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GENERALIZED WINTGEN INEQUALITY FOR LAGRANGIAN

SUBMANIFOLDS IN QUATERNIONIC SPACE FORMS

GABRIEL MACSIM ∗ AND VALENTIN GHIŞOIU

(Communicated by J. Pečarić)

Abstract. In this paper, we obtain the generalized Wintgen inequality, also known as the DDVV
inequality, in the case of a Lagrangian submanifold in quaternionic space forms. We also give a
proof for the DDVV inequality in the case of slant submanifolds of a quaternionic space form.

1. Introduction

If M̃ is a 4m-dimensional manifold with the Riemannian metric g , then M̃ is
called quaternion Kaehler manifold if there exist a 3-dimensional vector bundle σ of
type (1,1) with local basis of almost Hermitian structures J1,J2,J3 such that

Jα ◦ Jα+1 = −Jα+1 ◦ Jα = Jα+2, J2
α = − Id,

where α,α +1,α +2 are taken modulo 3.
In this case, σ is called the almost quaternionic structures on M̃ , {J1,J2,J3} is

the canonical local basis of σ . So, (M̃,σ) is called an almost quaternionic manifold,
with dimM̃ = 4m, m � 1.

A Riemannian metric g̃ on M̃ is said to be adapted to the almost quaternionic
structure σ if it satisfies

g̃(JαX ,JαY ) = g̃(X ,Y ), ∀α = 1,3.

(M̃,σ , g̃) is called almost quaternionic Hermitian manifold.
If σ is parallel with respect to ∇̃ of g̃ , then (M̃,σ , g̃) is called quaternionic

Kaehler manifold. Equivalently, locally defined 1-forms ω1,ω2,ω3 exist such that
∀α = 1,3, ∇̃XJα = ωα+2(X)Jα+1−ωα+1Jα+2, where α,α +1,α +2 are taken mod-
ulo 3.

REMARK 1. Any quaternionicKaehler manifold is an Einstein manifold (dimM̃ �
4).
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Let (M̃,σ , g̃) be a quaternionic Kaehler manifold and X be a non-null vector
on M̃ . Then the 4-plane spanned by {X ,J1X ,J2X ,J3X} denoted by Q(X) is called
a quaternionic 4-plane. Any 2-plane in Q(X) is called a quaternionic plane. The
sectional curvature of a quaternionic plane is called a quaternionic sectional curvature.

A quaternionic Kaehler manifold is called a quaternionic space form if its quater-
nionic sectional curvature is constant, say c . So, (M̃,σ , g̃) is a quaternionic space form
if and only if

R̃(X ,Y )Z =
c
4

{
g̃(Y,Z)X − g̃(X ,Z)Y +

3

∑
α=1

[g̃(Z,JαY )JαX

−g̃(Z,JαX)JαY +2g̃(X ,JαY )JαZ]
}

,

∀X ,Y,Z ∈ Γ(TM̃).
For a submanifold M of M̃ , if {e1, . . . ,en} is an orthonormal basis of TpM ,

{en+1, . . . ,e4m} an orthonormal basis of T⊥
p M, p ∈ M, the mean curvature vector is

given by

H(p) =
1
n

n

∑
i=1

h(ei,ei).

We denote by

hr
i j = g(h(ei,e j),er), i, j = 1,n, r = n+1,4m.

‖h‖2(p) =
n

∑
i, j=1

g(h(ei,e j),h(ei,e j)).

For a quaternionic Kaehler manifold, we have

∇̃XJα =
3

∑
β=1

Qαβ (X)Jβ , α = 1,3, ∀X ∈ Γ(TM̃),

where Qαβ are certain 1-forms locally defined on M̃ such that Qαβ +Qβ α = 0.

