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Abstract. We consider the boundedness of fractional integral operators with rough kernel from
Morrey spaces Lp,λ to Lq,μ . Our main concern is proving the boundedness property for μ < λ
as an extension of Adams inequality on some special subsets of the operator’s domain namely
classes of Ap , simple function, and radial function respectively. For radial function, we prove
the boundedness on local Morrey spaces. We also prove the boundedness property for μ � λ
as well as the special case of q � p . It is interesting on its own term since the operator is not
bounded from Lp to Lq if q � p . We also establish necessary conditions for boundedness. Our
proposed condition for boundedness includes the sufficient conditions for both Adams inequality
and Spanne inequality.

1. Introduction

Let Ω be a homogeneous function of degree zero on R
n . For 0< α < n , fractional

integral operator with rough kernel TΩ,α is defined as

TΩ,α f (x) =
∫

Rn

Ω(x− y)
|x− y|n−α f (y)dy. (1)

For Ω ≡ 1, the operator T1,α is the fractional integral operator Iα [2, 6].
Let B(x,r) be an open ball on R

n , centered at x , and with radius r > 0. For
1 � p < ∞ , 0 � λ < n , Morrey spaces Lp,λ and local Morrey spaces Lp,λ (0) are
defined respectively as follows.

Lp,λ =

{
f ;‖ f‖Lp,λ = sup

x∈Rn,r>0

(
r−λ

∫
B(x,r)

| f (y)|pdy

) 1
p

< ∞

}
,

Lp,λ (0) =

{
f ;‖ f‖Lp,λ (0) = sup

r>0

(
r−λ

∫
B(0,r)

| f (y)|pdy

) 1
p

< ∞

}
.

One of important issue in the study of operators is their boundedness. Spanne and
Adams proved the following boundedness properties.
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THEOREM A. [6, Theorem 5.4.] (Spanne inequality) Suppose 1 < p < n−λ
α and

1
q = 1

p − α
n . Then,

‖Iα f‖Lq,λq/p � ‖ f‖Lp,λ
1.

THEOREM B. [2, Theorem 3.1.] (Adams inequality) Suppose 1 < p < n−λ
α and

1
q = 1

p − α
n−λ . Then,

‖Iα f‖Lq,λ � ‖ f‖Lp,λ .

By Hölder inequality, one can observe that: if β < δ , and t = s(n−β )
n−δ > s , then

Lt,β ⊂ Ls,δ (this inclusion property is proper, see [3]). Therefore, Adams inequality is
stronger than Spanne inequality. Certainly, Adams inequality is the strongest bounded-
ness property for Iα on Morrey spaces (see [7, Theorem 9.], [10, Proposition 4.2.]).

Our concern is proving the boundedness of TΩ,α from Lp,λ to Lq,μ . From differ-
ent point of views of Adams and Spanne, we let the parameter μ to be arbitrary but
controlled by the necessary condition for boundedness (see Theorem 2.1).

By classical method, we prove the boundedness of operator TΩ,α from Lp,λ to
Lq,μ where μ � λ (see Theorem 3.3). Theorem 3.3 is a stronger version of Proposition
1 in [8]. For μ � λ , we have a special case of q � p (see Corollary 3.4). It is interesting
on its own term due to the operator TΩ,α can not be bounded from Lp to Lq for q � p .

Our main concern is investigating the behavior of TΩ,α for the case of μ < λ , as
an extension of Adams inequality. In the discussion, we restrict the domain of TΩ,α
into subset of Lp,λ such that Ap -condition holds (see Theorem 4.1), simple function
(see Theorem 4.5), or radial function (see Theorem 4.7). For radial function, the bound-
edness property takes place from Lp,λ (0) to Lq,μ(0) . The reader can find Adams and
Spanne type result for boundedness of Iα on local Morrey spaces in [9].

The discussion of this paper is delivered in 3 sections. We elaborate the necessary
conditions for boundedness of TΩ,α in Section 2. We prove the boundedness of TΩ,α
from Lp,λ to Lq,μ for μ � λ in Section 3, and for μ < λ in Section 4.

