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ON THE CONCENTRATION OF A FUNCTION

AND ITS LAGUERRE–BESSEL TRANSFORM

SELMA NEGZAOUI ∗ AND SAMI REBHI

(Communicated by I. Perić)

Abstract. This paper deals with uncertainty principle related to Laguerre-Bessel transform in-
voking smallness of the support. In particular, we obtain a Benedichs-Amrein-Berthier type
theorem related to Laguerre-Bessel transform. As a consequence, we get a global uncertainty
inequality and a Heisenberg uncertainty inequality for Laguerre-Bessel transform. Furthermore,
invoking essential support, we prove analogous of Donoho-Stark theorem in L1(K) and L2(K) ,
where K = [0,+∞)× [0,+∞) .

1. Introduction

Several works have been interested in the uncertainty principle in different occur-
rences. The most known is due to Heisenberg [11] in 1927. His famous inequality,
appearing in Weyl paper [16] who credits to Pauli, states as follows(∫

R

x2| f (x)|2dx

)(∫
R

ξ 2| f̂ (ξ )|2dξ
)

� 1
4

(∫
R

| f (x)|2dx

)2

.

In quantum mechanics, this means that we cannot simultaneously and precisely localize
the values of the position and the momentum of a particle. Its equivalent in signal
theory deals with time frequency localization. It tells us about the loss of the precision
of frequency of a signal observed for a finite period of time.

Another approach of this physical idea is to consider the concentration measured
with smallness of the support: Benedicks [2], Amrein and Berthier [1] proved the cor-
responding result for classical Fourier transform which states that for finite supports
S and Σ , any function f ∈ L2(R) vanishes as soon as f is supported in S and f̂ is
supported in Σ .

Recently, Ghobber S. and Jaming Ph. have given a generalization of this result for
Bessel transform in [9] and for an integral operator with a bounded kernel and defined
on the Euclidean space Rd verifying Plancherel formula in [7].

A quantitative version of the uncertainty principle was given by Donoho and Stark
[5] when they have replaced the exact support by the essential support. Note that a
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measurable subset S is considered as the essential support of f if f is ε -concentrated
on S . i.e (∫

Rd\S
| f (x)|2dx

) 1
2

= ‖ f − χS f‖2 � ε‖ f‖2,

where χE is the characteristic function of the set E .
When ε = 0, S is the exact support of f .

Donoho and Stark’s theorem states that if f of unit L2 norm is εT -concentrated
on a measurable set T and its Fourier transform f̂ is εW -concentrated on a measurable
set W , then

|W ||T | � (1− εT − εW )2.

Here |T | is the Lebesgue measure of the set T . A generalization of this theorem has
been proven in other settings, one can cite [3, 4, 14, 15].

In this paper, we extend a Benedicks-Amrein-Berthier theorem and a Donoho-
Stark theorem for Laguerre-Bessel transform denoted FLB . It is already known that
Fourier Bessel or Hankel transform is obtained by considering Fourier transform of
radial functions on Euclidean group. Its analogue for Heisenberg group is the Laguerre
transform FL . (One can see [6] for more details). FLB is a compound of these two
transforms (cf. [12]). It is related to the Laguerre-Bessel system of partial differential
operators given by, for all (x,t) ∈ K = [0,+∞)× [0,+∞) and α � 0,⎧⎪⎨

⎪⎩
D1 =

∂ 2

∂ t2
+

2α
t

∂
∂ t

D2 =
∂ 2

∂x2 +
2α +1

x
∂
∂x

+ x2D1

Equipped with the convolution ∗α , K has the structure of a hypergroup in the sense of
Jewett [13] with the involution the identity and the Haar measure defined by

dμα(x,t) =
x2α+1t2α

Γ(α + 1
2)Γ(α +1)

dxdt. (1)

