
Mathematical
Inequalities

& Applications

Volume 22, Number 3 (2019), 815–823 doi:10.7153/mia-2019-22-56

REMARKS ON TWO DETERMINANTAL INEQUALITIES

TIN-YAU TAM AND PINGPING ZHANG ∗

(Communicated by I. Perić)

Abstract. Denote by Pn the set of n×n positive definite matrices. LetD = D1⊕ . . .⊕Dk , where
D1 ∈ Pn1 , . . . ,Dk ∈ Pnk with n1 + · · ·+ nk = n . Partition C ∈ Pn according to (n1, . . . ,nk) so
that DiagC = C1 ⊕ . . .⊕Ck . For any p � 0 , we have

det(In1 +(C−1
1 D1)p) · · ·det(Ink +(C−1

k Dk)p) � det(In +(C−1D)p).

This is a generalization of a determinantal inequality of Matic [6, Theorem 1.1]. In addition, we
obtain a weak majorization result which is complementary to a determinantal inequality of Choi
[2, Theorem 2] and ask a weak log majorization open question.

1. Introduction

Denote by Cn×n the set of n× n complex matrices and Pn ⊂ Cn×n the set of
n×n positive definite matrices. For A ∈ Cn×n , we denote by A∗ and |A|= (A∗A)

1
2 the

conjugate transpose and the positive semidefinite part of A , respectively. Given n× n
Hermitian matrices A and B , A � B means that B−A is positive semidefinite.

For x =(x1,x2, . . . ,xn) , y = (y1,y2, . . . ,yn)∈R
n , let x↓ = (x[1],x[2], . . . ,x[n]) denote

a rearrangement of the components of x such that x[1] � x[2] � · · · � x[n] . The notation
x � y means that x[i] � y[i], i = 1, . . . ,n. We say that x is weakly majorized by y ,

denoted by x≺w y , if ∑k
j=1 x[ j] � ∑k

j=1 y[ j] for all 1 � k � n . We say that x is majorized
by y , denoted by x ≺ y , if x ≺w y and ∑n

j=1 x j = ∑n
j=1 y j .

Let R+ denote the set of all positive real numbers and Rn
+ = (R+)n . Given x,y ∈

(R+)n , we say that x is weakly log-majorized by y , written as x≺w log y , if ∏k
i=1 x[i] �

∏k
i=1 y[i] , for k = 1, . . . ,n ; x is log-majorized by y , denoted by x ≺log y , if x ≺w log y

and ∏n
j=1 x j = ∏n

j=1 y j .
Let A∈ Pn . Denote by λ (A) = (λ1(A), . . . ,λn(A)) ∈Rn

+ the vector of eigenvalues
of A and we may arrange the eigenvalues in non-increasing order λ1(A) � · · ·� λn(A) .

Matic [6, Theorem 1.1] proved the following determinantal inequality. Zhang [8]
and Choi [2] gave two different proofs, respectively. We state the theorem using Choi’s
version.
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THEOREM 1. (Matic [6]) Let C∈Pn and D = D1⊕ . . .⊕Dk , where D1 ∈Pn1 , . . . ,
Dk ∈ Pnk with n1 + · · ·+nk = n. Partition C according to (n1, . . . ,nk) so that DiagC =
C1⊕ . . .⊕Ck in which DiagC is the main block diagonal of C . Then

det(In1 +C−1
1 D1) · · ·det(Ink +C−1

k Dk) � det(In +C−1D). (1)

In this paper we generalize (1) to the power of p ( p � 0) as follows.

det(In1 +(C−1
1 D1)p) · · ·det(Ink +(C−1

k Dk)p) � det(In +(C−1D)p), p � 0, (2)

where (C−1
i Di)p,1 � i � k are well-defined because the eigenvalues of a product of

positive matrices are positive real numbers. We will show by an example that (2) is not
true when p < 0.

