UNITARY CONGRUENCES AND POSITIVE BLOCK-MATRICES

Antoine Mhanna

(Communicated by J.-C. Bourin)
Abstract. In this note we give some two by two block matrices $M=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right)$ where M and $M^{\prime}=\left(\begin{array}{ll}A & X^{*} \\ X & B\end{array}\right)$ are unitarily congruent. We also generalize a class of positive semi-definite block-matrices satisfying the inequality $\|M\| \leqslant\|A+B\|$ for all symmetric norms.

1. Introduction and preliminaries

Let \mathbb{M}_{n}^{+}denote the positive semi-definite part of the space of $n \times n$ complex matrices. For 2×2 positive semi-definite block-matrix M, we say that M is P.S.D. or $M \geqslant 0$ and we write $M=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \in \mathbb{M}_{n+m}^{+}$, with $A \in \mathbb{M}_{n}^{+}, B \in \mathbb{M}_{m}^{+}$.

A positive partial transpose matrix denoted by P.P.T. is a P.S.D. block matrix $M \in$ $\mathbb{M}_{2 n}^{+}$such that both $M=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right)$ and $M^{\prime}=\left(\begin{array}{cc}A & X^{*} \\ X & B\end{array}\right)$ (its partial transpose) are positive semi-definite. Let $\operatorname{Im}(X):=\frac{X-X^{*}}{2 i}$ respectively $\operatorname{Re}(X):=\frac{X+X^{*}}{2}$ be the imaginary part respectively the real part of a matrix X. If $W(X)$ denotes the numerical range of X then $W(\operatorname{Re}(X))=\mathfrak{R}(W(X))$ and $W(\operatorname{Im}(X))=\mathfrak{I}(W(X))$ see [1].

It is well known that if $M \in \mathbb{M}_{n+m}^{+}$with $M=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right)$ then

$$
\begin{equation*}
\|M\| \leqslant\|A\|+\|B\| \tag{1.1}
\end{equation*}
$$

for all symmetric norms (see [2]). In the sequel any block-matrix have blocks in \mathbb{M}_{n} of equal sizes. The identity matrix of any order is denoted by I.

Noting that $V M^{\prime} V^{*}=\left(\begin{array}{cc}B & -X \\ -X^{*} & A\end{array}\right)$ with $V=\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right)$ we have $M=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \geqslant$ 0 is P.P.T. if and only if $M \leqslant\left(\begin{array}{cc}A+B & 0 \\ 0 & A+B\end{array}\right)$. As a direct consequence if $M^{\prime} \geqslant 0$, $\|M\|_{s} \leqslant\|A+B\|_{s}$ for the spectral norm and if $A+B=k I, k>0$ (see [5]) $M^{\prime} \geqslant 0$ if and only if $\|M\|_{s} \leqslant k$.

For any matrix X, the width of $W(X)$ is the one of the smallest strip in the plan containing it, in [3] the following was proved

[^0]THEOREM 1.1. [3] Let $M=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \geqslant 0$, if $\omega(X)$ is the width of the numerical range of X then $\|M\| \leqslant\|A+B+\omega(X) I\|$ for all symmetric norms.

Lemma 1.2 is noted from [6] (see also Theorems 3.6 and 3.8 -[4]):
Lemma 1.2. Let $M=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \geqslant 0, X=U H, U$ is unitary and H hermitian if:

1. U commutes with A and U commutes with H or
2. U commutes with B and U commutes with H or
3. U commutes with A and U commutes with B
then M and M^{\prime} are unitarily congruent and $\|M\| \leqslant\|A+B\|$ for all symmetric norms.
Proof. For 1. take $Q=\left(\begin{array}{cc}\left(U^{*}\right)^{2} & 0 \\ 0 & I\end{array}\right)$ so $M^{\prime}=Q M Q^{*}$. For 2. take $Q=\left(\begin{array}{cc}I & 0 \\ 0 & U^{2}\end{array}\right)$ so $M^{\prime}=Q M Q^{*}$ and for 3. take $Q=\left(\begin{array}{cc}U^{*} & 0 \\ 0 & U\end{array}\right)$ so $M^{\prime}=Q M Q^{*} ; Q=\left(\begin{array}{c}U^{*} \\ 0 \\ 0\end{array}\right)$ or $Q=\left(\begin{array}{cc}I & 0 \\ 0 & U\end{array}\right)$ gives $\|M\|=\left\|Q M Q^{*}\right\|=\left\|\left(\begin{array}{cc}A & H \\ H & B\end{array}\right)\right\| \leqslant\|A+B\|$ for all symmetric norms from Theorem 1.1.