A submanifold M of a quaternionic Kähler manifold (M̃,σ , g̃) is said to be a slant
submanifold if for each non-zero vector X tangent to M at p , the angle θ (X) between
Jα(X) and TpM , α ∈ {1,2,3} is constant, i.e. it does not depend on the choice of
p∈M and X ∈ TpM . In this case, the slant submanifolds with θ = 0 are called quater-
nionic submanifolds and those with θ = π

2 are called totally real submanifolds. A slant
submanifold of a quaternionic Kähler manifold is said to be proper (or θ -slant proper)
if it is neither quaternionic nor totally real. An n -dimensional totally real submanifold
of a quaternionic space form M̃4m(c) is said to be a Lagrangian submanifold if n = m .

2. Wintgen inequality

In 1979, P. Wintgen [9] proved that the Gauss curvature K , the squared mean
curvature ‖H‖2 and the normal curvature K⊥ of any surface M2 in E4 satisfy the
inequality

K � ‖H‖2−K⊥.
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The equality holds if and only if the ellipse of curvature of M2 in E4 is a circle.
An extension of the Wintgen inequality was given later by B. Rouxel [7] and by

I. V. Guadalupe and L. Rodriguez [2] independently for surfaces M2 of arbitrary codi-
mension m in real space forms M̃2+m(c)

K � ‖H‖2−K⊥+ c.

In 2004, A. Mihai [5] found a corresponding inequality for totally real surfaces in
n -dimensional complex space forms. Also, the equality case was studied and the author
gived a non-trivial example of a totally real surface satisfying the equality case.

The conjecture of Wintgen inequality which is also known as the DDVV conjecture
was formulated in 1999 by P. J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken [8].

CONJECTURE. Let f : Mn → M̃n+m be an isometric immersion, where M̃n+m is
a real space form of constant sectional curvature c. Then

ρ � ‖H‖2−ρ⊥+ c,

where ρ is the normalized scalar curvature and ρ⊥ is the normalized normal scalar
curvature.

Denoting by K and R⊥ the sectional curvature function and the normal curvature
tensor on Mn , respectively, the normalized scalar curvature and the normalized normal
scalar curvature are given by

ρ =
2τ

n(n−1)
=

2
n(n−1) ∑

1�i< j�n

K(ei∧ e j),

ρ⊥ =
2τ⊥

n(n−1)
=

2
n(n−1)

√
∑

1�i< j�n
∑

1�α<β�n

(
R⊥(ei,e j,ξα ,ξβ )

)2
,

where τ is the scalar curvature.
This conjecture was proven by the authors for submanifolds Mn of arbitrary di-

mension n � 2 and codimension 2 in real space forms M̃n+2(c) of constant sectional
curvature c and a detailed characterization of the equality case in terms of the shape
operators of Mn in M̃n+2(c) was given.

T. Choi and Z. Lu [1] proved that this conjecture is true for all 3-dimensional
submanifolds M3 of arbitrary codimension m � 2 in M̃3+m(c) and give also a charac-
terization for the equality case.

Other extensions of the Wintgen inequality for invariant submanifolds in Kähler,
nearly Kähler and Sasakian spaces have been studied by P. J. De Smet, F. Dillen, J.
Fastenakels, A. Mihai, J. Van der Veken, L. Verstraelen and L. Vrancken.

Recently, Z. Lu and independently J. Ge and Z. Tang finally settled the general
case of the DDVV-conjecture.

THEOREM 1. The Wintgen inequality

ρ � ‖H‖2−ρ⊥+ c,
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holds for every submanifold Mn in any real space form M̃n+m(c) , n � 2 , m � 2.