2. Necessary conditions for boundedness

In order to have a better idea on the boundedness of TΩ,α from Lp,λ to Lq,μ , it is
essential to know the necessary condition first.

THEOREM 2.1. Let 1 < p < ∞ , 1 � q < ∞ , and 0 � λ , μ < n. If the operator
TΩ,α is bounded from Lp,λ to Lq,μ (or from Lp,λ (0) to Lq,μ(0)) then

n− μ
q

=
n−λ

p
−α (2)

and

max

{
1,

n−λ
n− μ + α

}
< p <

n−λ
α

. (3)

1The symbol a � b means that there is c > 0 essentially independent of a and b such that a � cb .
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Proof. Let t > 0 and δt f (x) = f (tx) . Hence,

TΩ,α f (x) = tαTΩ,α(δt f )(x/t), and ‖δt f‖Lp,λ = t−
n−λ

p ‖ f‖Lp,λ .

Let TΩ,α is bounded from Lp,λ to Lq,μ , then

r−
μ
q ‖TΩ,α f‖Lq(B(x,r)) � tα+ n−μ

q ‖TΩ,α(δt f )‖Lq,μ

� tα+ n−μ
q ‖δt f‖Lp,λ � tα+ n−μ

q − n−λ
p ‖ f‖Lp,λ . (4)

Because t > 0 is arbitrary, the exponent of t in inequality (4) should be zero. Hence,
identity (2) holds and it follows that p < n−λ

α . Since q � 1, by inequality (2)

0 � n− μ − n− μ
q

= n− μ + α − n−λ
p

. (5)

Thus, inequality (3) holds.
The necessary condition for boundedness of TΩ,α from Lp,λ (0) to Lq,μ(0) follows

by the same argument since

‖δt f‖Lp,λ (0) = t−
n−λ

p ‖ f‖Lp,λ (0). �

Note that, identity (2) is the sufficient condition in Spanne inequality (Theorem
A.) and Adams inequality (Theorem B.) if μ = λq/p and μ = λ respectively.

3. Adams inequality and its weaker version

In this section, we prove the boundedness of TΩ,α from Lp,λ to Lq,μ for μ � λ .
We use the classical method by Adams [2] that involve a maximal operator.

For 0 < α < n , maximal operator MΩ,α is defined by

MΩ,α f (x) = sup
r>0

rα−n
∫

B(x,r)
|Ω(x− y)|| f (y)|dy. (6)

From the definition in (1) and (6), it is clear that MΩ,α f � T|Ω|,α | f | where α �= 0.
The following is obtained by boundedness properties of TΩ,α on Lebesgue spaces [1,
Theorem 2] and the application of rotation method [4, Chapter 5, Section 3].

THOEREM C. Let 1 < p < ∞ , 1
q = 1

p − α
n , and Ω ∈ Ls(Sn−1)2. If 0 � α < n and

s � n
n−α , then

‖MΩ,α f‖Lq � ‖Ω‖Ls(Sn−1)‖ f‖Lp .

We have the following estimation of TΩ,α in term of maximal operator.

2Set Sn−1 = {x ∈ R
n; |x| = 1} is the unit sphere on R

n
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THEOREM 3.1. Let 0 � λ < n, and 1 < p < n−λ
α . Then for any x ∈ R

n ,

|TΩ,α f (x)| � (MΩ, n−λ
p

f (x))
α p
n−λ (MΩ,0 f (x))1− α p

n−λ . (7)

Proof. If f or Ω are identical to zero, then inequality (7) holds. Now assume f

and Ω are not identical to zero. Fix x∈R
n and choose R

n−λ
p = MΩ, n−λ

p
f (x)/MΩ,0 f (x).

Then

|TΩ,α f (x)| �
∞

∑
j=−∞

(2 j−1R)α−n
∫

B(x,2 jR)\B(x,2 j−1R)
|Ω(x− y)|| f (y)|dy

� RαMΩ,0 f (x)
0

∑
j=−∞

2 jα +Rα− n−λ
p MΩ, n−λ

p
f (x)

∞

∑
j=1

2
j
(

α− n−λ
p

)

� (MΩ, n−λ
p

f (x))
α p

n−λ (MΩ,0 f (x))1− α p
n−λ . �

In preparation to prove the boundedness of TΩ,α from Lp,λ to Lq,μ for the case of
μ � λ , let us prove the following lemma first.