The translation operator, given by

(δ(x,t) ∗α δ(y,s))( f ) = T α
x,t f (y,s) (2)

has the integral form : for α = 0,

T α
x,t f (y,s) =

1
4π

1

∑
i, j=0

∫ π

0
f (

√
x2 + y2 +2xycosθ ,(−1)it +(−1) js+ xysinθ )dθ

and, for α > 0,

T α
x,t f (y,s) =

αΓ(α + 1
2 )

π
3
4 Γ(α)

∫
[0,π ]3

f (Δθ (x,y),Δξ (X ,xysinθ )dνα(ξ ,ψ ,θ ).

where
Δθ (x,y) =

√
x2 + y2 +2xyrcosθ , X = Δψ(t,s)
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and
dνα(ξ ,ψ ,θ ) = (sinξ )2α−1(sinψ)2α−1(sinθ )2αdξ dψ dθ . (3)

The convolution product of two functions is given by

( f ∗α g)(x,t) =
∫

K

Tα
x,t f (y,s)g(y,s)dμα (y,s). (4)

The outline of the content of the paper is given as follows :
Section 2 is devoted to give some useful relations about the Fourier Laguerre Bessel
transform FLB . In section 3, we consider two orthogonal projections PT and PW ;
we prove analogous of Benedicks-Amrein-Berthier theorem for the Laguerre-Bessel
transform. Consequently we show that: for T ⊂ K , W ⊂ K̂ a pair of measurable
subsets of finite measure, there exists a constant C(T,W ) such that for all f ∈ L2(K) ,

‖ f‖2
2,μα � C(T,W )

(
‖ f χTc‖2

2,μα +‖FLB f χWc‖2
2,μ̂α

)
.

We say that the pair (T,W ) is strongly annihilating. The analog of Donoho-Stark’s
theorems in L2(K) and L1(K) are given in section 4.

2. Preliminaries

We denote K̂ = [0,+∞)×N . For (λ ,m) ∈ K̂ , the initial problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D1u = −λ 2 u,

D2 u = −4|λ |(m+
α +1

2
)u

u(0,0) = 1,
∂u
∂x

(0,0) =
∂u
∂ t

(0,0) = 0

has a unique solution ϕλ ,m given by

∀(x,t) ∈ K, ϕλ ,m(x,t) = jα− 1
2
(λ t)L (α)

m (λ x2), (5)

where jα is the spherical Bessel function given by

jα (x) = Γ(α +1)
+∞

∑
k=0

(−1)k( x
2 )2k

k!Γ(α + k+1)
(6)

and L
(α)
m is the Laguerre function defined on R+ by

L
(α)
m (x) = e−

x
2

Lα
m(x)

Lα
m(0)

, (7)

where Lα
m is the Laguerre polynomial of degree m and order α .

ϕλ ,m is called Laguerre-Bessel kernel and verfies the following property

∀(λ ,m) ∈ R×N, sup
(x,t)∈K

|ϕλ ,m(x,t)| = 1. (8)
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The Fourier Laguerre Bessel transform of a suitable function is given by

FLB f (λ ,m) =
∫

K

f (x,t)ϕλ ,m(x,t)dμα (x,t). (9)

From [12], the Fourier Laguerre Bessel transform can be inverted to

F−1
LB f (x,t) =

∫
K̂

f (λ ,m)ϕλ ,m(x,t)dμ̂α(λ ,m), (10)

where

dμ̂α(λ ,m) = Lα
m(0)δm ⊗ λ 3α+1

22α−1Γ(α + 1
2)

dλ . (11)

Denote, for 1 � p < +∞ , Lp(K) = Lp(K,dμα) the space of measurable functions
f : K −→ C such that

‖ f‖p,μα =
(∫

K

| f (x,t)|pdμα(x,t)
) 1

p

< +∞.

and
‖ f‖∞,μα = sup

K

| f (x,t)|

We introduce Lp(K̂) the space of measurable function g : K̂ −→ C which checks

‖g‖p,μ̂α =
(∫

K̂

|g(λ ,m)|pdμ̂α(λ ,m)
) 1

p

< +∞.

and
‖g‖∞,μ̂α = sup

K̂

|g(λ ,m)|.

