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EXCESS VERSIONS OF THE MINKOWSKI AND HÖLDER INEQUALITIES
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(Communicated by S. Varošanec)

Abstract. Certain excess versions of the Minkowski and Hölder inequalities are given.

1. Introduction and summary

Let p and q be positive real numbers such that 1
p + 1

q = 1; then, of course, p > 1
and q > 1. Let X and Y denote nonnegative random variables (r.v.’s), defined on the
same probability space. Then one has the Minkowski inequality

‖X +Y‖p � ‖X‖p +‖Y‖p

and the Hölder inequality
EXY � ‖X‖p‖Y‖q,

where, as usual, ‖X‖p := E1/p |X |p ; see, e.g., [7]. From now on, to avoid unpleasant
trivialities, let us assume that ‖X‖p +‖Y‖p +‖Y‖q < ∞ .

A special case of Hölder’s inequality is Lyapunov’s inequality, which states that
EXα is log-convex in real α , with the conventions 00 := 1, 0α := ∞ for α < 0, and
0 ·∞ := 0, so that EX0 = 1, and EXα = ∞ if α < 0 and P(X = 0) > 0. In particular,
we have ‖X‖1 � ‖X‖p .

So, we may define the (always nonnegative) p -excess of X by the formula

Ep(X) :=
(‖X‖p

p−‖X‖p
1)

1/p.

One may note that E2(X) is the standard deviation of the r.v. X . Introduce also the
covariance-like expression

Cp(X ,Y ) := EX p−1Y −Ep−1 X EY,

which is the true covariance, Cov(X ,Y ) , of the r.v.’s X and Y in the case p = 2.
As will be shown in this note, the following Minkowski-like and Hölder-like in-

equalities for the p -excess hold: if p � 2 (so that 1 < p � 2), then

Ep(X +Y ) � Ep(X)+Ep(Y ) (1)
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and
Cp(X ,Y ) � Ep(X)p−1Ep(Y ). (2)

In the case p = 2 inequality (2) becomes the covariance inequality, that is, the Cauchy–
Schwarz inequality for the centered r.v.’s X −EX and Y −EY .

More generally, for θ ∈ [0,1] define the (p,θ )-excess of X by the formula

Ep,θ (X) :=
(‖X‖p

p−θ p‖X‖p
1)

1/p,

which interpolates between ‖X‖p = Ep,0(X) and Ep(X) = Ep,1(X) , and then also

Cp,θ (X ,Y ) := EX p−1Y −θ p Ep−1 X EY,

which interpolates between Cov(X p−1,Y ) = Cp,0(X ,Y ) and Cp(X) = Cp,1(X ,Y ) .
Inequalities (1) and (2), along with the Minkowski and Hölder inequalities, can be

extended as follows:

THEOREM 1. Suppose that p � 2 (so that 1 < p � 2 ). Then for all θ ∈ [0,1]

Ep,θ (X +Y ) � Ep,θ (X)+Ep,θ(Y ) (3)

and
Cp,θ (X ,Y ) � Ep,θ (X)p−1Ep,θ (Y ). (4)

For any real p > 2 and any θ ∈ (0,1] , inequalities (3) and (4) do not hold in general.

Obviously, the Minkowski and Hölder inequalities are the special cases of inequal-
ities (3) and (4), respectively, corresponding to θ = 0, and (1) and (2) are the special
cases of (3) and (4) corresponding to θ = 1. Moreover, considerations in Round 1 of
the proof of (4), to be given in Section 2, show that inequality (4) is, in a sense, an
improvement of Hölder’s inequality (for p ∈ (1,2)). Similarly, the derivation of (3)
from (4) in the paragraph containing formulas (31) and (32) shows that inequality (3)
is an improvement of Minkowski’s inequality (again for p ∈ (1,2)). Inequality (1) was
conjectured in [3].

2. Proof of Theorem 1

We shall see at the end of this section that inequalities (3) and (4) are easy to obtain
from each other, so that it is enough to prove one of them.

Proof of inequality (4) in Theorem 1. This proof is much more difficult than that of
Hölder’s inequality. It will be done by a number of rounds of reduction of the difficulty
of the problem.