Proposition 1.3. Suppose $M=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \in \mathbb{M}_{4}^{+}, e^{i \zeta} X=\operatorname{Re}\left(e^{i \zeta} X\right)+i H$ for some real ζ with $\operatorname{Re}\left(e^{i \zeta} X\right)$ diagonal. If A and B are diagonal then M and M^{\prime} are unitarily congruent.

Proof. Calculating the characteristic polynomials of M and M^{\prime} proves that they are equal.

This property seems not to hold for $\mathbb{M}_{2 n}^{+}$when $n>2$ see for example [5].

2. Main results

The next lemma is Hiroshima's majorization see [7] and the references therein: then

Lemma 2.1. [7] Let $M=\left[\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right] \in \mathbb{M}_{2 n}^{+}$be a positive partial transpose matrix

$$
\begin{equation*}
\|M\| \leqslant\|A+B\| \tag{2.1}
\end{equation*}
$$

for all symmetric norms.
Before stating the main Theorem we need the following lemmas:

Lemma 2.2. [2] For every matrix in $\mathbb{M}_{2 n}^{+}$written in blocks of the same size, we have the decomposition:

$$
\left(\begin{array}{cc}
A & X \\
X^{*} & B
\end{array}\right)=U\left(\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right) U^{*}+V\left(\begin{array}{ll}
0 & 0 \\
0 & B
\end{array}\right) V^{*}
$$

for some unitaries $U, V \in \mathbb{M}_{2 n}$.
LEMMA 2.3. The following system admits solutions over real numbers for any $(\alpha, v) \in \mathbb{R}^{2}$ fixed: $\left\{\begin{array}{l}\cos (\theta)^{2}-v \cos (\alpha)(\sin (\theta) \cos (\theta))=\frac{1}{2} \\ \sin (\theta)^{2}+v \cos (\alpha)(\sin (\theta) \cos (\theta))=\frac{1}{2}\end{array}\right.$

Proof. If $v \cos (\alpha)=0$ then we can take $\theta=\frac{\pi}{4}$. Otherwise since $\cos (\theta)^{2}=$ $\frac{1+\cos (2 \theta)}{2}$ and $\sin (\theta)^{2}=\frac{1-\cos (2 \theta)}{2}, \theta$ satisfies $\tan (2 \theta)=\frac{1}{v \cos (\alpha)}$.

THEOREM 2.4. Let $M=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \geqslant 0$, if for some modulus 1 complex number z the numerical range of $2 z X-(B-A)$ is contained in a line segment then $\|M\| \leqslant$ $\|A+B\|$ for all symmetric norms. Furthermore if this line is on the imaginary axis, M and M^{\prime} are unitarily congruent and M is P.P.T.

Proof. Set $e^{i(\zeta-\alpha)} X=\frac{B-A}{2}+H$ for some ζ and α in this form and for $Q=$ $\left(\begin{array}{cc}e^{i \zeta} \cos (\theta) I & \sin (\theta) I \\ -e^{i \zeta} \sin (\theta) I & \cos (\theta) I\end{array}\right)$ we get the following matrix

$$
Q M Q^{*}:=\left(\begin{array}{cc}
A \cos (\theta)^{2}+B \sin (\theta)^{2}+\sin (2 \theta) R e\left(e^{i \zeta} X\right) & (B-A) \frac{\sin (2 \theta)}{2}+e^{i \zeta} \cos (\theta)^{2} X-e^{-i \zeta} \sin (\theta)^{2} X^{*} \\
(B-A) \frac{\sin (2 \theta)}{2}+e^{-i \zeta} \cos (\theta)^{2} X^{*}-e^{i \zeta} \sin (\theta)^{2} X & A \sin (\theta)^{2}+B \cos (\theta)^{2}-\sin (2 \theta) \operatorname{Re}\left(e^{i \zeta} X\right)
\end{array}\right)
$$

By Lemma 2.3 and Lemma 2.2 putting $e^{i \zeta} X=e^{i \alpha}\left(\frac{B-A}{2}\right)+e^{i \alpha} H$ we can choose θ such that

$$
Q M Q^{*}=U\left(\begin{array}{cc}
\frac{A+B}{2}+\sin (2 \theta) N_{\zeta, \alpha} & 0 \tag{2.2}\\
0 & 0
\end{array}\right) U^{*}+V\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{A+B}{2}-\sin (2 \theta) N_{\zeta, \alpha}
\end{array}\right) V^{*}
$$

where $N_{\zeta, \alpha}:=\operatorname{Re}\left(e^{i \zeta} X-e^{i \alpha}\left(\frac{B-A}{2}\right)\right)$ for some reals $\zeta, \alpha . N_{\zeta, \alpha}=r I$ for some scalar r if and only if $W(2 z X-(B-A))$ is on a line segment with $z=e^{i(\zeta-\alpha)}$ and since the blocks in the decomposition orbits are positive semi-definite the proof follows by applying Ky-Fan dominance theorem ([1], Sec 10.7). If $\operatorname{Re}(W(2 z X-(B-A)))=0$ i.e. $\operatorname{Re}\left(e^{i \rho} X\right)=\frac{B-A}{2}$ then $Q M Q^{*}=M^{\prime}$ with the matrix $Q=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}-e^{i 2 \rho} I e^{i \rho} I \\ e^{i \rho} I & I\end{array}\right)$.