The equality case holds identically if and only if, with respect to suitable orthonor-
mal frames {ei} and {ξα} , the shape operators of Mn in M̃n+m(c) take the forms

Aξ1
=

⎛
⎜⎜⎜⎜⎜⎝

λ1 μ 0 . . . 0
μ λ1 0 . . . 0
0 0 λ1 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ1

⎞
⎟⎟⎟⎟⎟⎠ ,

Aξ2
=

⎛
⎜⎜⎜⎜⎜⎝

λ2 + μ 0 0 . . . 0
0 λ2− μ 0 . . . 0
0 0 λ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ2

⎞
⎟⎟⎟⎟⎟⎠ ,

Aξ3
=

⎛
⎜⎜⎜⎜⎜⎝

λ3 0 0 . . . 0
0 λ3 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ3

⎞
⎟⎟⎟⎟⎟⎠ ,

Aξ4
= . . . = Aξm = 0, where λ1,λ2,λ3 and μ are real functions on Mn .

Submanifolds satisfying the equality in the Wintgen inequality are called Wintgen
ideal submanifolds [3].

3. Generalized Wintgen inequality for Lagrangian submanifolds in quaternionic
space forms

I. Mihai [6] proved the following generalized Wintgen inequality for Lagrangian
submanifolds in complex space forms.

THEOREM 2. Let Mn a Lagrangian submanifold in a complex space form M̃m(4c) .
Then

(ρ⊥)2 � (‖H‖2−ρ + c)2 +
4

n(n−1)
(ρ − c)c+

2c2

n(n−1)
.

In this paper we prove a similar inequality for Lagrangian submanifolds of quater-
nionic space forms.

Let Mn be an n -dimensional totally real submanifold of an 4m-dimensional qua-
ternionic space form M̃4m(4c) and {e1, . . . ,en} an orthonormal frame on Mn and
{ξn+1, . . . ,ξ4m} an orthonormal frame in the normal bundle T⊥Mn , respectively.
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The scalar normal curvature of Mn is defined by

KN =
1
4

4m

∑
r,s=n+1

Trace[Ar,As]2. (1)

Then the normalized scalar normal curvature is given by ρN = 2
√

KN
n(n−1) .

From (1) we get

KN =
1
2 ∑

1�r<s�4m−n

Trace[Ar,As]2 = ∑
1�r<s�4m−n

∑
1�i< j�n

(g([Ar,As]ei,e j))
2 (2)

Denoting by hr
i j = g(h(ei,e j),ξr), i, j = 1,n, r = 1,4m−n , we have

KN = ∑
1�r<s�4m−n

∑
1�i< j�n

(
n

∑
k=1

(hr
jkh

s
ik −hr

ikh
s
jk)

)2

. (3)

The main result of this section is the following

THEOREM 3. (Main) Let Mn be a Lagrangian submanifold of a quaternionic
space form M̃4n(4c) . Then

(
ρ⊥
)2

�
(‖H‖2−ρ + c

)2
+

6
n(n−1)

c2 +
4

n(n−1)
c(ρ − c). (4)

First we prove the following lemma

LEMMA 1. Let Mn be a totally real submanifold of an 4m-dimensional quater-
nionic space form M̃4m(4c) . Then we have

‖H‖2−ρN � ρ − c. (5)

The equality case holds identically if and only if, with respect to suitable orthonor-
mal frames {ei} and {ξα} , the shape operators of Mn in M̃4m(4c) take the forms

Aξ1
=

⎛
⎜⎜⎜⎜⎜⎝

λ1 μ 0 . . . 0
μ λ1 0 . . . 0
0 0 λ1 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ1

⎞
⎟⎟⎟⎟⎟⎠ ,

Aξ2
=

⎛
⎜⎜⎜⎜⎜⎝

λ2 + μ 0 0 . . . 0
0 λ2− μ 0 . . . 0
0 0 λ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ2

⎞
⎟⎟⎟⎟⎟⎠ ,
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Aξ3
=

⎛
⎜⎜⎜⎜⎜⎝

λ3 0 0 . . . 0
0 λ3 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ3

⎞
⎟⎟⎟⎟⎟⎠ ,

Aξ4
= . . . = Aξ4m−n

= 0, where λ1,λ2,λ3 and μ are real functions on Mn .

