χBn j
En j

∣∣[b, Iα ](h j −hk)−Enj [[b, Iα ](h j −hk)]
∣∣ � χBn j

cCR

8
P(Bnj)

λ+α+δ , (6.20)

that is,

‖[b, Iα ](h j −hk)‖Lq,λ+α+δ � cCR

8
.

Therefore, we have (6.14). The proof is complete. �

Proof of Theorem 1.5. The necessity part is obtained by the same way as in The-
orem 1.4
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For the converse part, let b be in L1,δ and satisfy (1.8) with ‖b‖L1,δ = 1. We

show that, if b 	∈ W1,δ , then [b, Iα ] is not compact from Lp,λ to Fδ
Lq,λ+α

. We take a

sequence (h j) j�1 by a similar way to the proof of Theorem 1.4. Then, we obtain that,
for k < j ,

χBn j
P(Bnj)

λ+α+δ‖M�
δ ([b, Iα ](h j −hk))‖Lq,λ+α

� χBn j
P(Bnj )

δ

(
1

P(Bnj)

∫
Bn j

[
M�

δ ([b, Iα ](h j −hk))
]q

dP

)1/q

� χBn j
P(Bnj )

δ ess inf
ω∈B

M�
δ ([b, Iα ](h j −hk))

� χBn j
En j

∣∣[b, Iα ](h j −hk)−Enj [[b, Iα ](h j −hk)]
∣∣

� χBn j

cCR

8
P(Bnj)

λ+α+δ .

In the above we use (6.20). This shows the conclusion. �

Acknowledgement. The authors would like to thank the referee for her/his care-
ful reading and useful comments. The first author was supported by Grant-in-Aid
for Scientific Research (B), No. 15H03621, Japan Society for the Promotion of Sci-
ence. The second author was supported by Grant-in-Aid for Scientific Research (C),
No. 16K05203, Japan Society for the Promotion of Science.

RE F ER EN C ES

[1] R. ARAI AND E. NAKAI, Commutators of Calderón-Zygmund and generalized fractional inte-
gral operators on generalized Morrey spaces, Rev. Mat. Complut. 31 (2018), Vol. 2, 287–331,
https://doi.org/10.1007/s13163-017-0251-4.

[2] S. CHANILLO, A note on commutators, Indiana Univ. Math. J. 31 (1982), no. 1, 7–16.
[3] J.-A. CHAO AND H. OMBE, Commutators on Dyadic Martingales, Proc. Japan Acad. 61, Ser. A

(1985), 35–38.
[4] J.-A. CHAO AND L. PENG, Schatten classes and commutators on simple martingales, Colloq. Math.

71 (1996), no. 1, 7–21.
[5] Y. CHEN, Y. DING AND X. WANG, Compactness of commutators of Riesz potential on Morrey spaces,

Potential Anal. 30 (2009), no. 4, 301–313.
[6] G. DI FAZIO AND M. A. RAGUSA, Commutators and Morrey spaces, Boll. Un. Mat. Ital. A (7) 5

(1991), no. 3, 323–332.
[7] Z. HAO AND Y. JIAO, Fractional integral on martingale Hardy spaces with variable exponents, Fract.

Calc. Appl. Anal. 18 (2015), no. 5, 1128–1145.
[8] S. JANSON,BMO and commutators of martingale transforms, Ann. Inst. Fourier (Grenoble) 31 (1981),

no. 1, viii, 265–270.
[9] Y. KOMORI-FURUYA, Local good-λ estimate for the sharp maximal function and weighted Morrey

space, J. Funct. Spaces 2015, Art. ID 651825, 4 pp.
[10] T. MIYAMOTO, E. NAKAI AND G. SADASUE, Martingale Orlicz-Hardy spaces, Math. Nachr. 285

(2012), no. 5–6, 670–686.
[11] E. NAKAI AND G. SADASUE, Martingale Morrey-Campanato spaces and fractional integrals, J.

Funct. Spaces Appl. 2012 (2012), Article ID 673929, 29 pages, doi:10.1155/2012/673929.



COMMUTATORS OF FRACTIONAL INTEGRALS ON MARTINGALE MORREY SPACES 655

[12] E. NAKAI AND G. SADASUE, Characterizations of boundedness for generalized fractional in-
tegrals on martingale Morrey spaces, Math. Inequalities Appl. 20 (2017), no. 4, 929–947,
doi:10.7153/mia-2017-20-58.

[13] E. NAKAI, G. SADASUE AND Y. SAWANO, Martingale Morrey-Hardy and Campanato-Hardy
Spaces, J. Funct. Spaces Appl. 2013 (2013), Article ID 690258, 14 pages, doi:10.1155/2013/
690258.
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