We can construct matrices in $\mathbb{M}_{2 n}^{+}$that follows Theorem 2.4 conditions exclusively. Take any complex z of modulus $1\left(z=e^{i \alpha}\right)$ different from ± 1 and $\pm i$ for a
certain A, B and a triangular matrix $X: M=\left(\begin{array}{cc}A & X+r I \\ X^{*}+r I A+a I+b J\end{array}\right) \geqslant 0, J$ is the matrix whose entries are all one and X is a triangular matrix whose all non zero entries are equal to $-b \Re(z)$.

Example 2.5. Let $M=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right)$ with $A=\frac{1}{10}\left(\begin{array}{ll}21 & 22 \\ 22 & 41\end{array}\right), B=\frac{1}{10}\left(\begin{array}{ll}41 & 42 \\ 42 & 61\end{array}\right)$ and $z=e^{i \frac{\pi}{4}} ; \operatorname{Re}\left(z\left(\frac{B-A}{2}\right)\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. For $X=\left(\begin{array}{cc}0 & 0 \\ -\sqrt{2} & 0\end{array}\right)$ we see that $M \geqslant 0$ is not a P.P.T. matrix and X is not normal with $\operatorname{Re}(2 X+z(B-A))=\sqrt{2} I$.

Theorem 2.4 can be generalized as Theorem 2.1 in [3]:
Corollary 2.6. Let $M=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \geqslant 0, z$ a complex number of modulus one and $\omega_{A, B}(X)$ the width of $W\left(X+z \frac{B-A}{2}\right)$ then $\|M\| \leqslant\left\|A+B+\omega_{A, B}(X) I\right\|$ for all symmetric norms.

Proof. The proof is the same as given in Theorem 2.1 in [3] we consider $\delta:=$ $\omega\left(\sin (2 \theta) X+z \sin (2 \theta) \frac{B-A}{2}\right) \leqslant \omega_{A, B}(X)$.

$$
r I \leqslant \operatorname{Re}\left(e^{i \kappa}\left(\sin (2 \theta) X+z \sin (2 \theta) \frac{B-A}{2}\right)\right) \leqslant(r+\delta) I
$$

for some reals r and κ; from (2.2) we get

$$
\|M\| \leqslant\left\|\frac{A+B}{2}+(r+\delta) I\right\|+\left\|\frac{A+B}{2}-r I\right\|=\|A+B+\delta I\|
$$

for all symmetric norms.
Acknowledgements. I should thank Prof. J.-C. Bourin for his helpful advices.

REFERENCES

[1] F. Zhang, Matrix Theory Basic Results and Techniques, $2^{\text {nd }}$ Edition, (Universitext) Springer, 2011.
[2] J. C. Bourin, E. Y. Lee, Unitary orbits of Hermitian operators with convex or concave functions, Bull. London Math. Soc. 44, 6 (2012), 1085-1102.
[3] J. C. Bourin, A. Mhanna, Positive block matrices and numerical ranges, C. R. Math. Acad. Sci. Paris 355, 10 (2017), 1077-1081.
[4] A. I. Singh, Role of partial transpose and generalized Choi maps in quantum dynamical semigroups involving separable and entangled states, Electronic Journal of Linear Algebra 29 (2015), 156-193.
[5] M. Gumus, J. Liu, S. Raouafi, T. Y. Tam, Positive semi-definite 2×2 block matrices and norm inequalities, Linear Algebra Appl. 551 (2018), 83-91.
[6] A. Mhanna, On symmetric norm inequalities and positive definite block-matrices, Math. Inequal. Appl. 21, 1 (2018), 133-138.
[7] M. Lin, H. Wolkowicz, Hiroshima's theorem and matrix norm inequalities, Acta Sci. Math. (Szeged) 81, 1-2 (2015), 45-53.

[^1]
[^0]: Mathematics subject classification (2010): 15A21, 15A60, 15A42.
 Keywords and phrases: Symmetric norm, positive block-matrices, positive partial transpose.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