Round 1: Reduction to the case θ = 1
Consider the differences

Δp,θ (X ,Y ) := Cp,θ (X ,Y )−Ep,θ(X)p−1Ep,θ (Y ) (5)



EXCESS VERSIONS OF THE MINKOWSKI AND HÖLDER INEQUALITIES 783

and
Δp(X ,Y ) := Δp,1(X ,Y ) := Cp(X ,Y )−Ep(X)p−1Ep(Y ) (6)

between the left and right sides of inequalities (4) and (2), respectively. For nonnegative
real numbers A,B,C , consider also

Δp;A,B,C(X ,Y ) =A+EX p−1Y −Ep−1 X EY

− (
B+EX p−Ep X

)1/q (
C+EY p−EpY

)1/p
.

(7)

The following lemma will also be used in Round 8 of this proof.

LEMMA 1. Suppose that the nonnegative real numbers A,B,C are such that A �
B1/qC1/p . Then Δp;A,B,C(X ,Y ) � Δp(X ,Y ) .

Proof. Since Δp;A,B,C(X ,Y ) is nondecreasing in A , without loss of generality
(wlog) A = B1/qC1/p . If B = 0 or C = 0, then A = 0, and so, the inequality Δp;A,B,C(X ,Y )
� Δp(X ,Y ) is trivial. Hence, wlog B > 0 and C > 0, and then we can write C = γ pB
and A = γB for some real γ > 0. Let now

d(B) := Δp;γB,B,γ pB(X ,Y ). (8)

Introduce also

c :=
(
γ pB+EY p−EpY

)1/p/(
B+EX p−Ep X

)1/p

and then a := γc−1/q and b := c1/q . Then

d′(B) = γ − 1
q

c− 1
p

γ p c−p/q = ab−
(ap

p
+

bq

q

)
� 0

for all B > 0, by Young’s inequality. So, Δp;A,B,C(X ,Y ) = Δp;γB,B,γ pB(X ,Y ) = d(B) �
d(0) = Δp:0,0,0(X ,Y ) = Δp(X ,Y ) . Lemma 1 is thus proved. �

Now take any θ ∈ [0,1] and note that Δp,θ (X ,Y ) = Δp;A,B,C(θX ,θY ) with A :=
(1− θ p)EX p−1Y , B := (1− θ p)EX p , and C := (1− θ p)EY p , so that, by Hölder’s
inequality, the condition A � B1/qC1/p of Lemma 1 holds, which yields Δp,θ (X ,Y ) �
Δp(θX ,θY ) . Thus, to prove inequality (4), it is enough to prove its special case, in-
equality (2).

Round 2: Removing the case p = 2
This round is very easy. As was noted, the case p = 2 of (2) is the Cauchy–Schwarz in-
equality. So, it is enough to prove (2) for p ∈ (1,2) , which will be henceforth assumed.

Round 3: “Finitization” of the probability space
Wlog the r.v.’s X and Y take only finitely many values (one may approximate X and
Y from below by nonnegative simple r.v.’s and then use the monotone convergence
theorem). Therefore, wlog X and Y are defined on a finite probability space. For
instance, we may assume that the probability space is (I,Σ,μ) , where I is the finite set
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{(x,y) : P(X = x,Y = y) > 0} , Σ is the σ -algebra of all subsets of I , the probability
measure μ is defined by the condition μ({i}) = wi := P(X = x,Y = y) for all i =
(x,y) ∈ I , and the r.v.’s X and Y are defined by the conditions X(i) = x and Y (i) = y
for all i = (x,y) ∈ I . So, the r.v.’s X and Y maybe identified with finite-dimension
vectors (xi)i∈I and (yi)i∈I , respectively.