LEMMA 3.2. Let 0 � λ ,μ < n, inequality (3) holds, and Ω ∈ Ls(Sn−1) where
s � p′ 3. Let identity (2) holds. Then for any z ∈ R

n and r > 0 ,

‖TΩ,α( f χBc(z,2r))‖Lq(B(z,r)) � r
μ
q ‖Ω‖Ls(Sn−1)‖ f‖Lp,λ . (8)

Proof. If x ∈ B(z,r) , then Bc(z,2r) ⊂ Bc(x,r)4. Hence, by Hölder inequality the
following holds.

|TΩ,α( f χBc(z,2r))(x)| �
∫

Bc(x,r)

|Ω(y− x)|
|y− x|n−α | f (y)|dy

�
∞

∑
j=1

(
2 j−1r

)α−n
∫

B(x,2 jr)\B(x,2 j−1r)
|Ω(y− x)|| f (y)|dy

� rα− n−λ
p ‖Ω‖Lp′ (Sn−1)‖ f‖Lp,λ

∞

∑
j=1

2
j
(

α− n−λ
p

)
. (9)

The summation in inequality (9) converges. Since s � p′ , we have the inequality
‖Ω‖Lp′ (Sn−1) � ‖Ω‖Ls(Sn−1) . Thus,

‖TΩ,α( f χBc(z,2r))‖Lq(B(z,r)) � r
n
q rα− n−λ

p ‖Ω‖Ls(Sn−1)‖ f‖Lp,λ

= r
μ
q ‖Ω‖Ls(Sn−1)‖ f‖Lp,λ . �

Now, we are ready to prove the boundedness of TΩ,α from Lp,λ to Lq,μ for the
case of μ � λ .

3For 1 < p < ∞ , we have p′ = p
p−1 .

4The set Bc(x,r) is R
n \B(x,r) .
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THEOREM 3.3. Let 0 � λ � μ < n, inequality (3) holds, and Ω∈ Ls(Sn−1) where
s � p′ . Identity (2) holds if and only if

‖TΩ,α f‖Lq,μ � ‖Ω‖Ls(Sn−1)‖ f‖Lp,λ .

Proof. (⇐) holds by Theorem 2.1.
(⇒)For convenience, let ‖ f‖Lp,λ = 1. By Hölder inequality, for any x ∈ R

n

MΩ, n−λ
p

f (x) � ‖Ω‖Lp′ sup
R>0

R− λ
p ‖ f‖Lp(B(x,R)) � ‖Ω‖Ls(Sn−1). (10)

Fix B(z,r) . Define f1 = f χB(z,2r) and f2 = f − f1 . Then,

‖TΩ,α f‖Lq(B(z,r)) � ‖TΩ,α f1‖Lq(B(z,r)) +‖TΩ,α f2‖Lq(B(z,r)). (11)

By Lemma 3.2, we can handle ‖TΩ,α f2‖Lq(B(z,r)) . Now, let us handle ‖TΩ,α f1‖Lq(B(z,r)) .
By Theorem 3.1 and inequality (10),

‖TΩ,α f1‖Lq(B(z,r)) � ‖Ω‖1−u
Ls(Sn−1)‖(MΩ,0 f1)u‖Lq(B(z,r)) (12)

where u = 1− α p
n−λ . We note that uq = p(n− μ)/(n−λ ) � p . By Hölder inequality

with order p/uq , and by Theorem C.

‖TΩ,α f1‖Lq(B(z,r)) � r
n
q− un

p ‖Ω‖1−u
Ls(Sn−1)‖MΩ,0 f1‖u

Lp

� r
n
q− un

p ‖Ω‖Ls(Sn−1)‖ f‖u
Lp(B(z,2r)) � r

μ
q ‖Ω‖Ls(Sn−1). (13)

From inequality (11), inequality (13), and Lemma 3.2, we conclude

r
−μ
q ‖TΩ,α f‖Lq(B(z,r)) � ‖Ω‖Ls(Sn−1). (14)

The theorem is proved by taking supremum over r > 0 and x ∈ R
n on both side of

inequality (14). �

REMARK 1. Proposition 1 in [8] is similar to Theorem 3.3. However, Proposition
1 in [8] holds for Ω ∈ Ls(Sn−1) where s > p′ . Meanwhile, Theorem 3.3 holds for
Ω ∈ Lp′(Sn−1) . Since Ls(Sn−1) ⊂ Lp′(Sn−1) for s > p′ , Theorem 3.3 is a stronger
version of Proposition 1 in [8].

