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FRACTIONAL ORDER HARDY–TYPE INEQUALITY

IN FRACTIONAL h–DISCRETE CALCULUS

SERIKBOL SHAIMARDAN

(Communicated by L. E. Persson)

Abstract. We investigate the power weights fractional order Hardy-type inequality in the follow-
ing form: ⎛

⎝ ∞∫
0

∞∫
0

| f (x)− f (y)|p
|x− y|1+pα dxdy

⎞
⎠

p

� C

⎛
⎝ ∞∫

0

∣∣ f ′(x)∣∣p x(1−α)pdx

⎞
⎠

p

for 0 < α < 1 and 1 < p < ∞ in fractional h -discrete calculus, where C = 2
1
p α−1

(p−pα)
1
p

. For

h -fractional function we prove a discrete analogue of above inequality in fractional h-discrete
calculus, is proved and discussed. Moreover, we prove that the same constant is sharp also in
this case.

1. Introduction

Fractional h -discrete calculus has generated interest in recent years. It is a math-
ematical subject that has proved to be very useful in applied fields such as economics,
engineering and physics (see, e.g. [3], [4], [25], [26], [34]). Concerning applications in
various fields of mathematics we refer to [1], [2], [6], [7], [12], [14], [15], [19], [21],
[24], [27], [28], [29], [33], [35], [36] and the references therein.

It is well known that integral inequalities play important roles in the research of
qualitative as well as quantitative properties of solutions of differential equations, dif-
ference equations and dynamic equations. One of the examples is fractional Hardy-type
inequalities. In [13], [16], [17], [18] and [20] a series of fractional order Hardy- type
inequalities have been presented. We pronounce especially that even Chapter 5 in the
new book [22] by A. Kufner, L.-E. Persson and N. Samko is completely devoted to this
subject. In particular, it is proved there (see Theorem 5.3) that⎛

⎝ ∞∫
0

∞∫
0

| f (x)− f (y)|p
|x− y|1+pα dxdy

⎞
⎠

p

� C

⎛
⎝ ∞∫

0

∣∣ f ′(x)∣∣p x(1−α)p

⎞
⎠

p

, (1)
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for 0 < α < 1, 1 < p < ∞ , where C = 2
1
p α−1

(p−pα)
1
p

is the sharp constant. Moreover, in

[5], [9], [10], [23], [31] and [37] some discrete Hardy-type inequalities have been es-
tablished, which can be used as a handy tool in the research of solutions of difference
equations. Up to now the discrete analogues of the fractional Hardy-type inequalities
are not studied. The main aim of this paper is to establish the h -analogue of the frac-
tional Hardy-type inequality (1) in fractional h -discrete calculus with sharp constants
which is a discrete analogue of the inequality (1).

The paper is organized as follows: In order not to disturb our discussions later on
some preliminaries are presented in Section 2. The main result (see Theorem 3.1) with
the detailed proof can be found in Section 3.

2. Preliminaries

First we state some preliminary results of the h -discrete fractional calculus, which
will be used throughout this paper.

Let h > 0 and Ta = {a,a+h,a+2h, · · ·} , ∀a ∈ R .
DEFINITION 1. Let f : Ta → R . Then the h -derivative of the function f = f (x)

is defined by

Dh f (t) :=
f (δh(t))− f (t)

h
, t ∈ Ta, (2)

where δh(t) = t +h .

See e.g. [8]. The chain rule formula that we will use in this paper is

Dh [xγ (t)] := γ
1∫

0

[zx(δh(t))+ (1− z)x(t)]γ−1 dzDhx(t), γ ∈ R, (3)

which is a simple consequence of Keller’s chain rule ([11, Theorem 1.90]).

DEFINITION 2. Let f : Ta → R . Then the h -integral (h -difference sum) is given
by

b∫
a

f (x)dhx :=
b/h−1

∑
k=a/h

f (kh)h =

b−a
h −1

∑
k=0

f (a+ kh)h, (4)

for a,b ∈ Ta,b > a .

DEFINITION 3. We say that a function g : Ta −→ R , is nonincreasing (respec-
tively, nondecreasing) on Ta if and only if Dhg(t) � 0 (respectively, Dhg(t) � 0)
whenever t ∈ Ta .
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Let DhF(x) = f (x) . Then F(x) is called a h -antiderivative of f (x) and is denoted
by
∫

f (x)dhx . If F(x) is a h -antiderivative of f (x) , for a,b ∈ Ta,b > a , then we have
that (see [21]):

b∫
a

f (x)dhx = F(b)−F(a). (5)

DEFINITION 4. Let t,α ∈ R . Then the h -fractional function t(α)
h is defined by

t(α)
h := hα Γ( t

h +1)
Γ( t

h +1−α)
,

where Γ is Euler gamma function, t
h /∈ {−1,−2,−3, · · ·} and we use the convention

that division at a pole yields zero. Note that

lim
h→0

t(α)
h = tα .