Round 4: Reduction to an extremal problem
Introducing also the vector W := (wi)i∈I , we can rewrite inequality (2) as

sup
{

Δp(X ,Y,W ) : (X ,Y,W ) ∈ T I;m1,1,m1,p,m2,1,m2,p

} (?)
� 0, (9)

where m1,1,m1,p,m2,1,m2,p are any (strictly) positive real numbers,

Δp(X ,Y,W ) := (X p−1Y ) ·W − (X ·W)p−1Y ·W
− (

X p ·W − (X ·W )p)1/q (
Y p ·W − (Y ·W)p)1/p

,

the symbol · denotes the dot product in R
I , and T I;m1,1,m1,p,m2,1,m2,p is the set of all

triples (X ,Y,W ) of vectors X = (xi)i∈I , Y = (yi)i∈I , and W = (wi)i∈I with nonnegative
coordinates such that

1 ·W = ∑
i∈I

wi = 1, X p ·W = ∑
i∈I

xp
i wi = m1,p, Y p ·W = ∑

i∈I

yp
i wi = m2,p,

X ·W = ∑
i∈I

xiwi = m1,1, Y ·W = ∑
i∈I

yiwi = m2,1;

here and in what follows, 1 := (1)i∈I , the vector with all coordinates equal 1. One
may note that, in view of the standard convention sup /0 = −∞ , inequality (9) is trivial
whenever m1,1,m1,p,m2,1,m2,p are such that T I;m1,1,m1,p,m2,1,m2,p = /0 . A reason for the
numbers m1,1,m1,p,m2,1,m2,p to be assumed strictly positive is that, if at least one of
them is 0, then for any (X ,Y,W ) ∈ T I;m1,1,m1,p,m2,1,m2,p at least one of the r.v.’s X ,Y is
almost surely 0, which makes inequality (9) trivial.

Round 5: Compactification, by a change of variables
To solve an extremal problem such as the one stated in Round 4, it is natural to use the
method of Lagrange multipliers. To be able to do that, we need to ensure a priori that
the supremum in (9) is attained. However, this does not seem easy to do, since the set
T I;m1,1,m1,p,m2,1,m2,p is not bounded and hence not compact in general; indeed, for any
real β > 0 and any i ∈ I such that wi = 0, one may take however large xi � 0 so that

the condition xβ
i wi = 0 hold.

An appropriate way to compactify the set T I;m1,1,m1,p,m2,1,m2,p is to use the follow-
ing new variables: for i ∈ I , let

ui := xp
i wi and vi := yp

i wi, (10)

so that
xiwi = u1/p

i w1/q
i , yiwi = v1/p

i w1/q
i , xp−1

i yiwi = u1/q
i v1/p

i .
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Then (9) will follow from

sup
{

Δ̃p(U,V,W) : (U,V,W ) ∈ T̃ I;m1,1,m1,p,m2,1,m2,p

} (?)
� 0, (11)

where T̃ I;m1,1,m1,p,m2,1,m2,p is the set of all triples (U,V,W) of vectors U = (ui)i∈I ,
V = (vi)i∈I , and W = (wi)i∈I with nonnegative coordinates such that

1 ·W = 1, U ·1 = m1,p, V ·1 = m2,p, (12)

U1/p ·W 1/q = m1,1, V 1/p ·W 1/q = m2,1 (13)

and, for (U,V,W ) ∈ T̃ I;m1,1,m1,p,m2,1,m2,p ,

Δ̃p(U,V,W ) :=U1/q ·V 1/p− (U1/p ·W1/q)p−1V 1/p ·W1/q

− (
U ·1− (U1/p ·W1/q)p)1/q (

V ·1− (V1/p ·W 1/q)p)1/p
(14)

=U1/q ·V 1/p−mp−1
1,1 m2,1−

(
m1,p−mp

1,1

)1/q (
m2,p−mp

2,1

)1/p
. (15)

Indeed, the supremum in (9) is no greater than that in (11); at this point, we can only
say “no greater” because the (following by (10)) expressions xi = (ui/wi)1/p and yi =
(vi/wi)1/p of xi and yi in terms of ui,vi,wi will only be valid if wi �= 0.

The important point here is that the set T̃ := T̃ I;m1,1,m1,p,m2,1,m2,p is compact, and

the function Δ̃p is continuous on it. So, Δ̃p attains the (global) maximum on the set T̃
whenever T̃ �= /0 , which will be henceforth assumed wlog.