Let identity (2) and inequality (3) holds. Then, p/q < (n−λ )/(n− μ) . As the
consequence, if μ > λ , we can consider the special case of q � p . In this special case,
the following holds.

0 � n− μ
q

− n− μ
p

=
μ −λ

p
−α. (15)

If 0 < α < μ −λ , then by inequality (15) and inequality (3),

1 <
n−λ

n− μ + α
� p � μ −λ

α
<

n−λ
α

. (16)

Therefore, Theorem 3.3 validates the following corollary.
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COROLLARY 3.4. Let 0 < λ < μ < n, 1 � q � p, and 1 < p. Let Ω ∈ Ls(Sn−1)
where s � p′ . If identity (2) holds, and 0 < α < μ − λ , then the operator TΩ,α is
bounded from Lp,λ to Lq,μ .

4. Beyond Adams inequality

In this section, we consider proving the boundedness of TΩ,α from Lp,λ to Lq,μ

where μ < λ . The condition μ < λ implies that inequality (3) always has the following
form.

1 < p <
n−λ

α
.

Let identity (2) holds and let us recall the inequality (7),

|TΩ,α f (x)| � (MΩ, n−λ
p

f (x))1−u(MΩ,0 f (x))u

where u = 1− α p
n−λ . If μ < λ , then uq = p(n− μ)/(n−λ ) > p . Hence, we can’t use

the method in the proof of Theorem 3.3.
The idea to handle this problem is by restricting the TΩ,α domain into class of

functions such that reverse Hölder inequality holds (Subsection 4.1). Another idea is
by reducing the value of u into v such that vq < p (Subsection 4.2 and 4.3). In order
to reduce the value of u , we involve the parameter γ > λ .

4.1. The Ap -condition

A nonnegative measurable function f is said to be in Ap if for any ball B ⊂ R
n

(
1
|B|
∫

B
f (x)dx

)(
1
|B|
∫

B
f (x)1−p′dx

)p−1

� 1,

where |B| is the Lebesgue measure of B . In this case, we have the following reverse
Hölder inequality.

THEOREM D. [4, Theorem 7.4.] If f ∈ Ap , then there exist ε∗ > 0 , such that for
any small 0 < ε � ε∗ , and any ball B ⊂ R

n

(
1
|B|
∫

B
f (x)1+εdx

) 1
1+ε

�
(

1
|B|
∫

B
f (x)dx

)
.

Let g(x) = |x| λ−n
p , then g ∈ Lp,λ and |g|p ∈ Ap . From this fact, the following

makes sense.

THEOREM 4.1. Let 0 < λ < n, 1 < p < n−λ
α , and Ω ∈ Ls(Sn−1) where s � p′ .

If | f |p ∈ Ap , then there exist 0 < μ < λ such that identity (2) holds and

‖TΩ,α f‖Lq,μ � ‖Ω‖Ls(Sn−1)‖ f‖Lp,λ .
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Proof. Fix p , λ and α . Since | f |p ∈ Ap , by Theorem D. there exist 0 < μ < λ
such that

ε =
λ − μ
n−λ

< ε∗

and for any ball B ⊂ R
n

(
1
|B|
∫

B
| f (x)|p(1+ε)dx

) 1
1+ε

�
(

1
|B|
∫

B
| f (x)|pdx

)
. (17)

For any be choosen μ , we can always find q such that identity (2) holds due to

0 <
n−λ

p(n− μ)
− α

n− μ
< 1.

