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Abstract. In this note we give some two by two block matrices M =
(

A X
X∗ B

)
where M and

M′ =
(

A X∗
X B

)
are unitarily congruent. We also generalize a class of positive semi-definite

block-matrices satisfying the inequality ‖M‖ � ‖A+B‖ for all symmetric norms.

1. Introduction and preliminaries

Let M
+
n denote the positive semi-definite part of the space of n×n complex ma-

trices. For 2× 2 positive semi-definite block-matrix M, we say that M is P.S.D. or

M � 0 and we write M =
(

A X
X∗ B

)
∈ M

+
n+m , with A ∈ M

+
n , B ∈ M

+
m .

A positive partial transpose matrix denoted by P.P.T. is a P.S.D. block matrix M ∈
M

+
2n such that both M =

(
A X
X∗ B

)
and M′ =

(
A X∗
X B

)
(its partial transpose) are positive

semi-definite. Let Im(X) :=
X −X∗

2i
respectively Re(X) :=

X +X∗

2
be the imaginary

part respectively the real part of a matrix X . If W (X) denotes the numerical range of
X then W (Re(X)) = ℜ(W (X)) and W (Im(X)) = ℑ(W (X)) see [1].

It is well known that if M ∈ M
+
n+m with M =

(
A X
X∗ B

)
then

‖M‖ � ‖A‖+‖B‖ (1.1)

for all symmetric norms (see [2]). In the sequel any block-matrix have blocks in Mn of
equal sizes. The identity matrix of any order is denoted by I .

Noting that VM′V ∗ =
(

B −X
−X∗ A

)
with V =

(
0 −I
I 0

)
we have M =

(
A X
X∗ B

)
�

0 is P.P.T. if and only if M �
(

A+B 0
0 A+B

)
. As a direct consequence if M′ � 0,

‖M‖s � ‖A+B‖s for the spectral norm and if A+B = kI , k > 0 (see [5]) M′ � 0 if
and only if ‖M‖s � k .

For any matrix X , the width of W (X) is the one of the smallest strip in the plan
containing it, in [3] the following was proved
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THEOREM 1.1. [3] Let M =
(

A X
X∗ B

)
� 0 , if ω(X) is the width of the numerical

range of X then ‖M‖ � ‖A+B+ ω(X)I‖ for all symmetric norms.

Lemma 1.2 is noted from [6] (see also Theorems 3.6 and 3.8 -[4]):

LEMMA 1.2. Let M =
(

A X
X∗ B

)
� 0 , X =UH , U is unitary and H hermitian if:

1. U commutes with A and U commutes with H or

2. U commutes with B and U commutes with H or

3. U commutes with A and U commutes with B

then M and M′ are unitarily congruent and ‖M‖ � ‖A+B‖ for all symmetric norms.

Proof. For 1. take Q =
(

(U∗)2 0
0 I

)
so M′ = QMQ∗ . For 2. take Q =

(
I 0
0 U2

)

so M′ = QMQ∗ and for 3. take Q =
(

U∗ 0
0 U

)
so M′ = QMQ∗ ; Q =

(
U∗ 0
0 I

)
or

Q =
(

I 0
0 U

)
gives ‖M‖ = ‖QMQ∗‖ =

∥∥∥∥
(

A H
H B

)∥∥∥∥ � ‖A+B‖ for all symmetric norms

from Theorem 1.1. �

PROPOSITION 1.3. Suppose M =
(

A X
X∗ B

)
∈ M

+
4 , eiζ X = Re(eiζ X) + iH for

some real ζ with Re(eiζ X) diagonal. If A and B are diagonal then M and M′ are
unitarily congruent.

Proof. Calculating the characteristic polynomials of M and M′ proves that they
are equal. �

This property seems not to hold for M
+
2n when n > 2 see for example [5].

2. Main results

The next lemma is Hiroshima’s majorization see [7] and the references therein:

LEMMA 2.1. [7] Let M =
[

A X
X∗ B

]
∈ M

+
2n be a positive partial transpose matrix

then
‖M‖ � ‖A+B‖ (2.1)

for all symmetric norms.

Before stating the main Theorem we need the following lemmas:
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LEMMA 2.2. [2] For every matrix in M
+
2n written in blocks of the same size, we

have the decomposition:(
A X
X∗ B

)
= U

(
A 0
0 0

)
U∗ +V

(
0 0
0 B

)
V ∗

for some unitaries U,V ∈ M2n.