Proof of Lemma (1). First, we have

n2‖H‖2 =
4m−n

∑
r=1

(
n

∑
i=1

hr
ii

)2

(6)

=
1

n−1

4m−n

∑
r=1

∑
1�i< j�n

(hr
ii−hr

j j)
2 +

2n
n−1

4m−n

∑
r=1

∑
1�i< j�n

hr
iih

r
j j.

Using the following inequality [4]

4m−n

∑
r=1

∑
1�i< j�n

(hr
ii−hr

j j)
2 +2n

4m−n

∑
r=1

∑
1�i< j�n

(hr
i j)

2 (7)

� 2n

⎡
⎣ ∑

1�r<s�4m−n
∑

1�i< j�n

(
n

∑
k=1

(hr
jkh

s
ik −hr

ikh
s
jk)

)2
⎤
⎦

1
2

.

Using the relations (6), (7) and (2), we obtain

4m−n

∑
r=1

∑
1�i< j�n

(hr
ii −hr

j j)
2 +2n

4m−n

∑
r=1

∑
1�i< j�n

(hr
i j)

2 � 2n
√

KN = n2(n−1)ρN.

From this and using the relations (3) and (6) we have

n2‖H‖2−n2ρN =
1

n−1

4m−n

∑
r=1

∑
1�i< j�n

(hr
ii−hr

j j)
2 +

2n
n−1

4m−n

∑
r=1

∑
1�i< j�n

hr
iih

r
j j

− 2n
n−1

⎡
⎣ ∑

1�r<s�4m−n
∑

1�i< j�n

(
n

∑
k=1

(hr
jkh

s
ikh

r
ikh

s
jk)

)2
⎤
⎦

1
2

=
1

n−1

4m−n

∑
r=1

∑
1�i< j�n

(hr
ii−hr

j j)
2+

2n
n−1

4m−n

∑
r=1

∑
1�i< j�n

hr
iih

r
j j−

2n
n−1

√
KN

=
1

n−1

(
4m−n

∑
r=1

∑
1�i< j�n

(hr
ii −hr

j j)
2 +2n

4m−n

∑
r=1

∑
1�i< j�n

hr
iih

r
j j −2n

√
KN

)

�
[
2n
√

KN −2n
4m−n

∑
r=1

(
hr

i j

)2 +2n
4m−n

∑
r=1

∑
1�i< j�n

hr
iih

r
j j −2n

√
KN

]
.
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This gives us the relation

n2‖H‖2−n2ρN � 2n
n−1

4m−n

∑
r=1

∑
1�i< j�n

[hr
iih

r
j j − (hr

i j)
2]. (8)

From the Gauss equation we have

τ =
n(n−1)

2
c+

4m−n

∑
r=1

∑
1�i< j�n

[hr
iih

r
j j − (hr

i j)
2]. (9)

From the relations (8) and (9) we get

n2‖H‖2−n2ρN � 2n
n−1

[
τ − n(n−1)

2
c

]
.

This implies

n2‖H‖2−n2ρN � 2nτ
n−1

−n2c,

so

‖H‖2−ρN � 2τ
n(n−1)

− c,

which gives us
‖H‖2−ρN � ρ − c. �

Proof of Theorem (3). Choosing {e1, . . . ,en} an orthonormal frame of the La-
grangian submanifold Mn , then {ξ1 = J1e1, . . . ,ξn = J1en;ξn+1 = J2e1, . . . ,ξ2n = J2en;
ξ2n+1 = J3e2, . . . ,ξ3n = J3en;ξ3n+1, . . . ,ξ4m} become an orthonormal frame of T⊥Mn .

For X = ei,Y = e j in TpM and i, j,k, l = 1,n, β ,γ ∈ {1,2,3} we have

R̃(ei,e j,Jβ ek,Jβ el) = c
3

∑
α=1

[
g(Jαei,Jγel)g(Jαe j,Jβ ek)−g(Jαei,Jβ ek)g(Jαe j,Jγel)

]
.