Hence, by (2) we find that

t(α−1)
h =

1
α

Dh

[
t(α)
h

]
, (6)

(a− t−h)(α−1)
h = − 1

α
Dh

[
(a− t)(α)

h

]
, (7)

1

(t +h)(α+1)
h

= − 1
α

Dh

[
1

t(α)
h

]
, (8)

1

(a− t)(α+1)
h

=
1
α

Dh

[
1

(a− t)(α)
h

]
. (9)

DEFINITION 5. The function f : (0,∞) → R is said to be log-convex if f (ux +
(1−u)y) � f u(x) f 1−u(y) , holds for all x,y ∈ (0,∞) and 0 < u < 1.

Next, we will derive some properties of the h -fractional function, which we need
for the proofs of the main results but which are also of independent interest.

PROPOSITION 1. Let t ∈ T0 . Then, for α,β ∈ R ,

t(α+β )
h = t(α)

h (t −αh)(β )
h , (10)

t(pα)
h �

[
t(α)
h

]p
� (t + α(p−1)h)(pα)

h , (11)

for 1 � p < ∞ .
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Proof. By using Definition 4 we get that

t(α+β )
h = hα+β Γ( t

h +1)
Γ( t

h +1−α −β )

= hα Γ( t
h +1)

Γ( t
h +1−α)

hβ Γ( t
h +1−α)

Γ( t
h +1−α −β )

= t(α)
h (t−αh)(β )

h .

Therefore, (10) holds for α,β ∈ R .
It’s well known that the gamma function is log-convex (see e.g [30, p. 21]). Hence,[

t(α)
h

]p
= hpα

[
Γ( t

h +1)
Γ( t

h +1−α)

]p

= hpα

[
Γ( 1

p ( t
h +1+ α(p−1))+ (1− 1

p)( t
h +1−α))

Γ( t
h +1−α)

]p

� hpα

⎡
⎣Γ

1
p ( 1

h +1+ α(p−1))Γ1−1
p ( t

h +1−α)
Γ( t

h +1−α)

⎤
⎦

p

= hpα Γ( t
h +1+ α(p−1))
Γ( t

h +1−α)

= (t + α(p−1)h)(pα)
h ,

and [
t(α)
h

]p
= hpα

[
Γ( t

h +1)
Γ( t

h +1−α)

]p

= hpα

[
Γ( t

h +1)

Γ((1− 1
p)( t

h +1)+ 1
p( t

h +1− pα))

]p

� hpα

⎡
⎣ Γ( t

h +1)

Γ1− 1
p ( t

h +1)Γ
1
p ( t

h +1− pα)

⎤
⎦

p

= hpα Γ( t
h +1)

Γ( t
h +1− pα)

= t(pα)
h ,

so we have proved that (11) holds whenever 1 � p < ∞ . �
Let 1 � p � q < ∞ and 1

p + 1
p′ = 1. Let f = { fi}∞

i=0 be an arbitrary sequence
of real numbers. Moreover, suppose that {ui}∞

0=1 , and {vi}∞
i=0 are weight sequences,

i.e., non-negative sequences. To prove our main result we use the following result for
a standard weighted Hardy inequality, when 1 � p � q < ∞ (see [5, Theorem 4.1] and
e.g. also [22]):

THEOREM B. Let 1 � p � q < ∞ . Then the inequality(
∞

∑
i=1

(
i

∑
j=1

f j

)q

uq
i

) 1
q

� C

(
∞

∑
i=1

( fivi)p

) 1
p

,
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holds for all sequences f = { fi}∞
i=0 , fi � 0 , i � 1 , with the best constant C > 0 if and

only if B = sup
k�1

(
∞
∑
i=k

uq
i

) 1
q
(

k
∑
j=1

v−p′
j

) 1
p′

< ∞ . Moreover, B � C � p′q
1
q B.