Let ‖ f‖Lp,λ = 1 and fix B(z,r) . Define f1 = f χB(z,2r) and f2 = f − f1 . Since
TΩ,α is a linear operator, then

‖TΩ,α f‖Lq(B(z,r)) � ‖TΩ,α f1‖Lq(B(z,r)) +‖TΩ,α f2‖Lq(B(z,r)). (18)

By Lemma 3.2, we can handle ‖TΩ,α f2‖Lq(B(z,r)) .
Let us handle the first term of the right hand side of inequality (18). By the point-

wise estimation from inequality (7) and inequality (10),

‖TΩ,α f1‖q(B(z,r)) � ‖Ω‖1−u
Ls(Sn−1)‖(MΩ,0 f1)u‖Lq(B(z,r)),

where u = 1− α p
n−λ . We note that qu = p(1+ ε) . By Theorem C. and inequality (17),

‖TΩ,α f1‖q(B(z,r)) � ‖Ω‖Ls(Sn−1)

(∫
B(z,2r)

| f (y)|p(1+ε)dy

) 1
q

� ‖Ω‖Ls(Sn−1)

(
rn( 1

1+ε −1)
∫

B(z,2r)
| f (y)|pdy

) 1+ε
q

� r
n
q− un

p + λu
p ‖Ω‖Ls(Sn−1) = r

μ
q ‖Ω‖Ls(Sn−1). (19)

Finally, we conclude our proof by inequality (18), inequality (19), and Lemma 3.2. �

4.2. The simple function

We define a class of special simple functions as follows.

DEFINITION 1. Let K ∈ N . The set FK contains any functions f that can be
written as

f =
K

∑
j=1

c jχBj

where c j is a positive constant, and Bj = B(x j,r j) .
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For any f ∈ FK , we can find D � 1 such that max j{r j} � Dmin j{r j} .

DEFINITION 2. Let D � 1. The set FK
D contains any functions f ∈ FK such

that max j{r j} � Dmin j{r j} .

Let’s start the discussion by investigating the case of K = 1.

LEMMA 4.2. Let B = B(xb,rb) . Let 1 < p < n−λ
α and Ω ∈ Ls(Sn−1) where s �

p′ . If identity (2) holds, then

‖TΩ,α χB‖Lq,μ � ‖Ω‖Ls(Sn−1)‖χB‖Lp,λ . (20)

Proof. For μ � λ , inequality (20) holds by Theorem 3.3.
For μ < λ . Since identity (2) holds, we can choose p∗ = p(n− μ)/(n−λ ) > p

such that
n− μ

q
=

n− μ
p∗

−α.

We also have s � p′ > (p∗)′ . Hence, by Theorem 3.3

‖TΩ,α χB‖Lq,μ � ‖Ω‖Ls(Sn−1)‖χB‖Lp∗,μ . (21)

We also note that

‖χB‖Lp∗,μ � r
n−μ
p∗

b = r
n−λ

p
b � ‖χB‖Lp,λ . (22)

As the consequence of inequality (21) and inequality (22), inequality (20) holds. �

Let us continue the discussion by investigating the case of K > 1. We recall the
inequality (7) as

|TΩ,α f (x)| � (MΩ, n−λ
p

f (x))1−u(MΩ,0 f (x))u

where u = 1− α p
n−λ . If identity (2) holds and μ < λ , then uq = p(n−μ)/(n−λ ) > p .

Hence, we can’t use Hölder inequality as in the proof of Theorem 3.3. For that reason,
we reduce the value of u into v = 1− α p

n−γ where γ > λ such that vq < p . Suppose

p < n−γ
α , by Theorem 3.1

|TΩ,α f (x)| � (MΩ,0 f (x))v
(
MΩ, n−γ

p
f (x)

)1−v
. (23)

At this moment, we need to estimate MΩ, n−γ
p

f as in the following lemma.

LEMMA 4.3. Let x ∈ B(z,r) , f ∈ FK , d = min{min j{r j},r} and γ > λ . If
Ω ∈ Ls(Sn−1) where s � p′ , then

MΩ, n−γ
p

(
f χB(z,2r)

)
(x) � Kd

λ−γ
p ‖Ω‖Ls(Sn−1)‖ f‖Lp,λ . (24)
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Proof. By Hölder inequality,

MΩ, n−γ
p

(
f χB(z,2r)

)
(x) � ‖Ω‖Ls(Sn−1) sup

R>0
(gx(R))

1
p (25)

where

gx(R) = R−γ
∫

B(x,R)
| f (y)χB(z,2r)(y)|pdy.