The Laguerre-Bessel transform is well defined on L1(K) and verifies

‖FLB f‖∞,μ̂α � ‖ f‖1,μα . (12)

Furthermore it can be extended to an isometric isomorphism checking the following
Plancherel formula (cf. [12])

‖FLB f‖2,μ̂α = ‖ f‖2,μα . (13)

Throughout all this paper, we consider for T ⊂ K and W ⊂ K̂ two measurable
subsets. We define the orthogonal projections on L2(K) PT and PW by

PT f = χT f and PW f = F−1
LB (χWFLB f ),

where χT and χW are the characteristic functions of T and W .
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3. Weak and strong annihilating pairs

In this paragraph, we proceed in a similar way as in [1] and [7] to prove that if T ⊂
K and W ⊂ K̂ are two measurable subsets such that μα(T ) < +∞ and μ̂α(W ) < +∞
then the pair (T,W ) is weakly annihilating. This means that we can not find a nonzero
function supported on T and its Fourier Laguerre Bessel transform supported on W .
As a consequence, we deduce that (T,W ) is strong annihilating pair. In other words
there exists a constant C as follows :

‖ f‖2
2,μα � C(T,W )

(
‖ f χTc‖2

2,μα +‖FLB f χWc‖2
2,μ̂α

)
.

With respect to the homogenous measure on K , we introduce the dilated of (x, t) in K

by δr(x, t) = (rx,r2t) and the dilated of (λ ,m) in K̂ by δ ′
r(λ ,m) = (r2λ ,m) .

If we denote fr(x, t) = r−(6α+4) f (δ 1
r
(x,t)) then we have

∫
K

fr(x,t)dμα(x,t) =
∫

K

f (x,t)dμα(x,t) (14)

Consider Dr f = r−(3α+2) f (δ 1
r
(x,t)) . By a change of variables, we get

FLBDr f = D̂ 1
r
FLB f , (15)

where
D̂r f (λ ,m) = r−(3α+2) f (δ ′

1
r
(λ ,m)). (16)

LEMMA 1. Let T ⊂K and W ⊂ K̂ be two measurable subsets with finite measure
i.e. μα(T ) < +∞ and μ̂α(W ) < +∞ . Then the Hilbert-Schmidt norm of PWPT is finite
and we have

‖PWPT‖2
HS � μα(T ) μ̂α(W ). (17)

Proof. From relation (10),

PW PT f (x,t) =
∫

K̂

χW (λ ,m)FLBPT f (λ ,m)ϕλ ,m(x,t)dμ̂α (λ ,m).

Denote
g(x′,t′)(λ ,m) = χW (λ ,m)ϕλ ,m(x′,t ′)

and
Ψ(x′,t ′,x,t) = χT (x′,t ′)F−1

LB g(x′,t′)(x,t).

By Fubini’s theorem, we have

PW PT f (x,t) =
∫

K

f (x′,t ′)Ψ(x′,t ′,x,t)dμα(x′,t ′).
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Ψ is called the kernel of the integral operator PWPT and the Hilbert Schmidt norm of
this operator is given by

‖PWPT‖2
HS = ‖Ψ‖2

L2(K)⊗L2(K).

Furthermore,

‖Ψ‖2
L2(K)⊗L2(K) =

∫
K

|χT (x′,t ′)|2
(∫

K

|F−1
LB g(x′,t′)(x, t)|2 dμα(x,t)

)
dμα(x′,t ′).

From Plancherel formula, we obtain

‖Ψ‖2
L2(K)⊗L2(K) =

∫
T

(∫
K̂

|χW (λ ,m)ϕλ ,m(x′,t ′)|2 dμ̂α(λ ,m)
)

dμα(x′,t ′)

� μα(T ) μ̂α (W ).