3. Main results

Our main result reads:

THEOREM 1. Let 1 < p < ∞ , 0 < α < 1 and f (x) = DhF(x) . Then the following
inequality

⎡
⎢⎢⎣

∞∫
0

∞∫
0

|F(x)−F(y)|pdhxdhy[
(|x− y|+3h)

( 1
p+α)

h

]p

⎤
⎥⎥⎦

1
p

� C

⎡
⎣ ∞∫

0

| f (x)|p dhx[
(x+h)(α−1)

h

]p

⎤
⎦

1
p

, (12)

holds with constant C = 2
1
p α−1

(p−pα)
1
p

. Moreover, this constant is sharp.

The next lemma permits to shorten the proof of our main result:

LEMMA 1. Let 0 < α < 1 , 1 < p < ∞ and 1
p + 1

p′ = 1 . Then

B := sup
z∈T0

⎛
⎜⎜⎝

∞∫
z

dhx[
(x+3h)

( 1
p +α)

h

]p

⎞
⎟⎟⎠

1
p
⎛
⎜⎜⎝

δ (z)∫
0

t(α−1)
h dht[

δ (t)(α)
h

]− p′
p

⎞
⎟⎟⎠

1
p′

<
1
α

. (13)

Proof. Let 0 < α < 1, 1 � p < ∞ and 1
p + 1

p′ = 1. Exploiting (2) we find that

Dh

[
x(α)
h

]
= αx(α−1)

h � 0 for x ∈ T0 . Moreover, in view of Definition 3 we see that

x(α)
h � (x′)(α)

h for x,x′ ∈ T0 such that x � x′ . Then, according to (2), (3), (8), (9) and
(11), we obtain that

Dh

[
1

(x+2h)(α)
h

]p

= p

1∫
0

[
z

(x+3h)(α)
h

+
1− z

(x+2h)(α)
h

]p−1

dzDh

[
1

(x+2h)(α)
h

]

= −pα
1

(x+3h)(α+1)
h

1∫
0

[
z

(x+3h)(α)
h

+
1− z

(x+2h)(α)
h

]p−1

dz

� −pα
1

(x+3h)(α+1)
h

[
1

(x+3h)(α)
h

]p−1
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and [
(x+3h)

( 1
p+α)

h

]p

=
[
(x+3h)(α)

h

]p
[
(x+3h−αh)

( 1
p )

h

]p

�
[
(x+3h)(α)

h

]p−1
(x+3h)(α)

h (x+3h−αh)(1)
h

=
[
(x+3h)(α)

h

]p−1
(x+3h)(α+1)

h

i.e. ⎡
⎣ 1

(x+3h)
( 1

p +α)
h

⎤
⎦

p

� − 1
pα

Dh

[
1

(x+2h)(α)
h

]p

. (14)

Next we note that, by Definition 3 and (6), t(α)
h � (z+h)(α)

h , for t,z ∈ T0 such
that t�z+h and then, by applying (5), (6) and (14), we get that

Bp � − 1
pα

sup
z∈T0

(z+2h)(α)
h

∞∫
z

Dh

[
1

(x+2h)(α)
h

]p

dhx

⎡
⎣ δ (z)∫

0

t(α−1)
h dht

⎤
⎦

p
p′

� 1
pα

sup
z∈T0

(z+2h)(α)
h

∞∫
z

Dh

[
1

(x+2h)(α)
h

]p

dhx

⎡
⎣ 1

α

δ (z)∫
0

Dh

[
t(α)
h

]
dht

⎤
⎦

p
p′

� 1
α p sup

z∈T0

(z+2h)(α)
h

[
(z+2h)(α)

h

] p
p′

[
(z+2h)(α)

h

]p =
1

α p ,

i.e. (13) holds so the proof is complete. �

Proof of Theorem 3.1. By using (4) we get that

L(F) :=
∞∫

0

∞∫
0

|F(x)−F(y)|pdhxdhy[
(|x− y|+3h)

( 1
p +α)

h

]p

=
∞

∑
k=0

∞

∑
i=0

h2 |F(ih)−F(kh)|p[
(|ih− kh|+3h)

( 1
p+α)

h

]p

�
∞

∑
k=0

k

∑
i=0

h2 |F(ih)−F(kh)|p[
(|ih− kh|+3h)

( 1
p+α)

h

]p +
∞

∑
k=0

∞

∑
i=k

h2 |F(ih)−F(kh)|p[
(|ih− kh|+3h)

( 1
p +α)

h

]p

= 2
∞

∑
k=0

∞

∑
i=k

h2 |F(ih)−F(kh)|p[
(|ih− kh|+3h)

