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Abstract. Let A,B, and X be n× n matrices such that A,B are positive definite and X is
Hermitian. If a and b are real numbers such that 0 < a � sn (A) and 0 < b � sn (B) , then it is
shown, among other inequalities, that∣∣∣∣∣∣∣∣∣AbX +XBa

∣∣∣∣∣∣∣∣∣� (1+min(a2,b2)) |||X |||

for every unitarily unitarily invariant norm.

1. Introduction

Let Mn(C) be the algebra of all n×n complex matrices. For a matrix A∈Mn(C) ,
let λ1(A), . . . ,λn(A) be the eigenvalues of A repeated according to multiplicity. The
singular values of A, denoted by s1(A), . . . ,sn(A), are the eigenvalues of the positive
semidefinite matrix |A| = (A∗A)1/2 arranged in decreasing order and repeated accord-
ing to multiplicity. A Hermitian matrix A ∈ Mn(C) is said to be positive semidefinite
if x∗Ax � 0 for all x ∈ Cn and it is called positive definite if x∗Ax > 0 for all x ∈ Cn

with x �= 0.
The spectral norm ||·|| , the Schatten p -norm ( p � 1), and the Ky Fan k -norms

||·||(k) (k = 1, . . . ,n) are, respectively, the norms defined on Mn(C) by ||A||= max{||Ax|| :

x ∈ Cn, ||x|| = 1}, ||A||p =

(
n
∑
j=1

(s j(A))p

)1/p

, and ||A||(k) =
k
∑
j=1

s j(A), k = 1, . . . ,n.

It is known that (see, e.g., [2, p. 76]) for every A ∈ Mn(C), we have

||A|| = s1(A) (1.1)

and for each k = 1, . . . ,n, we have

||A||(k) = max

∣∣∣∣∣
k

∑
j=1

y∗jAx j

∣∣∣∣∣ , (1.2)
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where the maximum is taken over all choices of orthonormal k -tuples x1, . . . ,xk and
y1, . . . ,yk. In fact, replacing each y j by z jy j for some suitable complex number z j of

modulus 1 for which z jy∗jAx j =
∣∣∣y∗jAx j

∣∣∣ , implies that the k -tuple z1y1, . . . ,zkyk is still

orthonormal, and so an identity equivalent the identity (1.2) can be seen as follows:

||A||(k) = max
k

∑
j=1

∣∣y∗jAx j
∣∣ , (1.3)

where the maximum is taken over all choices of orthonormal k -tuples x1, . . . ,xk and
y1, . . . ,yk.

A unitarily invariant norm |||·||| is a norm defined on Mn(C) that satisfies the
invariance property |||UAV |||= |||A||| for every A∈ Mn(C) and every unitary matrices
U,V ∈ Mn(C).

The direct sum of the matrices A,B ∈ Mn(C) is the matrix

A⊕B =
[

A 0
0 B

]
.

It is known that

|||A⊕A||| � |||B⊕B||| for every unitarily invariant norm (1.4)

is equivalent to

|||A||| � |||B||| for every unitarily invariant norm. (1.5)

Also,

|||A⊕B||| = |||A∗ ⊕B||| = |||B⊕A||| =
∣∣∣∣
∣∣∣∣
∣∣∣∣
[

0 B
A∗ 0

]∣∣∣∣
∣∣∣∣
∣∣∣∣ (1.6)

for every unitarily invariant norm. Typical examples of unitarily invariant norms are the
spectral norm, the Schatten p -norms, and the Ky Fan k -norms. For further properties
and examples of unitarily invariant norms, the reader is referred to [2], [4], or [5].

An elementary inequality (see, e.g., [3, p. 281]) for positive real numbers x,y,
asserts that

xy + yx > 1. (1.7)

It can be easily seen that the inequality (1.7) implies that if x and y are real numbers
such that x is positive and y is nonnegative, then

xy + yx � 1 (1.8)

with equality if and only if y = 0.
It has been shown in [1] that if x and y are two positive real numbers, then

xx + yy � 2e−e−1
. (1.9)

In this paper, we give further related inequalities for scalars and we extend some
of them for matrices. In Section 2, we give a refinement of the inequality (1.7) and
we introduce an inequality related to the inequality (1.9). In Section 3, we give matrix
versions for our scalar inequalities related to the inequality (1.9).
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2. Preliminary results

In this section, we give a refinement of the inequality (1.7) and we introduce an
inequality related to the inequality (1.9). First, we start with the following lemma,
which concerns Bernoulli’s inequality (see, e.g., [3, p. 34]).