By looking at (2) as a generalization of (1), one might ask whether the following
two possible generalizations of (1) are true or not:

det(In1 + |C−1
1 D1|p) · · ·det(Ink + |C−1

k Dk|p) � det(In + |C−1D|p), p � 0, (3)

and
det(In1 +C−p

1 Dp
1) · · ·det(Ink +C−p

k Dp
k ) � det(In +C−pDp), p � 0. (4)

We will show that both answers are negative.
Choi [2, Theorem 2] obtained the following determinantal inequality:

THEOREM 2. (Choi [2]) Let Ai ∈ Pn, i = 1, . . . ,m, and DiagAi = A(1)
i ⊕·· ·⊕A(k)

i ,

where A( j)
i ∈ Pn j for i = 1, . . . ,m, j = 1, . . . ,k . Then

det

(
m

∑
i=1

(A(1)
i )−1

)
· · ·det

(
m

∑
i=1

(A(k)
i )−1

)
� det

(
m

∑
i=1

A−1
i

)
. (5)

We will present a weak majorization inequality which is complementary to (5) and pose
a weak log majorization open problem.

2. Some lemmas

In this section, we present some lemmas which are useful in the sequel.

LEMMA 1. ([4, p. 308]) If H and H are n×n Hermitian matrices of the form

H =
[
H11 H12

H21 H22

]
, H =

[
H11 0
0 H22

]
,

where H11 and H22 are square matrices, then

λ (H) ≺ λ (H).
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LEMMA 2. ([4, p. 165]) For any convex function f : R → R , if x ≺ y, where
x = (x1,x2, . . . ,xn),y = (y1,y2, . . . ,yn) ∈ Rn , then

( f (x1), f (x2), . . . , f (xn)) ≺w ( f (y1), f (y2), . . . , f (yn)).

LEMMA 3. ([4, p. 167]) For any increasing convex function f : R→R . If x≺w y,
where x = (x1,x2, . . . ,xn),y = (y1,y2, . . . ,yn) ∈ Rn , then

( f (x1), f (x2), . . . , f (xn)) ≺w ( f (y1), f (y2), . . . , f (yn)).

LEMMA 4. ([3, p. 441]) Let P =
[

A B
B∗ C

]
∈ Pn , where A and C are square ma-

trices. Then P can be factorized as P = T ∗T with T =
[
X Y
0 Z

]
being conformally

partitioned as P.

LEMMA 5. ([5, Theorem 3]) Let T =
[
X Y
0 Z

]
∈ Cn×n , where X ∈ Cr×r , Z ∈

C(n−r)×(n−r) . Then for any p > 0

det(Ir + |X |p) ·det(In−r + |Z|p) � det(In + |T |p). (6)

Equality holds in (6) if and only if Y = 0 .

LEMMA 6. ([3, p. 18]) Let A ∈ Cn×n , D ∈ Cm×m , B ∈ Cn×m , and C ∈ Cm×n .
Assume that A and SA = D−CA−1B are invertible. Then

[
A B
C D

]−1

=
[
A−1 +A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

]
.

Similarly, if D and SD = A−BD−1C are invertible, then

[
A B
C D

]−1

=
[

S−1
D −S−1

D BD−1

−D−1CS−1
D D−1 +D−1CS−1

D BD−1

]
.

LEMMA 7. ([1, p. 63]) Let A,B be n×n Hermitian matrices and B � A. Then

λ j(B) � λ j(A), j = 1,2, . . . ,n.

LEMMA 8. ([7, p. 219]) Let A ∈ Cn×n be positive semidefinite and let [A] be the
principal submatrix of A corresponding to some fixed rows and columns. Assuming
that the inverses involved exist, we have

[A]−1 � [A−1].
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3. Main results

We begin this section with the following proposition.