( 1
p +α)

h

]p . (15)
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Let

f̃m = h | f (mh)| , ũi =
h

1
p

(|ih− kh|+3h)
( 1

p+α)
h

,

ṽm =
h
− 1

p′[[
(mh− kh)(α−1)

h

]p−1
(δ (mh)− kh)(α)

h

] 1
p

and f (x) = DhF(x) . Then, from (4) and (15) it follows that

L(F) � 2
∞

∑
k=0

h
∞

∑
i=k

h[
(|ih− kh|+3h)

( 1
p+α)

h

]p

∣∣∣∣∣
i−1

∑
m=k

h f (mh)

∣∣∣∣∣
p

� 2
∞

∑
k=0

h

[
∞

∑
i=k

ũp
i

(
i

∑
m=k

f̃m

)p]
. (16)

Moreover, based on Theorem B we obtain that

∞

∑
i=k

ũp
i

(
i

∑
m=k

f̃m

)p

� B̃p
k

∞

∑
m=k

f̃ p
mṽ−p′

m , (17)

where

B̃p
k := sup

n�k

(
∞

∑
i=n

ũq
i

) 1
q
(

n

∑
j=k

ṽ−p′
j

) 1
p′

= sup
n�k

⎡
⎢⎢⎣

∞∫
nh

dhx[
(x− kh+3h)

( 1
p +α)

h

]p

⎤
⎥⎥⎦

1
p
⎡
⎢⎢⎣

δ (z)∫
nh

(t− kh)(α−1)
h dht[

(δ (t)− kh)(α)
h

]− p′
p

⎤
⎥⎥⎦

1
p′

� Bp.

By combining (16) and (17) we have that

L(F) � 2
∞

∑
k=0

hBp
∞

∑
m=k

h | f (mh)|p[
(mh− kh)(α−1)

h

]p−1
(δ (mh)− kh)(α)

h

. (18)

Moreover, by using Definition 3 and (7) we obtain that

(δ (mh)− t)(α−1)
h � (mh− t)(α−1)

h ,

for t ∈ T0 .
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Hence, in view of (2), (3) and (9) we get that

Dh,t

[
1

(δ (mh)− t)(α−1)
h

]p

= p

1∫
0

[
z

(mh− t)(α−1)
h

+
(1− z)

(δ (mh)− t)(α−1)
h

]p−1

dzDh,t

[
1

(δ (mh)− t)(α−1)
h

]

=
p(α −1)

(δ (mh)− t)(α)
h

1∫
0

[
z

(mh− t)(α−1)
h

+
(1− z)

(δ (mh)− t)(α−1)
h

]p−1

dz

� p(α −1)

(δ (mh)− t)(α)
h

[
1

(mh− t)(α−1)
h

]p−1

.

Consequently,

1

(δ (mh)− t)(α)
h

[
1

(mh− t)(α−1)
h

]p−1

� 1
p(α −1)

Dh,t

[
1

(δ (mh)− t)(α−1)
h

]p

. (19)

Thus, by now using Lemma 3.1 and (18) and (19), we obtain that

L(F) � 2Bp
∞

∑
k=0

h
∞

∑
m=k

h | f (mh)|p[
(mh− kh)(α−1)

h

]p−1
(δ (mh)− kh)(α)

h

� 2Bp
∞

∑
m=0

h | f (mh)|p
m

∑
k=0

h[
(mh− kh)(α−1)

h

]p−1
(δ (mh)− kh)(α)

h

� 2α−p

p(α −1)

∞

∑
m=0

h | f (mh)|p
δ (mh)∫
0

Dh,t

[
1

(δ (mh)− t)(α−1)
h

]p

dht

� 2α−p

p(1−α)

∞

∑
m=0

h
| f (mh)|p[

(mh+h)(α−1)
h

]p

� 2α−p

p(1−α)

∞∫
0

| f (x)|p dhx[
(x+h)(α−1)

h

]p ,

which means that inequality (12) holds.

Finally, we will show that the constant 2
1
p α−1

(pα−p)
1
p

in (12) sharp. Let x,y,a ∈ T0

such that y � a � x−4h . By Definition 3 we obtain that

(
x− y+2h−αh+

1
p′

h

)(1)

h
� (x− y+3h−αh)(1)

h ,
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(x− y+2h− (α−1)h)(1)
h � (x+4h−αh)(1)

h .