For any vector R = (ri)i∈I ∈ [0,∞)I , let

IR := {i ∈ I : ri > 0}.
In view of (13) and the condition (stated below (9)) that m1,1,m1,p,m2,1,m2,p are strictly
positive, for any (U,V,W ) ∈ T̃ I;m1,1,m1,p,m2,1,m2,p we have

IU ∩ IW �= /0 and IV ∩ IW �= /0. (16)

Round 6: Further preparation for Lagrange multipliers
Fix now any triple (U∗,V ∗,W ∗) ∈ T̃ I;m1,1,m1,p,m2,1,m2,p at which the maximum of Δ̃p is
attained. Then clearly the triple (U∗,V ∗,W ∗) is a maximizer of Δ̃p over the set

T̃
∗
I;m1,1,m1,p,m2,1,m2,p

:= {(U,V,W) ∈ T̃ I;m1,1,m1,p,m2,1,m2,p : IU = IU∗ , IV = IV∗ , IW = IW∗}.

Also, with the triple (U∗,V ∗,W ∗) fixed, any triple (U,V,W )∈ T̃
∗
I;m1,1,m1,p,m2,1,m2,p

may
be identified with the triple (U |IU∗ ,V |IV∗ ,W |IW∗ ) of the restrictions of U,V,W to the
sets IU = IU∗ , IV = IV∗ , IW = IW ∗ , respectively; here, for instance, U |IU∗ = (ui)i∈IU∗ ; so,
Δ̃p(U,V,W ) may be considered a function of (U |IU∗ ,V |IV∗ ,W |IW∗ ) .
Round 7: Obtaining Lagrange multiplier equations
Now we are ready to apply (say) the Carathéodory–John version of the Lagrange mul-
tiplier rule (see e.g. [6, page 441]). In view of (15), there exist some real numbers
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α,λ ,μ ,ν,ρ ,ω (Lagrange multipliers) – with α corresponding to the minimized
Δ̃p(U,V,W ) , and λ ,μ ,ν,ρ ,ω corresponding to the restrictions in (13) and (12) on
U1/p ·W1/q,V 1/p ·W1/q , U ·1,V ·1,1 ·W , respectively – such that

α2 + λ 2 + μ2 + ν2 + ρ2 + ω2 > 0 (17)

and the triple (U∗,V ∗,W ∗) is a solution to the following system of equations for
(U,V,W) :

∀ i ∈ IU α(p−1)u−1/p
i v1/p

i = λu−1/q
i w1/q

i + ν, (18)

∀ i ∈ IV αu1/q
i v−1/q

i = μv−1/q
i w1/q

i + ρ , (19)

∀ i ∈ IW 0 = λu1/p
i w−1/p

i +μv1/p
i w−1/p

i + ω . (20)

Multiplying (both sides of) equations (18) and (19) by ui and vi , respectively, we have

α(p−1)u1/q
i v1/p

i =λu1/p
i w1/q

i +νui, (21)

αu1/q
i v1/p

i = μv1/p
i w1/q

i +ρvi (22)

for all i ∈ I .
A difficulty in analyzing these Lagrange multiplier equations is that some of the

Lagrange multipliers α,λ ,μ ,ν,ρ ,ω may take zero values. In a certain sense, this
corresponds to the fact the difference between the left and right sides of inequality (2)
can attain its maximum (zero) value in a number of ways, including the cases when
X = Y and when Y is a constant. Also, we have to account for cases when some of the
values of ui,vi,wi are 0, that is, when i is not in the corresponding sets IU , IV , IW .

In particular, we have to consider the cases when ui > 0 or vi > 0 while wi = 0(
that is, when i ∈ (IU ∪ IV )\ IW

)
. Recalling (10), we see that, in terms of the “original,

pre-compactification” variables xi,yi,wi , these cases reflect the possibility for these
variables to vary in such a way that for some i ∈ I we have wi ↓ 0 while xi → ∞ or
yi → ∞ and, moreover, xp

i wi or, respectively, yp
i wi converges to a finite nonzero limit.

This kind of phenomena may be thought of as part of the mass of the “distribution“ of
U or V running away to ∞ . This brings us to the following round.