Which gives the wanted result. �

LEMMA 2. Let f be a function in L2(K) with finite support. Then {Dλ f}λ>0 ,
the dilates of f , are linearly independent.

REMARK 1. Lemma 3.4 in [7] does’nt allow us to deduce Lemma 2 since the
delated of (x, t) in K has not the same form as in the Euclidean case. Nevertheless, we
give here an interesting proof which could be used while considering the case of several
variables.

Proof. Assume that we have a vanishing linear combinations of dilates of f

∑
f inite

αi fi(x,t) = 0

We denote βi = αir
−(α+2)
i and g( x

ri
) = f0( x

ri
,0) then

∑
f inite

βig(
x
ri

) = 0.

Applying the Euclidean Fourier we get

∑
f inite

βi ri Fg(ri x) = 0.

Since g ∈ L1(R) then Fg ∈ C0 . Invoking [9, lemma 2.1], one can see that Fg has
linearly independent dilates. Therefore βi = 0 so that αi = 0, which proves that fi are
linearly independent. �

Now, we are able to announce analogous of Benedicks-Amrein-Berthier theorem
for the Laguerre-Bessel transform.

THEOREM 1. Let f ∈ L2(K) , T ⊂ K and W ⊂ K̂ be two measurable subsets. If
supp( f ) ⊂ T , supp(FL f ) ⊂W and μα(T ), μ̂α(W ) < +∞ then f = 0 .
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Proof. Assume that there exists a function f0 
= 0 such as supp( f0) = T0 and
W0 = supp(FLB f0) have both finite measure i.e 0 < μα(T0), μ̂α(W0) < +∞.
Let T1 (resp W1 ) be a measurable subset of K (resp K̂) of finite measure 0 < μα(T1) <
+∞ (resp 0 < μ̂α(W1) < +∞) such that T0 ⊂ T1 (resp W0 ⊂W1 ).
We have, for r > 0,

μα(T1 ∪δrT0) = ‖χδrT0
− χT1‖2

2,μα + < χδrT0
, χT1 >μα .

The function : r �−→ μα(T1 ∪ δrT0) is continuous on (0,+∞) . The same holds for
: r �−→ μ̂α(W1∪δ ′

rW0) . This allows us to build an infinite sequence of distinct numbers
(ri)∞

i=0 ⊂ (0,+∞) with r0 = 1, as follows

μα(T ) < 2μα(T0) and μ̂α(W ) < 2μ̂α(W0),

where T =
+∞⋃
i=0

δriT0 and W =
+∞⋃
i=0

δ ′
1
ri

W0 .

Let fi = Dri f0 , then supp( fi) = δriT0 ⊂ T . Relation (15) allows us to see that
supp(FLB fi)= δ ′

1
ri

W0 ⊂W . Consequently, Lemma 2 implies that dim(Im(PT )∩ Im(PW ))

= +∞ which contradicts Lemma 1 since

dim(Im(PT )∩ Im(PW )) = ‖PT ∩PW‖2
HS � ‖PT PW‖2

HS.

This proves Theorem 1. �

THEOREM 2. Let T ⊂ K , W ⊂ K̂ be a pair of measurable subsets of finite mea-
sures μα(T ), μ̂α(W ) < +∞ . Then there exists a constant C(T,W ) such that, for all
f ∈ L2(K) ,

‖ f‖2
2,μα � C(T,W )

(
‖ f χTc‖2

2,μα +‖FLB f χWc‖2
2,μ̂α

)
. (18)

Proof. Since |ϕλ ,m(x,t)| � 1 then the FLB of a function with finite support is
bounded. Therefore, we find similarly as in [7, Corollary 3.7] the wanted result. �

Now consider the homogeneous norm on K defined, for all (x,t) ∈ K , by

|(x,t)|K = (x4 +4t2)
1
4 (19)

and the quasinorm, defined on K̂ by

|(λ ,m)|
K̂

= 4|λ |(m+
α +1

2
). (20)