Then, by using (3), (9), (10) and (11) we find that

[
(|x− y|+3h)

( 1
p+α)

h

]p

=
[
(x− y+3h)(α−1)

h

]p
[
(x− y+2h−αh)

( 1
p )

h

]p [
(x− y+3h− (α−1)h)(1)

h

]p

�
[
(x− y+3h)(α−1)

h

]p−1
(x− y+2h)(α−1)

h

(
x− y+2h−αh+1/p′h

)(1)
h

×
[
(x− y+3h− (α−1)h)(1)

h

]p

�
[
(x− y+3h)(α−1)

h

]p−1
(x− y+3h)(α)

h

[
(2x−a+4h−αh)(1)

h

]p

and

Dh,y

[
1

(x− y+3h)(α−1)
h

]p

= p

1∫
0

[
z

(x− y+2h)(α−1)
h

+
1− z

(x− y+3h)(α−1)
h

]p−1

dzDh,y

[
1

(x− y+3h)(α−1)
h

]

=
1∫

0

[
z

(x− y+2h)(α−1)
h

+
1− z

(x− y+3h)(α−1)
h

]p−1

dz
p(α −1)

(x− y+3h)(α)
h

� −
[

1

(x− y+3h)(α−1)
h

]p−1
p(1−α)

(x− y+3h)(α)
h

[
(2x−a+4h−αh)(1)

h

]p

[
(x−a)(1)

h

]p .

Therefore,

⎡
⎣ 1

(x− y+3h)
( 1

p +α)
h

⎤
⎦

p

� −
[
(x−a)(1)

h

]−p

p(1−α)
Dh

[
1

(x− y+3h)(α−1)
h

]p

. (20)

Assume now on the contrary that there exists a constant C < 2
1
p α−1

(pα−p)
1
p

such that

(12) holds for all measurable functions where the right hand side is finite. We now
consider the test function

f0 := χ[a,a′](t)(t−a−h+ αh)(α−1)
h ,
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for a′ ∈ T0 such that x � a′ . Then, by using (5), (6) and (10) we can deduce that

|F(x)−F(y)|p =

∣∣∣∣∣∣
x∫

a

(t−a−h+ αh)(α−1)
h dht

∣∣∣∣∣∣
p

=
1

α p

∣∣∣∣∣∣
x∫

a

Dh

[
(t−a−h+ αh)(α)

h

]
dht

∣∣∣∣∣∣
p

=
1

α p

[
(x−a−h+ αh)(α)

h

]p

=
1

α p

[
(x−a−h+ αh)(α−1)

h

]p [
(t−a)(1)

h

]p
, (21)

where (−h+ αh)(α)
h = hα Γ(α)

Γ(0) = 0 and

∞∫
0

f p
0 (x)dhx[

(x+h)(α−1)
h

]p �
a′∫

a

[
(x−a−h+ αh)(α−1)

h

]p
dhx[

(x+h)(1−α)
h

]p < ∞.

By combining (4) and (15) we obtain that

L(F) :=
∞∫

0

x∫
0

|F(x)−F(y)|pdhxdhy[
(|x− y|+3h)

( 1
p+α)

h

]p +
∞∫

0

∞∫
x

|F(x)−F(y)|pdhxdhy[
(|x− y|+3h)

( 1
p +α)

h

]p

:= I1 + I2. (22)

From (20) and (21) it follows that

I1 �
a′∫

a

x∫
0

|F(x)−F(y)|pdhxdhy[
(|x− y|+3h)

( 1
p+α)

h

]p

� − α−p

p(1−α)

⎡
⎣ a′∫

a

[
(x−a−h+ αh)(α−1)

h

]p

×
a+4h∫
0

Dh,y

[
1

(x− y+3h)(α−1)
h

]p

dhy

⎤
⎦dhx

� α−p

p(1−α)

∞∫
0

f p
0 (x)dhx[

(x+h)(1−α)
h

]p , (23)

where 1

(−h)(α−1)
h

= Γ(α−1)
Γ(0) = 0.



HARDY-TYPE INEQUALITY IN FRACTIONAL h -DISCRETE CALCULUS 701

In the same way we can deduce that

I2 � α−p

p(1−α)

∞∫
0

f p
0 (x)dhx[

(x+h)(1−α)
h

]p . (24)

By now using (22), (23) and (24) we obtain that

C
1
p � L(F)

∞∫
0

f p
0 (x)dhx[

(x+h)(α−1)
h

]p

=
2α−p

p(1−α)
,

which contradicts our assumption so we conclude that the constant 2
1
p α−1

(p−pα)
1
p

in (12)

sharp. The proof is complete. �
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