(10)
This gives us

R̃(ei,e j,Jβ ek,Jβ el) = c
3

∑
α=1

[
δαγδilδαβ δ jk − δαβ δikδαγδ jl

]
, (11)

from which we get

R̃(ei,e j,Jβ ek,Jβ el) = c
3

∑
α=1

δαβ δαγ (δilδ jk − δikδ jl). (12)

From this relation and the Ricci equation, we have

g(R⊥(ei,e j)Jβ ek,Jγel) = c
3

∑
α=1

δαβ δαγ(δilδ jk − δikδ jl)+g([Ar,As]ei,e j), (13)
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where Ar = AJβ ek , As = AJγ el .
This relation gives us

g(R⊥(ei,e j)Jβ ek,Jγel) = cδβ γ(δilδ jk − δikδ jl)+g([Ar,As]ei,e j). (14)

From this, we get

(
τ⊥
)2

=
3

∑
β ,γ=1

∑
1�k<l�n

∑
1�i< j�n

g2(R⊥(ei,e j)Jβ ek,Jγel) (15)

=
3

∑
β ,γ=1

∑
1�k<l�n

∑
1�i< j�n

[
cδβ γ(δilδ jk − δikδ jl)+g([AJβ ek ,AJγ el ]ei,e j)

]2

= KN + c2
3

∑
β ,γ=1

∑
1�k<l�n

∑
1�i< j�n

δ 2
β γ(δilδ jk − δikδ jl)2

−2c
3

∑
β ,γ=1

∑
1�k<l�n

∑
1�i< j�n

δβ γ(δilδ jk − δikδ jl)g([AJβ ek ,AJγ el ]ei,e j).

From (15), we obtain

(
τ⊥
)2

=
n2(n−1)2

4
ρ2

N +
3n(n−1)

2
c2 − c‖h‖2 + cn2‖H‖2. (16)

From (9), we have

2τ = n(n−1)c+n2‖H‖2−‖h‖2,

therefore
n2‖H‖2−‖h‖2 = 2τ −n(n−1)c,

which implies
n2‖H‖2−‖h‖2 = n(n−1)(ρ − c) . (17)

Using the relations (16) and (17), we get

(
τ⊥
)2

=
n2(n−1)2

4
ρ2

N +
3n(n−1)

2
c2 + cn(n−1)(ρ− c). (18)

The relation (18) implies that

n2(n−1)2

4

(
ρ⊥
)2

=
n2(n−1)2

4
ρ2

N +
3n(n−1)c2

2
+n(n−1)c(ρ − c) .

This gives us

(
ρ⊥
)2

= ρ2
N +

4
n(n−1)

c(ρ − c)+
6

n(n−1)
c2. (19)
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Using lemma (1), we get

ρN � ‖H‖2−ρ + c. (20)

Thus, from (19) and (20), we obtain(
ρ⊥
)2

�
(‖H‖2−ρ + c

)2
+

4
n(n−1)

c(ρ − c)+
6

n(n−1)
c2, (21)

which implies the relation (4). �

4. Slant submanifolds in quaternionic space forms

We recall the definition of a slant submanifold in a quaternionic space form.

DEFINITION 1. A submanifold M of a quaternionic Kähler manifold (M̃,σ , g̃) is
said to be a slant submanifold if for each non-zero vector X tangent to M at p , the
angle θ (X) between Jα(X) and TpM , α ∈ {1,2,3} is constant, i.e. it does not depend
on the choice of p ∈ M and X ∈ TpM .