Round 8: Analysis of Lagrange multipliers, part I: Removing “the masses at ∞”
Take any triple (U,V,W ) ∈ ([0,∞)I)3 satisfying the Lagrange multiplier equations
(18)–(20). On the set IW , define the probability space by the condition P({i}) = wi

for all i∈ IW , and then define r.v.’s X and Y on this probability space by the conditions

X(i) = xi := (ui/wi)1/p and Y (i) = yi := (vi/wi)1/p for all i ∈ IW . (23)

The r.v.’s X and Y are well defined, because wi > 0 for all i ∈ IW and ∑i∈IW wi =
∑i∈I wi = 1. Then, by (14) and (7), Δ̃p(U,V,W) = Δp;A,B,C(X ,Y ) , where

A := ∑
i/∈IW

u1/q
i v1/p

i , B := ∑
i/∈IW

ui, C := ∑
i/∈IW

vi, (24)
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“the masses at ∞”. By Hölder’s inequality, here the condition A � B1/qC1/p in Lemma 1
holds. So, Δ̃p(U,V,W ) � Δp(X ,Y ) .

Thus, it remains to show that Δp(X ,Y ) � 0 for X and Y as in (23), with (U,V,W )
∈ ([0,∞)I)3 satisfying the Lagrange multiplier equations (18)–(20).

Round 9: Analysis of Lagrange multipliers, part II: Reduction to the case Y = X + t ,
t ∈ R

In terms of the xi ’s and yi ’s as in (23), for i ∈ IW equations (20), (21), (22) can be
rewritten as

0 =λxi+μyi +ω , (25)

α(p−1)xp−1
i yi =λxi +νxp

i , (26)

αxp−1
i yi = μyi +ρyp

i . (27)

LEMMA 2. Take any pair (X ,Y )∈ ([0,∞)IW )2 satisfying equations (25)–(27) with
μ = 0 . Then Δp(X ,Y ) � 0 .

Proof. This proof consists in the consideration of a system of simple cases, keep-
ing in mind the condition μ = 0.

Case 1: ρ = 0 .

Subcase 1.1: ρ = 0 �= α . Then, by (27), xp−1
i yi = 0 for all i∈ IW . So, EX p−1Y = 0,

and inequality Δp(X ,Y ) � 0 obviously holds.

Subcase 1.2: ρ = 0 = α . Then, by (26), λxi + νxp
i = 0 for all i ∈ IW .

Subsubcase 1.2.1: ρ = 0 = α and λ = 0 = ν . Then, by (25), ω = 0. So, we have
a contradiction with (17).
Subsubcase 1.2.2: ρ = 0 = α and λ �= 0 . Then, by (25), xi does not depend on
i ∈ IW ; that is, the r.v. X is a constant, and hence Δp(X ,Y ) = 0.
Subsubcase 1.2.2: ρ = 0 = α and λ = 0 �= ν . Then, by (26), xi = 0 for all on
i ∈ IW ; that is, X = 0, and hence Δp(X ,Y ) = 0.

Case 2: ρ �= 0 .

Subcase 2.1: ρ �= 0 = λ . Then, by (26) and (27), νxp
i = (p−1)ρyp

i for all i ∈ IW .
So, Y = cX for some real c � 0, and hence Δp(X ,Y ) = 0.

Subcase 2.2: ρ �= 0 �= λ . Then, by (25), xi does not depend on i ∈ IW ; that is, the
r.v. X is a constant, and hence Δp(X ,Y ) = 0.

Thus, indeed in all cases we have Δp(X ,Y ) � 0. �
So, by Lemma 2, wlog μ �= 0. So, in view of (25), Y = kX + t for some real k

and t .
Now we need Chebyshev’s integral inequality, which states that, if f and g are

nondecreasing functions from R to R , then for any r.v. Z one has E f (Z)g(Z) �
E f (Z)Eg(Z) whenever all the three expectations here are finite; see e.g. Corollary 2
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on page 318 in [2] (with n = 1, φ = 1, and the probability distribution of Z to play
the role of the measure λ there). This inequality follows immediately by taking the
expectation of both sides of the obvious inequality ( f (Z)− f (Z1))(g(Z)−g(Z1)) � 0,
where Z1 is an independent copy of Z .