We use the following obvious observation. Let J ∈ N , ai > 0 for any i , and b > 1,
then (

1
J

J

∑
i=1

ai

)b

�
J

∑
i=1

ab
i <

(
J

∑
i=1

ai

)b

. (26)

Since f ∈ FK , by inequality (26)

gx(R) = R−γ
∫

B(x,R)

∣∣∣∣∣
K

∑
j=1

c jχBj∩B(z,2r)(y)

∣∣∣∣∣
p

dy

� Kp
K

∑
j=1

R−γ
∫

B(x j ,R)

∣∣∣c jχBj∩B(z,2r)(y)
∣∣∣p dy

� Kp
K

∑
j=1

sup
t>0

t−γ
∫

B(x j ,t)

∣∣∣c jχBj∩B(z,2r)(y)
∣∣∣p dy. (27)

Since the value inside the supremum in inequality (27) is increasing for t ∈ (0,min{r j,r})
and decreasing for t > 2r , then

gx(R) � Kp
K

∑
j=1

sup
min{r j ,r}<t<2r

t−γ
∫

B(x j ,t)

∣∣∣c jχBj∩B(z,2r)(y)
∣∣∣p dy

� Kp sup
d<t<2r,x∈Rn

t−γ
∫

B(x,t)

∣∣∣∣∣
K

∑
j=1

c jχBj(y)

∣∣∣∣∣
p

dy

� Kpdλ−γ‖ f‖p
Lp,λ . (28)

By inequality (28) and (25), we obtain inequality (24). �

We need the following lemma to deal with the term d in Lemma 4.3.

LEMMA 4.4. Suppose f ∈ FK
D . Then

‖ f‖Lp(B(z,2r)) � KD
λ
p min

j
{r j}

λ
p ‖ f‖Lp,λ .



756 D. SALIM, Y. SOEHARYADI AND W. SETYA BUDHI

Proof. Since f ∈ FK
D , we have max j{r j} � Dmin j{r j} . By inequality (26)

‖ f‖p
Lp(B(z,2r)) � Kp

K

∑
j=1

∫
B(z,2r)

|c jχBj(y)|pdy

� max
j
{r j}λ Kp

K

∑
j=1

r j
−λ
∫

Bj

|c jχBj(y)|pdy

� Dλ min
j
{r j}λ Kp

K

∑
j=1

sup
t>0,x∈Rn

t−λ
∫

B(x,t)
|c jχBj(y)|pdy

� Dλ min
j
{r j}λ Kp sup

t>0,x∈Rn
t−λ

∫
B(x,t)

∣∣∣∣∣
K

∑
j=1

c jχBj(y)

∣∣∣∣∣
p

dy

� Dλ min
j
{r j}λ Kp‖ f‖p

Lp,λ . (29)

Raising by the power of 1/p for both side of inequality (29), we conclude the proof. �

THEOREM 4.5. Let 0 < μ < λ < γ < n,

max

{
1,

(λ − μ)(n− γ)
(γ − μ)(α)

}
< p <

λ (n− γ)
γα

, (30)

v = 1− α p
n−γ , and Ω ∈ Ls(Sn−1) where s � p′ . If identity (2) holds and f ∈ FK

D , then

‖TΩ,α f‖Lq,μ � KD
vλ
p ‖Ω‖Ls(Sn−1)‖ f‖Lp,λ .

Proof. Since 0 < μ < λ < γ , then (λ − μ)/(γ − μ) < λ/γ. Hence the existence
of parameter p in inequality (30) is confirmed. Moreover, by the first inequality in (30)
and identity (2), we note that

0 <
α(γ − μ)

n− γ
− λ − μ

p
= (n− μ)

(
α

n− γ
− 1

p
+

1
q

)
=

(n− μ)
pq

(p− vq). (31)

Hence, vq < p .
Let ‖ f‖Lp,λ = 1 and fix B(z,r) . Define f1 = f χB(z,2r) and f2 = f − f1 . Since

TΩ,α is a linear operator, then

‖TΩ,α f‖Lq(B(z,r)) � ‖TΩ,α f1‖Lq(B(z,r)) +‖TΩ,α f2‖Lq(B(z,r)). (32)

By Lemma 3.2, we can handle ‖TΩ,α f2‖Lq(B(z,r)) .
Now, let us handle the ‖TΩ,α f1‖Lq(B(z,r)) . By inequality (23), Lemma 4.3, the

following is true.