LEMMA 2.1. Let x and y be real numbers, and assume that x > −1. Then the
following statements hold:

(a) If y � 1, then

(1+ x)y � 1+ yx

with equality if and only if x = 0 or y = 1.

(b) If 0 � y � 1, then

(1+ x)y � 1+ yx

with equality if and only if x = y = 0 or y = 1.

The following theorem is our main result in this section.

THEOREM 2.2. Let x and y be positive real numbers. Then

xy + yx � 1+min(x2,y2) (2.1)

with equality if and only if x = y = 1.

Proof. We prove the inequality (2.1) by dividing its proof into four cases:

Case 1: If x,y ∈ [1,∞), then x = 1+u and y = 1+ v for some u,v ∈ [0,∞) . Now

xy + yx = (1+u)y +(1+ v)x

� 1+ yu+1+ xv (by Lemma 2.1(a))

= 2+u(1+ v)+ v(1+u)
= 2+2uv+u+ v

� 1+(1+u)(1+ v)
= 1+ xy

� 1+min(x2,y2).
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Case 2: If x,y ∈ (0,1], then x = 1
1+u and y = 1

1+v for some u,v ∈ [0,∞). Now

xy + yx =
1

(1+u)y
+

1
(1+ v)x

� 1
1+ yu

+
1

1+ xv
(by Lemma 2.1(b))

=
1+ v

1+u+ v
+

1+u
1+u+ v

= 1+
1

1+u+ v

� 1+
1

(1+u)(1+ v)
= 1+ xy

� 1+min(x2,y2).

Case 3: If y ∈ (0,1) and x ∈ [1,2] , then it is clear that xy + yx � 1 + y2 = 1 +
min(x2,y2).

Case 4: If y ∈ (0,1) and x ∈ [2,∞) , then fix a number y ∈ (0,1) and define a
function fy on the interval [2,∞) by fy(x) = xy + yx . First, we show that this function
is increasing on [2,∞) , that is

f ′y(x) = yxy−1 + yx logy > 0 for x > 2

which is equivalent to showing that

1
−y logy

e(y−1) logx−(x−2) logy > 1 for x > 2. (2.2)

So, applying the logarithmic function to both sides of the inequality (2.2), our problem
reduces to showing that

− log(−y logy)+ (y−1) logx− (x−2) logy > 0 for x > 2.

Define a function gy on [1,∞) by

gy(x) = (y−1) logx− (x−2) logy.

Then g′y(x) = y−1
x − logy and g′′y (x) = 1−y

x2 > 0, which implies that gy is convex

on [1,∞) and so its minimum value occurs at x = y−1
logy . Hence, gy is increasing on[

y−1
logy ,∞

)
. Since y−1

logy ∈ (0,1) , it follows that gy is increasing on [2,∞). Therefore,

gy(x) � gy(2) = (y−1) log2 > − log2 > −1 for all x � 2, that is

(y−1) logx− (x−2) logy > −1 for x � 2. (2.3)

Adding − log(−y logy) to both sides of the inequality (2.3), we have

− log(−y logy)+ (y−1) logx− (x−2) logy > − log(−y logy)−1

� 0.
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This implies that f ′y(x) > 0 for x > 2, and so fy is increasing on [2,∞) . Consequently,

xy + yx = fy(x) � fy(2) = 2y + y2 > 1+ y2 = 1+min(x2,y2),

which completes the proof of the inequality.
The equality conditions follow by direct computations and by the equality condi-

tions of Lemma 2.1. �

REMARK 2.3. It can be easily seen that the inequality (2.1) implies that if x and
y are real numbers such that x is positive and y is nonnegative, then

xy + yx � 1+min(x2,y2) (2.4)

with equality if and only if x = y = 1 or y = 0.

Based on Theorem 2.2, we have the following result.

COROLLARY 2.4. Let x be positive a real number. Then xx � 1+x2

2 with equality
if and only if x = 1.

An application of Corollary 2.4 can be seen in the following result related to The-
orem 2.2.