By Chebyshev’s integral inequality and the mentioned log-convexity of EXα in
α , for Y = kX + t with k � 0 we have EX p−1Y � EX p−1 EY � Ep−1 X EY , which
yields Δp(X ,Y ) � 0, in view of (6). So, wlog k > 0, and then, because of the positive
homogeneity of Δp(X ,Y ) in Y , wlog Y = X + t .

Round 10: Analysis of the case Y = X + t , t ∈ R

Thus, to finish the proof of (2), it remains to prove

LEMMA 3. For all real t such that the r.v. X + t is nonnegative, we have

δ (t) := Δp(X ,X + t) � 0. (28)

Proof. In view of (6), δ (0) = 0 = δ ′(0) . So, it is enough to show that the function
δ is concave or, equivalently, that the function f given by the formula

f (t) :=
(
E(X + t)p− (EX + t)p)1/p

for t ∈ T := {s ∈ R : X + s � 0} is convex. The set T is an interval. So, it suffices to
show that f ′′(t) � 0 for all t in the interior intT of the set T or, equivalently, that

H := (mp−mp
1)(mp−2−mp−2

1 )− (mp−1
1 −mp−1)2 � 0, (29)

where
mr := EYr,

Y = X + t , and t ∈ intT . Here, by the positive homogeneity, for any fixed t ∈ intT
wlog

m1 = EY = 1.

In principle, inequality (29) can be proved by minimizing the p th moment mp

of the r.v. Y given the moments mp−2,m0 = 1,mp−1,m1 = 1 of Y of orders p− 2,0,
p− 1,1. Using results of, say, [8, 5], we may assume that the support of the distribu-
tion of Y consists of at most card{p−2,0, p−1,1}= 4 points, where card denotes the
cardinality. This would reduce (29) to a minimization problem involving 8 variables
(not counting p ): 4 variables for the points of the support of the distribution and 4
variables for the corresponding masses. In our particular case, the minimization prob-
lem can be further simplified by noticing that the moment functions mapping x ∈ [0,∞)
to xp−2,x0,xp−1,x1,xp form a Tchebycheff–Markov system and hence we may assume
that the support of the distribution of Y consists of at most 2 points; see e.g. [1] or [4,
Propositions 1 and 2]. Thus, we would have to deal with 4 variables (not counting p ):
2 variables for the points of the support and 2 variables for the masses. The values of
the masses could be eliminated by solving the system of equations m0 = 1 and m1 = 1,
which are linear with respect to the two masses. That would leave us with two variables,
one for each of the two support points, plus another variable for p .
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Fortunately, again in our particular case, we can actually use a simple trick to
reduce the problem to one involving just one variable in addition to p . Indeed, by
the mentioned Lyapunov inequality (that is, the log-convexity of mr in r ), mp−1 �
mp−1

1 m2−p
0 = 1, 1 = m1 � mp−1

p−1m
2−p
p , and 1 = m0 � mp−1

p−2m
2−p
p−1 , whence

1 � mp−1 � m∗ ∨m∗∗, (30)

where
m∗ := m−(2−p)/(p−1)

p and m∗∗ := m−(p−1)/(2−p)
p−2 .

Next, m∗ � m∗∗ iff m(2−p)2
p � m(p−1)2

p−2 . So, by (29) and (30),

H � H∗ := (mp − 1)
(
m(2−p)2/(p−1)2

p − 1
) − (1 − m∗)2 if m(2−p)2

p � m(p−1)2
p−2 ,

H � H∗∗ :=
(
m(p−1)2/(2−p)2

p−2 − 1
)
(mp−2 − 1)− (1−m∗∗)2 if m(2−p)2

p � m(p−1)2
p−2 .

Note that H∗ depends only on p and mp , whereas H∗∗ depends only on p and mp−2 .
It suffices to show that H∗ � 0 for all p ∈ (1,2) and real mp � 1 and that H∗∗ � 0

for all p ∈ (1,2) and real mp−2 � 1. At this point, mp and mp−2 may be consid-
ered free variables, with the only restriction that they take real values � 1. Then,
under the one-to-one correspondence between these free variables given by the formula

m(2−p)2
p ↔ m(p−1)2

p−2 , every value of H∗∗ turns into the corresponding value of H∗ , and
vice versa. So, it is enough to show that H∗ � 0 for all p ∈ (1,2) and real mp � 1.