‖TΩ,α f1‖Lq(B(z,r)) � K1−vd
(λ−γ)(1−v)

p ‖Ω‖1−v
Ls(Sn−1)‖(MΩ,0 f1)v‖Lq(B(z,r)).



ROUGH FRACTIONAL INTEGRAL OPERATORS AND BEYOND ADAMS INEQUALITIES 757

By Hölder inequality with order p/vq , and Theorem C,

‖TΩ,α f1‖Lq(B(z,r)) � K1−vd
(λ−γ)(1−v)

p r
n
q− nv

p ‖Ω‖Ls(Sn−1)‖ f‖v
Lp(B(z,2r)). (33)

Since D > 1, If d = r , inequality (33) become

‖TΩ,α f1‖Lq(B(z,r)) � KD
vλ
p r

(λ−γ)(1−v)
p r

n
q− nv

p r
λu
p ‖Ω‖Ls(Sn−1)

� KD
vλ
p r

μ
q ‖Ω‖Ls(Sn−1). (34)

By the second inequality in (30) we note that

(λ − γ)α
n− γ

+
λv
p

=
λ
p
− γα

n− γ
> 0. (35)

If d �= r , by Lemma 4.4 and inequality (35), the following follows from inequality (33).

‖TΩ,α f1‖Lq(B(z,r)) � KD
vλ
p min

j
{r j}

(λ−γ)α
n−γ + λv

p r
n
q− nv

p ‖Ω‖Ls(Sn−1)

� KD
vλ
p r

μ
q ‖Ω‖Ls(Sn−1). (36)

By inequality (32), inequality (34), inequality (36), and Lemma 3.2, the theorem is
proved. �

Apart from being dependent on K and D , the boundedness properties in Theorem
4.5 is independent of the function value.

4.3. The radial function and local Morrey spaces

If f is a radial function on R
n (with f (x) = f0(|x|)), then we have the following

elementary observation for r < |x| (see [5, Lemma 1.1.]).

∫
B(x,r)

| f (y)|dy � rn−1
∫ |x|+r

|x|−r
| f0(t)|dt. (37)

In this section, we prove the boundedness of TΩ,α on local Morrey spaces. Let us
estimate operator TΩ,α as in inequality (23). Now, we need to estimate MΩ, n−γ

p
f for

radial functions f as follows.

LEMMA 4.6. Let x ∈ B(0,r)\{0} . If Ω ∈ Ls(Sn−1) where s � p′ , λ � γ < n−1
and f be radial function, then

MΩ, n−γ
p

f (x) � ‖Ω‖Ls(Sn−1)|x|
λ−γ

p ‖ f‖Lp,λ (0).
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Proof. By Hölder inequality,

MΩ, n−γ
p

f (x) � ‖Ω‖Ls(Sn−1) sup
R>0

(hx(R))
1
p (38)

where
hx(R) = R−γ

∫
B(x,R)

| f (y)|pdy.

For R � |x|
2 , we have |x| � |x|+R � R and

hx(R) � (|x|+R)−γ
∫

B(0,|x|+R)
| f (y)|pdy � |x|λ−γ‖ f‖p

Lp,λ (0)
. (39)

For R <
|x|
2 , by inequality (37), the value of hx(R) is bounded by

Rn−γ−1
∫ 3|x|

2

|x|
2

| f0(t)|pdt � |x|n−γ−1
∫ 3|x|

2

|x|
2

| f0(t)|pdt � |x|−γ
∫ 3|x|

2

|x|
2

| f0(t)|ptn−1dt

� |x|−γ
∫

B(0,2|x|)
| f (y)|pdy � |x|λ−γ‖ f‖p

Lp,λ (0)
. (40)

By inequality (39), inequality (40), and inequality (38), the lemma is valid. �
Acquiring the estimation of MΩ, n−λ

p
f , let us prove the following theorem.