COROLLARY 2.5. Let x and y be positive real numbers. Then

xx + yy � 1+
x2 + y2

2
(2.5)

with equality if and only if x = y = 1 . Consequently,

xx + yy � 1+ xy (2.6)

and
xx + yy � 1+min(x2,y2). (2.7)

Proof. Corollary 2.4 implies that xx � 1+x2

2 and yy � 1+y2

2 . The inequality (2.5)
follows by adding these inequalities. The inequalities (2.6) and (2.7) follow from the

inequality (2.5) and the fact that x2+y2

2 � xy � min(x2,y2) . �

We conclude this section with the following remark.

REMARK 2.6. It should be mentioned here that if x and y are positive real num-

bers such that x2+y2

2 � 0.4, then 1 + x2+y2

2 > 2e−e−1
. So, in this case, the inequality

(2.5) gives a better lower bound for xx + yy than that given in the inequality (1.9) .
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3. Matrix versions of the inequalities (2.1) and (2.5)

In this section, we derive inequalities for matrices that present generalizations of
the inequalities (2.1) and (2.5). Our results in this section can be considered as refine-
ments of some results given in [1]. First, we need the following lemma (see, e.g., [2, p.
62]).

LEMMA 3.1. Let A,B∈Mn(C) such that A and B are positive semidefinite. Then

s j(A+B) � sk (A)+ s j−k+n (B)

for j,k = 1, . . . ,n with k � j .

The following lemma is a direct consequence of the Weyl’s Monotonicity Theorem
(see, e.g., [2, p. 63]).

LEMMA 3.2. Let A,X ∈ Mn(C) such that A is positive semidefinite. Then

s j(X∗AX) � s2
j (X)sn (A)

for j = 1, . . . ,n.

Based on Theorem 2.2 and Lemma 3.1, we have the following result. This result
can be considered as a generalization of the inequality (2.1) in the setting of the singular
values of matrices.

THEOREM 3.3. Let A,B,X ,Y ∈ Mn(C) such that A and B are positive definite.
If a and b are real numbers such that 0 < a � sn (A) and 0 < b � sn (B) , then

s j(X∗AbX +Y ∗BaY ) � min(s2
k(X),s2

j−k+n(Y ))(1+min(a2,b2)) (3.1)

for j,k = 1, . . . ,n with k � j .

Proof. Since A and B are positive definite, we have

s j(X∗AbX +Y ∗BaY ) � sk(X∗AbX)+ s j−k+n(Y ∗BaY ) (by Lemma 3.1)

� s2
k(X)sn

(
Ab
)

+ s2
j−k+n(Y )sn (Ba) (by Lemma 3.2)

� min(s2
k(X),s2

j−k+n(Y ))(sb
n(A)+ sa

n(B))

� min(s2
k(X),s2

j−k+n(Y ))(ab +ba)

� min(s2
k(X),s2

j−k+n(Y ))(1+min(a2,b2))
(by Theorem 2.2)

for j = 1, . . . ,n with k � j . �
Applications of Theorem 3.3 can be seen in the following two results.
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COROLLARY 3.4. Let A,B,X ,Y ∈ Mn(C) such that A and B are positive defi-
nite. If a and b are real numbers such that 0 < a � sn (A) and 0 < b � sn (B) , then

X∗AbX +Y∗BaY � min(s2
n(X),s2

n(Y ))(1+min(a2,b2))In

and
Ab +Ba � (1+min(a2,b2))In. (3.2)

In particular,
Asn(B) +Bsn(A) � (1+min(s2

n(A),s2
n(B)))In

with equality if and only if A = B = In .

Proof. Since X∗AbX +Y∗BaY is positive semidefinite, we have

X∗AbX +Y∗BaY � sn(X∗AbX +Y ∗BaY )In
� min(s2

n(X),s2
n(Y ))(1+min(a2,b2)))In

(by the inequality (3.1)). �

COROLLARY 3.5. Let A,B,X ,Y ∈ Mn(C) such that A and B are positive defi-
nite. If a and b are real numbers such that a � ‖A‖ and b � ‖B‖ , then

s j

(
X∗A−b−1

X +Y ∗B−a−1
Y
)

� min(s2
k(X),s2

j−k+n(Y ))(1+min(a−2,b−2))

for j,k = 1, . . . ,n with k � j ,

X∗A−b−1
X +Y ∗B−a−1

Y � min(s2
n(X),s2

n(Y ))(1+min(a−2,b−2))In,

and
A−b−1

+B−a−1 � (1+min(a−2,b−2)In.

In particular,

A−‖B‖−1
+B−‖A‖−1

� (1+min(‖A‖−2 ,‖B‖−2)In

with equality if and only if A = B = In .