We can deduce the following Heisenberg type enequality :

COROLLARY 1. Let s, β > 0 . Then

∀ f ∈ L2(K), ‖ |(x,t)|sK f‖
2β

s+β
2,μα

.‖ |(λ ,m)|
β
2
K̂

FLB f‖
2s

s+β
2,μ̂α

� C‖ f‖2
2,μα , (21)

where C is a constant which depends on s,β and α .
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Proof. Applying Theorem 2 on unitary balls in K and K̂ for the function Dr f ,
we get

‖Dr f‖2
2,μα � C

(
‖Dr f χBc

1
‖2

2,μα +‖FLBDr f χBc
1
‖2

2,μ̂α

)
.

Therefore, from relation (15), we have

‖Dr f‖2
2,μα

� C

(
‖|(x,t)|sK Dr f χBc

1
‖2

2,μα +‖|(λ ,m)|
β
2
K̂

D̂ 1
r
FLB f χBc

1
‖2

2,μ̂α

)
� C

(
‖|(x,t)|sK Dr f‖2

2,μα +‖|(λ ,m)|
β
2
K̂

D̂ 1
r
FLB f‖2

2,μ̂α

)
.

Which implies

‖ f‖2
2,μα � C

(
r2s‖ |(x,t)|sK f‖2

2,μα + r−β‖ |(λ ,m)|
β
2
K̂

FLB f‖2
2,μ̂α

)
.

By optimizing in r > 0, we obtain the desired result. �
Remark that, for s = β , we get the same inequality established by S. Hamam and L.
Kamoun using heat functions in [10].

4. Donoho-Stark theorem for Laguerre-Bessel transform

4.1. L2 -version of Donoho-Stark theorem

In this section we will extend the Donoho-Stark uncertainty principle to the
Laguerre-Bessel transform in the space L2(K) . We say that f is εT -concentrated on a
set T if and only if

‖ f −PT f‖2,μα � εT . (22)

We say also that f is εW -bandlimited or FLB f is εW -concentrated on a set W if and
only if

‖ f −PW f‖2,μα � εW . (23)

The operator PT is bounded from Lp(K), 1 � p � ∞ into it self and we have

‖PT f‖p,μα � ‖ f‖p,μα , f ∈ Lp(K). (24)

The same result holds for PW and we have

‖PW f‖p,μα � ‖ f‖p,μα , f ∈ Lp(K) (25)

THEOREM 3. Let T ⊂K, W ⊂ K̂ be measurable sets and suppose that ‖ f‖2,μα =
‖FLB f‖2,μ̂α = 1 . Assume that ε2

T + ε2
W < 1, f is εT -concentrated on T and FLB f is

εW concentrated on W . Then

μα(T )μ̂α(W ) �
(

1−
√

ε2
T + ε2

W

)2

. (26)
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Proof. Since ‖ f‖2,μα = ‖FLB f‖2,μ̂α = 1 and ε2
T + ε2

W < 1, the measures of T
and W must both be non-zero. Indeed, if not, then the εT -concentration of f implies
that ‖ f −PT f‖2,μα = ‖ f‖2,μ̂α = 1 � εT , which contradicts with εT < 1, likewise for
FLB( f ) .
We have two cases : if μα(T )μ̂α(W ) � 1 then, in this case, relation (26) is obvious.
If μα(T )μ̂α(W ) < 1 then relations (24) and (25) allow to conclude that

‖PWPT‖ = ‖PWPT‖L2(K)→L2(K) � 1.

Furthermore, from Lemma 1, since ‖PWPT‖ � ‖PWPT‖HS , we get in this case that

‖PWPT‖ = ‖PWPT‖L2(K)→L2(K) < 1.

According to Lemma 3.1 in [7], we have

∀ f ∈ L2(K), ‖ f‖2
2,μα � (1−‖PWPT‖)−2(

(
‖ f χTc‖2

2,μα +‖FLB f χWc‖2
2,μ̂α

)
.