THEOREM 4.7. Let 0 < μ < λ < γ < n−1 ,

max

{
1,

n(λ − μ)(n− γ)
(nλ − μλ + μγ − μn)(α)

}
< p <

n− γ
α

, (41)

and Ω ∈ Ls(Sn−1) where s � p′ . If identity (2) holds and f is a radial function, then

‖TΩ,α f‖Lq,μ (0) � ‖Ω‖Ls(Sn−1)‖ f‖Lp,λ (0).

Proof. As the consequence of λ < γ , we obtain

n(λ − μ) < nλ − μλ + μγ −nμ < n(γ − μ). (42)

The first inequality in (42) confirms the existence of parameter p in inequality (41) and
the second inequality in (42) gives us

p >
(λ − μ)(n− γ)

(γ − μ)(α)
.

Let v = 1− α p
n−γ . By inequality (31), it is confirmed that vq < p .

Let ‖ f‖Lp,λ (0) = 1, and fix B(0,r) . We define the function f1 = f χB(0,2r) and
f2 = f − f1 . Then

‖TΩ,α f‖Lq(B(0,r)) � ‖TΩ,α f1‖Lq(B(0,r)) +‖TΩ,α f2‖Lq(B(0,r)). (43)
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Let us handle ‖TΩ,α f1‖Lq(B(0,r)) first. By inequality (23), Lemma 4.6,

‖TΩ,α f1‖Lq(B(0,r)) � ‖Ω‖1−v
Ls(Sn−1)

∥∥∥∥(MΩ,0 f1(·))v| · | (λ−γ)(1−v)
p

∥∥∥∥
Lq(B(0,r))

.

Let t = p
p−vq . By Hölder inequality with order p/vq = t ′ , and Theorem C

‖TΩ,α f1‖Lq(B(0,r)) � ‖Ω‖1−v
Ls(Sn−1) ‖ f1‖v

Lp

∥∥∥∥| · | (λ−γ)(1−v)
p q

∥∥∥∥
1
q

Lt(B(0,r))
. (44)

By the first inequality in (41),

(λ − γ)(1− v)
p

qt +n =
npq

(p−qv)(n− μ)

(
(nλ − μλ + μγ −nμ)α

n(n− γ)
− λ − μ

p

)
> 0.

Hence,

∥∥∥∥| · | (λ−γ)(1−v)
p q

∥∥∥∥
1
q

Lt (B(0,r))
�
(∫ r

0
R

(λ−γ)(1−v)
p qt+n−1dr

) 1
q

� r
(λ−γ)α

n−γ + n
q− nv

p . (45)

By inequality (45) and inequality (44),

‖TΩ,α f1‖Lq(B(0,r)) � r
(λ−γ)α

n−γ + n
q− nv

p ‖Ω‖Ls(Sn−1)‖ f1‖v
Lp � r

μ
q ‖Ω‖Ls(Sn−1). (46)

Now, we treat ‖TΩ,α f2‖Lq(B(0,r)) . If x ∈ B(0,r) then Bc(0,2r) ⊂ Bc(x,r) and
B(x,2 jr) ⊂ B(0,2 j+1r) . By Hölder inequality,

|TΩ,α f2(x)| �
∫

Bc(x,r)

|Ω(y− x)|
|y− x|n−α | f (y)|dy

�
∞

∑
j=1

(
2 j−1r

)α−n
∫

B(x,2 jr)\B(x,2 j−1r)
|Ω(y− x)|| f (y)|dy

�
∞

∑
j=1

(
2 j−1r

)α−n
∫

B(0,2 j+1r)
|Ω(y− x)|| f (y)|dy

� rα− n−λ
p ‖Ω‖Ls(Sn−1)

∞

∑
j=1

2 j(α− n−λ
p ). (47)

Since the summation in inequality (47) converges,

‖TΩ,α f2‖Lq(B(0,r)) � r
μ
q ‖Ω‖Ls(Sn−1). (48)

By inequality (46) and inequality (48), Theorem 4.7 is verified. �
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