Proof. Since A and B are positive definite, the matrices A−1 and B−1 are positive
definite. Also, the conditions a � ‖A‖ and b � ‖B‖ are equivalent to the conditions
0 < a−1 � sn

(
A−1

)
and 0 < b−1 � sn

(
B−1

)
. So, the desired inequalities follow from

Theorem 3.3 and Corollary 3.4 by replacing A,B,a, and b by A−1, B−1, a−1, and
b−1, respectively. �

REMARK 3.6. In view of the proof of Theorem 3.3, a matrix version of the in-
equality (2.4) can be stated as follows: Let A,B ∈ Mn(C) such that A is positive defi-
nite and B is positive semidefinite. If a,b ∈ R with 0 < a � sn(A) and 0 � b � sn(B) ,
then

Ab +Ba � (1+min(a2,b2))In.
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In particular,
Asn(B) +Bsn(A) � (1+min(s2

n(A),s2
n(B)))In

with equality if and only if A = B = In or B = 0.

The following result presents a natural generalization of the inequality (2.1) in the
setting of unitarily invariant norms.

THEOREM 3.7. Let A,B,X ∈Mn(C) such that A,B are positive definite and X is
Hermitian. If a and b are real numbers such that 0 < a � sn (A) and 0 < b � sn (B) ,
then ∣∣∣∣∣∣∣∣∣AbX +XBa

∣∣∣∣∣∣∣∣∣� (1+min(a2,b2)) |||X ||| (3.3)

for every unitarily invariant norm.

Proof. Since X is Hermitian, it follows that there is an orthonormal basis {e j} of
Cn consisting of eigenvectors corresponding to the eigenvalues {λ j(X)} arranged in
such a way that |λ1(X)| � · · · � |λn(X)| . Since s j(X) =

∣∣λ j(X)
∣∣ for j = 1, . . . ,n, we

have

∣∣∣∣∣∣AbX +XBa
∣∣∣∣∣∣

(k)
�

k

∑
j=1

∣∣∣e∗j (AbX +XBa
)

e j

∣∣∣ (by the identity (1.3))

=
k

∑
j=1

∣∣∣e∗jAbXe j + e∗jXBae j

∣∣∣
=

k

∑
j=1

∣∣∣e∗jAbXe j +(Xej)∗Bae j

∣∣∣
=

k

∑
j=1

∣∣∣λ j(X)e∗j(A
b +Ba)e j

∣∣∣
=

k

∑
j=1

∣∣λ j(X)
∣∣ (e∗j(Ab +Ba)e j

)

=
k

∑
j=1

s j(X)
(
e∗j(A

b +Ba)e j

)

� (1+min(a2,b2))
k

∑
j=1

s j(X) (by the inequality (3.2))

= (1+min(a2,b2)) ||X ||(k)
for k = 1, . . . ,n. Now the inequality (3.3) follows by the Fan Dominance Theorem (see,
e.g., [2, p. 93]). �

An application of Theorem 3.7 can be seen in the following result in which the
matrix X is not necessrarily Hermitian.
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COROLLARY 3.8. Let A,B,X ∈ Mn(C) such that A and B are positive definite.
If a and b are real numbers such that 0 < a � sn (A) and 0 < b � sn (B) , then∣∣∣∣∣∣∣∣∣(AbX +XBa)⊕ (XAb +BaX)

∣∣∣∣∣∣∣∣∣� (1+min(a2,b2)) |||X ⊕X ||| (3.4)

for every unitarily invariant norm. In particular,

|||AaX +XAa||| � (1+a2) |||X ||| (3.5)

for every unitarily invariant norm.

Proof. Let Ã =
[

A 0
0 A

]
, B̃ =

[
B 0
0 B

]
, and X̃ =

[
0 X
X∗ 0

]
. Then Ã and B̃ are pos-

itive definite and X̃ is Hermitian. Also, 0 < a � sn
(
Ã
)

and 0 < b � sn
(
B̃
)
.