PROPOSITION 1. Under the conditions given in Theorem 1, we have

λ (C−1
1 D1⊕·· ·⊕C−1

k Dk) ≺w log λ (C−1D). (7)

Proof. It suffices to prove the case when D = In :

λ (C−1
1 ⊕·· ·⊕C−1

k ) ≺w log λ (C−1). (8)

The reason is that
λ (C−1D) = λ ((D−1/2CD−1/2)−1)

and
Diag(D−1/2CD−1/2) = (D−1/2

1 C1D
−1/2
1 )⊕·· ·⊕ (D−1/2

k CkD
−1/2
k ).

Thus (7) is equivalent to

λ ((Diag(D−1/2CD−1/2))−1) ≺w log λ ((D−1/2CD−1/2)−1)

so it is sufficient to show (8). By Lemma 1, we have

λ (C1⊕·· ·⊕Ck) ≺ λ (C),

which together with Lemma 2 and the fact that f (x) = log 1
x is convex on (0,+∞) leads

to (8). Thus, we complete the proof. �
We now have the following generalization of Theorem 1.

THEOREM 3. Under the conditions given in Theorem 1, we have

det(In1 +(C−1
1 D1)p) · · ·det(Ink +(C−1

k Dk)p) � det(In +(C−1D)p), p � 0. (9)

Proof. When p = 0, it is trivial. Here we assume p > 0. It suffices to prove the
inequality

det(In1 +C−p
1 ) · · ·det(Ink +C−p

k ) � det(In +C−p) (10)

by the following argument. Note that λ ((C−1D)p) = λ ((D−1/2CD−1/2)−p) . So, if (10)
is true, then we have

det(In +(C−1D)p) = det(In +(D−1/2CD−1/2)−p)

� det(In1 +(D−1/2
1 C1D

−1/2
1 )−p) · · ·det(Ink +(D−1/2

k CkD
−1/2
k )−p)

= det(In1 +(C−1
1 D1)p) · · ·det(Ink +(C−1

k Dk)p).

For (10), we provide four different proofs.



DETERMINANTAL INEQUALITIES 819

Proof 1: Induction allows us to prove (10) for k = 2. By Lemma 4, there exists

a matrix T =
[
X Y
0 Z

]
being conformally partitioned as C−1 such that C−1 = T ∗T . By

Lemma 5, we have

det(In +C−p) = det(In +(T ∗T )p) = det(In + |T |2p)
� det(In1 + |X |2p) ·det(In−n1 + |Z|2p)
= det(In1 +(X∗X)p) ·det(In−n1 +(Z∗Z)p). (11)

From Lemma 6 and

C = (T ∗T )−1 =
[
X∗X X∗Y
Y ∗X Y ∗Y +Z∗Z

]−1

,

we have
C−1

1 � X∗X .

By Lemma 7, we have

0 < λ j(C−1
1 ) � λ j(X∗X), j = 1,2, . . . ,n1.

Thus,

λ j(C
−p
1 ) = (λ j(C−1

1 ))p � (λ j(X∗X))p = λ j((X∗X)p), j = 1,2, . . . ,n1. (12)

Similarly, we have

C2 = (Y ∗Y +Z∗Z−Y ∗X(X∗X)−1X∗Y )−1 = (Z∗Z)−1,

which together with (11) and (12) leads to (10) when k = 2.
Proof 2: Consider the symmetric function φ : Rn

+ →R+ defined by φ(x1, . . . ,xn)=
∏n

i=1(1+ 1
xp
i
) , where p > 0. Clearly it is continuously differentiable. Now

f (x) := (xi − x j)
(

∂φ
∂xi

− ∂φ
∂x j

)

= (xi − x j)

(
− p

xp+1
i

∏
� 	=i

(1+
1
xp
�

)+
p

xp+1
j

∏
� 	= j

(1+
1
xp
�

)

)

= p(xi − x j)

(
−(1+

1
xp

j
)

1

xp+1
i

+(1+
1
xp
i
)

1

xp+1
j

)
∏
� 	=i, j

(1+
1
xp
�

)

=
p(xi − x j)

xp+1
i xp+1

j

[(xi − x j)+ (xp+1
i − xp+1

j )] ∏
� 	=i, j

(1+
1
xp
�

) � 0.