Making now the substitution mp = e(p−1)2s , we can write

H∗
e2(p−2)(p−1)s = h(s) := 2e(2−p)(p−1)s − e(3−p)(p−1)s − e(2−p)ps + es − 1.

So, it suffices to show that h(s) � 0 for all real s � 0 (and all p ∈ (1,2)). Since h
is a linear combination of exponential functions, this can be done essentially algorith-
mically. Indeed, let h1(s) := h′(s)e(p−2)(p−1)s and h2(s) := h′1(s)e

−(3−3p+p2)s . Then

h′2(s)(2− p)−2(p− 1)−2 = pe−(p−1)2s + (3− p)e−(2−p)2s , which is manifestly > 0.
So, h2 is increasing (on the interval [0,∞)), with h2(0) = 0. So, h2 � 0 and hence
h1 is nondecreasing, with h1(0) = 0. So, h1 � 0 and hence h is nondecreasing, with
h(0) = 0. So, indeed h � 0. Thus, Lemma 3 is completely proved. �

This completes the proof of inequality (2) and hence the proof of (4). �

Take now any θ ∈ [0,1] . For real t � 0, let

g(t) := gθ ;X ,Y (t) := Ep,θ (X + tY)−Ep,θ(X)− tEp,θ(Y ). (31)

If Ep,θ (X + tY ) = 0 for some t � 0, then obviously g(t) � 0; otherwise
(
that is, if

Ep,θ (X + tY) > 0
)
, we can write

g′(t) = Cp,θ (X + tY,Y )Ep,θ (X + tY )1−p−Ep,θ (Y ) � 0, (32)
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in view of already proved inequality (4); here, g′(0) is understood as the right derivative
of g at 0 . So, for each real t � 0 such that g(t) > 0, we have g′(t) � 0. Also, g(0) = 0
and the function g is continuous. Suppose now that g(1) > 0 and let a := sup{t ∈
[0,1] : g(t) = 0} . Then g(a) = 0 and 0 � a < 1; also, g > 0 and hence g′ � 0 on (a,1] .
In view of the mean value theorem, this contradicts the conditions g(a) = 0 < g(1) .
Therefore, g(1) � 0; that is, inequality (3) holds.

To finish the proof of Theorem 1, it remains to show that inequalities (3) and (4)
are false in general if p > 2 and θ ∈ (0,1] . To this end, suppose, e.g., that P(X = 1) =
P(X = 0) = 1/2. Let δp,θ (t) := Δp,θ (X ,X + t) ; cf. (28) and (5). Then δp,θ (0) = 0 =
δ ′

p,θ (0+) , whereas δ ′′
p,θ (0+) = (p− 1)θ p/(2p − 2θ p) > 0, whence Δp,θ (X ,X + c) =

δp,θ (c) > 0 for small enough c > 0. Take any such c and let Y := X + c , so that
Δp,θ (X ,Y ) > 0, that is, inequality (4) is false. So, by (32), g′(0) > 0, which implies
g(t) > 0 for all small enough t > 0. Thus, (3) with tY in place of Y is false if t > 0
is small enough.

(
One might note that here δ ′′

p,θ (0+) = −∞ < 0 if 1 < p < 2 and

δ ′′
2,θ (0) = −(1−θ 2)/(2−θ 2) � 0.

)
The entire proof of Theorem 1 is now complete.

REMARK 1. The simple deduction of (3) from (4) in the paragraph containing
formulas (31) and (32) is essentially reversible, so that, vice versa, (4) is easy to deduce
from (3). Indeed, take again any θ ∈ [0,1] . If Ep,θ (X) = 0, then P(X = a) = 1 for
some real constant a � 0; moreover, if, in addition, θ < 1, then necessarily a = 0.
So, inequality (4) is trivial if Ep,θ (X) = 0. Therefore, wlog Ep,θ (X) > 0 and hence
g′(0) exists (cf. (32)), where g is as in (31). Moreover, (3) with tY in place of Y yields
g(t) � 0 for t � 0. Since g(0) = 0, we have g′(0) � 0. Now (4) follows by the equality
in (32).
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