THEOREM 4. Let Mn be an n-dimensional θ -slant submanifold of an 4m-dimen-
sional quaternionic space form M̃4m(4c) . Then, we have

‖H‖2 � ρ + ρN − c− 9c
n−1

cos2 θ . (22)

Proof. Let Mn be a θ -slant submanifold of a quaternionic space form M̃4m(4c) ,
{e1, . . . ,en} an orthonormal basis for TpM, p∈M and {ξ1, . . . ,ξ4m−n} an orthonormal
basis for T⊥

p Mn .
The Gauss equation is

R(X ,Y,Z,W ) (23)

= c{g(X ,W)g(Y,Z)−g(X ,Z)g(Y,W)

+
3

∑
α=1

[g(PαY,Z)g(PαX ,W )−g(PαX ,Z)g(PαY,W )+2g(X ,PαY )g(Z,PαW )]

+g(h(X ,W),h(Y,Z))−g(h(X ,Z),h(Y,W))

∀X ,Y,Z,W ∈ Γ(TMn).
The Ricci equation is given by the relation

R⊥(X ,Y,ξ ,η) (24)

= c

[
3

∑
α=1

g(JαX ,η)g(JαY,ξ )−g(JαX ,ξ )g(JαY,η)+2g(JαX ,Y )g(Jα ξ ,η)

]

−g([Aξ ,Aη ]X ,Y ), ∀X ,Y ∈ Γ(TMn), ξ ,η ∈ Γ(T⊥Mn).
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In the same way as in the proof of (1), we find

n2‖H‖2−n2ρN � 2n
n−1

4m−n

∑
r=1

∑
1�i< j�n

[
hr

iih
r
i j − (hr

i j)
2] . (25)

From the relation (23), taking X = Z = ei and Y = W = e j , we obtain

∑
1�i< j�n

R̃(ei,e j,ei,e j) = c

[
·n(n−1)

2
+

3
2

3

∑
β=1

n

∑
i, j=1

g2(Pβ ei,e j)

]
, (26)

where, for each X ∈ TpM, p ∈ M , we have JαX = PαX + FαX , Pα and Fα being
the tangential and the normal projections of Jα on TpM , respectively on T⊥

p M , α ∈
{1,2,3} .

For p ∈ M , we choose an orthonormal basis {e1, . . . ,en} of TpM , such that e2 =
1

cosθ P1e1 , e3 = 1
cosθ P2e1 , e4 = 1

cosθ P3e1, . . . ,e4k−3 , e4k−2 = 1
cosθ P1e4k−3 , e4k−1 =

1
cosθ P2e4k−3 , e4k = 1

cosθ P3e4k−3 , with 4k = n and using the fact that

g2(Pβ ei,ei+1) = g2(Pβ ei+1,ei) = cos2 θ , (27)

for i = 1,5,9, . . . ,4k−3 and
g(Pβei,e j) = 0, (28)

for (i, j) not in the cases mentioned above.
Thus, we get

τ = c

[
n(n−1)

2
+

9n
2

cos2 θ
]
+

4m−n

∑
r=1

∑
1�i< j�n

[
hr

iih
r
i j − (hr

i j)
2] . (29)

From (25) and (29) we get

n2‖H‖2−n2ρN � 2n
n−1

{
τ − c

[
n(n−1)

2
+

9n
2

cos2 θ
]}

.

This gives us

‖H‖2−ρN � 2
n(n−1)

{
τ − c

[
n(n−1)

2
+

9n
2

cos2 θ
]}

,

thus

‖H‖2−ρN � ρ − c− 9c
n−1

cos2 θ .

This implies

‖H‖2 � ρN + ρ − c− 9c
n−1

cos2 θ . �

REMARK 2. The result obtained in (4) taking M as a totally real submanifold is
identic with (5) from lemma (1).
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[9] P. WINTGEN, Sur l’inégalité de Chen-Willmore, C. R. Acad. Sci., Paris Sér. A-B, 288, (1979), A993–

A995.

(Received October 26, 2018) Gabriel Macsim
Doctoral School of Mathematics

Faculty of Mathematics and Computer Science, University of Bucharest
Academiei Str. 14, 010014 Bucharest, Romania

e-mail: gabi macsim@yahoo.com

Valentin Ghişoiu
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