It follows, from Theorem 3.7, that∣∣∣∣∣∣∣∣∣(AbX +XBa)⊕ (XAb +BaX)
∣∣∣∣∣∣∣∣∣

=
∣∣∣∣∣∣∣∣∣(XAb +BaX)∗ ⊕ (AbX +XBa)

∣∣∣∣∣∣∣∣∣ (by the identities (1.6))

=
∣∣∣∣∣∣∣∣∣(AbX∗ +X∗Ba)⊕ (AbX +XBa)

∣∣∣∣∣∣∣∣∣
=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[

AbX∗ +X∗Ba 0
0 AbX +XBa

]∣∣∣∣
∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣
[

0 AbX +XBa

AbX∗ +X∗Ba 0

]∣∣∣∣
∣∣∣∣
∣∣∣∣ (by the identities (1.6))

=
∣∣∣∣∣∣∣∣∣ÃbX̃ + X̃B̃a

∣∣∣∣∣∣∣∣∣
� (1+min(a2,b2))

∣∣∣∣∣∣X̃∣∣∣∣∣∣ (by Theorem 3.7)

= (1+min(a2,b2))
∣∣∣∣
∣∣∣∣
∣∣∣∣
[

0 X
X∗ 0

]∣∣∣∣
∣∣∣∣
∣∣∣∣

= (1+min(a2,b2)) |||X ⊕X ||| ,
which proves the inequality (3.4).

For the particular case, in the inequality (3.4), replacing B and b by A and a ,
respectively, we have

|||(AaX +XAa)⊕ (AaX +XAa)||| � (1+a2) |||X ⊕X ||| (3.6)

for every unitarily invariant norm. So, the inequality (3.5) follows from the inequality
(3.6) in view of the equivalence of the inequalities (1.4) and (1.5). �

In the rest of this section, we give generalizations of the inequality (2.5). The
proofs of our generalized results are similar to those given for the generalizations of the
inequality (2.1). We start with the following generalization of the inequality (2.5) in the
setting of the singular values of matrices.
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THEOREM 3.9. Let A,B,X ,Y ∈ Mn(C) such that A and B are positive definite.
If a and b are real numbers such that 0 < a � sn (A) and 0 < b � sn (B) , then

s j(X∗AaX +Y∗BbY ) � min(s2
k(X),s2

j−k+n(Y ))
(

1+
a2 +b2

2

)

for j,k = 1, . . . ,n with k � j for j = 1, . . . ,n.

Applications of Theorem 3.9 can be seen as follows.

COROLLARY 3.10. Let A,B,X ,Y ∈ Mn(C) such that A and B are positive defi-
nite. If a and b are real numbers such that 0 < a � sn (A) and 0 < b � sn (B) , then

X∗AaX +Y∗BbY � min(s2
n(X),s2

n(Y ))
(

1+
a2 +b2

2

)
In

and

Aa +Bb �
(

1+
a2 +b2

2

)
In.

In particular,

Asn(A) +Bsn(B) �
(

1+
s2
n(A)+ s2

n(B)
2

)
In

with equality if and only if A = B = In .

COROLLARY 3.11. Let A,B,X ,Y ∈ Mn(C) such that A and B are positive defi-
nite. If a and b are real numbers such that a � ‖A‖ and b � ‖B‖ , then

s j

(
X∗A−a−1

X +Y∗B−b−1
Y
)

� min(s2
k(X),s2

j−k+n(Y ))
(

1+
a−2 +b−2

2

)

for j,k = 1, . . . ,n with k � j and

X∗A−a−1
X +Y ∗B−b−1

Y � min(s2
n(X),s2

n(Y ))
(

1+
a−2 +b−2

2

)
In.

In particular,

A−‖A‖−1
+B−‖B‖−1

�
(

1+
‖A‖−2 +‖B‖−2

2

)
In

with equality if and only if A = B = In .

Another generalization of the inequality (2.5) in the setting of unitarily invariant
norms can be stated as follows.

THEOREM 3.12. Let A,B,X ∈ Mn(C) such that A,B are positive definite and X
is Hermitian. If a and b are real numbers such that 0 < a � sn (A) and 0 < b � sn (B) ,
then ∣∣∣∣∣∣∣∣∣AaX +XBb

∣∣∣∣∣∣∣∣∣� (1+
a2 +b2

2

)
|||X |||

for every unitarily invariant norm.
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COROLLARY 3.13. Let A,B,X ∈ Mn(C) such that A and B are positive definite.
If a and b are real numbers such that 0 < a � sn (A) and 0 < b � sn (B) , then

∣∣∣∣∣∣∣∣∣(AaX +XBb)⊕ (XAa +BbX)
∣∣∣∣∣∣∣∣∣� (1+

a2 +b2

2

)
|||X ⊕X |||

for every unitarily invariant norm.
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