So φ is Schur-convex by Schur-Ostrowski criterion. Note that

det(In+C−p)=
n

∏
i=1

(
1+ λi(C−p)

)
=

n

∏
j=1

(
1+

1
λ j(Cp)

)
=

n

∏
j=1

(
1+

1
λ p

j (C)

)
= φ(λ (C)).
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Similarly,

det(In1 +C−p
1 ) · · ·det(Ink +C−p

k ) =
n1

∏
i=1

(
1+

1
λ p

i (C1)

)
· · ·

nk

∏
i=1

(
1+

1
λ p

i (Ck)

)
= φ(λ (C1), · · · ,λ (Ck)).

These together with Lemma 1 and Schur-convexity of φ imply (10).
Proof 3: Since the function f (x) := log(1+ 1

xp ) is convex on (0,+∞) for p > 0,
by Lemma 1 and Lemma 2, we have

f (λ (C1 ⊕·· ·⊕Ck)) ≺w f (λ (C)).

Therefore,

n

∑
i=1

log(1+ λi(C
−p
1 ⊕·· ·⊕C−p

k )) =
n

∑
i=1

log(1+ λi(C1 ⊕·· ·⊕Ck)−p)

�
n

∑
i=1

log(1+ λi(C)−p).

We have (10), as desired, by taking exponential of the inequality.
Proof 4: Since the function f (x) = log(1+ epx) , where p > 0, is an increasing

convex function, by (8) and Lemma 3, the desired result follows. �

REMARK 1. When p = 1, Theorem 3 reduces to Theorem 1.

In the next example we show that (9) is not true when p < 0.

EXAMPLE 1. Let n = 2, n1 = n2 = 1, D = I2 ,

C =
(

3 2
2 3

)
∈ P2, C1 = C2 = 3.

Direct computation gives λ (C) = {5,1} . Let p < 0 and set q := −p so q > 0. Then

λ (Cq) = {5q,1}, Cq
1 = Cq

2 = 3q.

Let
f (q) := det(I2 +Cq) = (1+5q)(1+1) = 2+2 ·5q

and
g(q) := det(1+Cq

1)det(1+Cq
2) = (1+3q)2 = 1+2 ·3q+32q.

We are going to show that g(q) > f (q) for all q > 0. Let f (x) = 2 ·3x +32x−2 ·5x−1.
Since

f ′(x) = (3x +9x) ln9−2 ·5x ln5 � 2
√

3x ·9x ln9−2 ·5x ln5 > 0, for x > 0,

we have f (x) > f (0) = 0 when x > 0. Thus (9) is not true when p < 0.
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REMARK 2. From the example above, one may ask whether the reverse of (3) is
true for all p < 0. There are many cases refuting the claim.

We would like to point out that (9) is no longer true if D ∈ Pn is not in diagonal
block form in general.

Next we will show that inequalities (3) and (4) are not true and we first give a
counterexample to the following inequality.

det(D−2
1 +C−2

1 ) · · ·det(D−2
k +C−2

k ) � det(D−2 +C−2), (13)

where C,D,Ci,Di, i = 1, . . . ,k , are given as in Theorem 1.

EXAMPLE 2. Let

C =

⎛
⎜⎜⎝

16.25 21 10 12.5
21 39.75 20.75 28.5
10 20.75 22.5 27.75

12.5 28.5 27.75 39.25

⎞
⎟⎟⎠ , C1 =

(
16.25 21
21 39.75

)
,

C2 =
(

22.5 27.75
27.75 39.25

)
, D =

⎛
⎜⎜⎝

14.7 15 0 0
15 15.8 0 0
0 0 0.25 0.4
0 0 0.4 0.8

⎞
⎟⎟⎠ ,

and

D1 =
(

14.7 15
15 15.8

)
, D2 =

(
0.25 0.4
0.4 0.8

)
.