LEMMA 2.3. The following system admits solutions over real numbers for any

(α,v) ∈ R
2 fixed:

{
cos(θ )2− vcos(α)(sin(θ )cos(θ )) = 1

2

sin(θ )2 + vcos(α)(sin(θ )cos(θ )) = 1
2

Proof. If vcos(α) = 0 then we can take θ = π
4 . Otherwise since cos(θ )2 =

1+ cos(2θ )
2

and sin(θ )2 =
1− cos(2θ )

2
, θ satisfies tan(2θ ) =

1
vcos(α)

. �

THEOREM 2.4. Let M =
(

A X
X∗ B

)
� 0 , if for some modulus 1 complex number

z the numerical range of 2zX − (B−A) is contained in a line segment then ‖M‖ �
‖A+B‖ for all symmetric norms. Furthermore if this line is on the imaginary axis, M
and M′ are unitarily congruent and M is P.P.T.

Proof. Set ei(ζ−α)X =
B−A

2
+ H for some ζ and α in this form and for Q =(

eiζ cos(θ )I sin(θ )I
−eiζ sin(θ )I cos(θ )I

)
we get the following matrix

QMQ∗ :=
(

Acos(θ)2+Bsin(θ)2+sin(2θ)Re(eiζ X) (B−A) sin(2θ )
2 +eiζ cos(θ)2X−e−iζ sin(θ)2X∗

(B−A) sin(2θ )
2 +e−iζ cos(θ)2X∗−eiζ sin(θ)2X A sin(θ)2+Bcos(θ)2−sin(2θ)Re(eiζ X)

)

By Lemma 2.3 and Lemma 2.2 putting eiζ X = eiα
(

B−A
2

)
+eiαH we can choose

θ such that

QMQ∗ = U

(
A+B

2 + sin(2θ )Nζ ,α 0
0 0

)
U∗ +V

(
0 0
0 A+B

2 − sin(2θ )Nζ ,α

)
V ∗ (2.2)

where Nζ ,α := Re(eiζ X − eiα(B−A
2 )) for some reals ζ ,α . Nζ ,α = rI for some scalar

r if and only if W (2zX − (B− A)) is on a line segment with z = ei(ζ−α) and since
the blocks in the decomposition orbits are positive semi-definite the proof follows by
applying Ky-Fan dominance theorem ([1], Sec 10.7). If Re(W (2zX − (B−A))) = 0

i.e. Re(eiρX) = B−A
2 then QMQ∗ = M′ with the matrix Q =

1√
2

(−ei2ρI eiρ I
eiρ I I

)
. �

We can construct matrices in M
+
2n that follows Theorem 2.4 conditions exclu-

sively. Take any complex z of modulus 1 (z = eiα ) different from ±1 and ±i for a
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certain A , B and a triangular matrix X : M =
(

A X + rI
X∗ + rI A+aI+bJ

)
� 0, J is the

matrix whose entries are all one and X is a triangular matrix whose all non zero entries
are equal to −bℜ(z) .

EXAMPLE 2.5. Let M =
(

A X
X∗ B

)
with A =

1
10

(
21 22
22 41

)
, B =

1
10

(
41 42
42 61

)
and

z = ei π
4 ; Re(z(B−A

2 )) =
1√
2

(
1 1
1 1

)
. For X =

(
0 0

−√
2 0

)
we see that M � 0 is not a

P.P.T. matrix and X is not normal with Re(2X + z(B−A)) =
√

2I.

Theorem 2.4 can be generalized as Theorem 2.1 in [3]:

COROLLARY 2.6. Let M =
(

A X
X∗ B

)
� 0 , z a complex number of modulus one

and ωA,B(X) the width of W (X + zB−A
2 ) then ‖M‖ � ‖A+B+ ωA,B(X)I‖ for all sym-

metric norms.

Proof. The proof is the same as given in Theorem 2.1 in [3] we consider δ :=
ω(sin(2θ )X + zsin(2θ )B−A

2 ) � ωA,B(X) .

rI � Re(eiκ(sin(2θ )X + zsin(2θ ) B−A
2 )) � (r+ δ )I

for some reals r and κ ; from (2.2) we get

‖M‖ � ‖A+B
2

+(r+ δ )I‖+‖A+B
2

− rI‖ = ‖A+B+ δ I‖
for all symmetric norms. �
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