By Matlab

det(D−2 +C−2) = 51.0669 < 54.6523 = det(D−2
1 +C−2

1 )det(D−2
2 +C−2

2 ).

Therefore, (13) is false.

Note that

det(In + |C−1D|2) = det(In +DC−2D) = det(D(D−2 +C−2)D)
= det(D−2 +C−2) · (detD)2,

and

det(In1 + |C−1
1 D1|2) · · ·det(Ink + |C−1

k Dk|2)
= det(D1(D−2

1 +C−2)D1) · · ·det(Dk(D−2
k +C−2

k )Dk)

= det(D−2
1 +C−2

1 ) ·det(D1)2 · · ·det(D−2
k +C−2

k ) · (detDk)2

= det(D−2
1 +C−2

1 ) · · ·det(D−2
k +C−2

k ) · (detD)2.

Since (13) is false, (3) is invalid.
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Note that

det(In +C−2D2) = det((D−2 +C−2)D2) = det(D−2 +C−2) · (detD)2

and

det(In1 +C−2
1 D2

1) · · ·det(Ink +C−2
k D2

k)

= det(D−2
1 +C−2

1 ) ·det(D1)2 · · ·det(D−2
k +C−2

k ) · (detDk)2

= det(D−2
1 +C−2

1 ) · · ·det(D−2
k +C−2

k ) · (detD)2.

Since (13) is false, (4) is also invalid.

REMARK 3. Since (3) is not true, the vectors of eigenvalues cannot be replaced
by the vectors of singular values in (7) from Proof 4 in Theorem 3. In other words,

s(C−1
1 D1⊕·· ·⊕C−1

k Dk) 	≺w log s(C−1D),

where C,D,Ci,Di, i = 1, . . . ,k , are given as in Theorem 1.

Next we present a weak majorization complementary to Choi’s determinantal in-
equality as follows.

THEOREM 4. Under the conditions given in Theorem 2, we have

λ

(
m

∑
i=1

(A(1)
i )−1 ⊕·· ·⊕

m

∑
i=1

(A(k)
i )−1

)
≺w λ

(
m

∑
i=1

A−1
i

)
. (14)

Proof. By Lemma 1, we have

λ

(
m

∑
i=1

(A−1
i )(1)⊕·· ·⊕

m

∑
i=1

(A−1
i )(k)

)
≺ λ

(
m

∑
i=1

A−1
i

)
. (15)

By Lemma 7 and Lemma 8, we have

λ

(
m

∑
i=1

(A(1)
i )−1⊕·· ·⊕

m

∑
i=1

(A(k)
i )−1

)
� λ

(
m

∑
i=1

(A−1
i )(1) ⊕·· ·⊕

m

∑
i=1

(A−1
i )(k)

)
. (16)

Now (15) and (16) lead to

λ

(
m

∑
i=1

(A(1)
i )−1⊕·· ·⊕

m

∑
i=1

(A(k)
i )−1

)
≺w λ

(
m

∑
i=1

A−1
i

)
.

Thus, we complete the proof. �
From Theorem 2 and Theorem 4, it is natural to ask whether the following weak

log-majorization inequality holds. We leave it as an open problem.
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QUESTION 1. Under the conditions given in Theorem 2,

λ

(
m

∑
i=1

(A(1)
i )−1⊕·· ·⊕

m

∑
i=1

(A(k)
i )−1

)
≺w log λ

(
m

∑
i=1

A−1
i

)
? (17)

We would like to point out that when n = 2,k = 2,n1 = n2 = 1, (17) holds by (5) and
(14). The other cases are open. We performed computer experiments and the outcomes
are consistent with the weak log majorization given in (17).
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