Then by Lemma 1, we obtain

∀ f ∈L2(K), ‖ f‖2
2,μα � (1−

√
μα(T )μ̂α(W ))−2(

(
‖ f χTc‖2

2,μα +‖FLB f χWc‖2
2,μ̂α

)
.

Therefore if f is εT -concentrated on T and FLB f is εW -concentrated on W then we
get easily relation (26). �

REMARK 2. Theorem 3 improves the analog of Donoho-Stark theorem which
could be stated as

THEOREM 4. Let T ⊂K, W ⊂ K̂ be measurable sets and suppose that ‖ f‖2,μα =
‖FLB f‖2,μ̂α = 1 . Assume that εT + εW < 1, f is εT -concentrated on T and FLB f is
εW concentrated on W . Then

μα(T )μ̂α(W ) � (1− εT − εW )2.

4.2. L1 -version of Donoho-Stark theorem

In the following we shall consider the case of f ∈ L1(K) .
As in the L2(K) case, we say that f ∈ L1(K) is εT -concentrated to T if

‖ f −PT f‖1,μα � εT‖ f‖1,μα . (27)

Let Bμα ,1(W ) denote the subspace of L1(K) which consists of all g ∈ L1(K) where
PWg = g . We say that f is εW -bandlimited on W if there is a g ∈ Bμα ,1(W ) with

‖ f −g‖1,μα � εW‖ f‖1,μα . (28)

Here we denote by ‖PT‖1,W the operator norm of

PT : Bμα ,1(W ) −→ L1,μα .

We have the following lemma :
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LEMMA 3.
‖PT‖1,W � μα(T )μ̂α(W ). (29)

Proof. Let f ∈ Bμα ,1(W ) . We can notice that

f = F−1
LB (χWFLB f )

Then by Fubini’s theorem, we get

f (x, t) =
∫

K

f (y,s)
(∫

W
ϕ−λ ,m(y,s)ϕλ ,m(x,t)dμ̂α(λ ,m)

)
dμα(x,t).

According to relation (8), we have

‖ f‖∞,μα � μα(W )‖ f‖1,μα .

Therefore
‖PT f‖1,μα =

∫
T
| f (x,t)|dμα(x,t)

� μα(T )‖ f‖∞,μα
� μα(T )μ̂α(W )‖ f‖1,μα .

Thus

‖PT‖1,W = sup
f∈Bμα ,1(W)

‖PT f‖1,μα

‖ f‖1,μα
� μα(T )μ̂α(W ). �

THEOREM 5. Let T ⊂ K, W ⊂ K̂ be measurable sets and f ∈ L1(K). If f is
εT -concentrated to T and εW -bandlimited to W in L1(K) then

μα(T )μ̂α (W ) � 1− εT − εW

1+ εW
. (30)

Proof. Let f ∈ L1(K) , we have

‖PT f‖1,μα � ‖ f‖1,μα −‖ f −PT f‖1,μα .

Since f is εT -concentrated on T then

‖PT f‖1,μα � (1− εT )‖ f‖1,μα .

Moreover, f is εW -bandlimited, there is a g ∈ Bμα ,1(W ) with

‖g− f‖1,μα � εW‖ f‖1,μα .

Therefore, it follows that

‖PTg‖1,μα � ‖PT f‖1,μα −‖PT (g− f )‖1,μα
� (1− εT − εW )‖ f‖1,μα
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and
‖g‖1,μα � ‖ f‖1,μα +‖g− f‖1,μα

= (1+ εW )‖ f‖1,μα .

Consequently,
‖PTg‖1,μα

‖g‖1,μα
� 1− εT − εW

1+ εW

which implies that

‖PT‖1,W � 1− εT − εW

1+ εW
.

Using Lemma 3 we obtain the L1 -version of Donoho-Stark’s theorem for Laguerre-
Bessel transform. �

4.3. An uncertainty principle for L1(K)∩L2(K)

Notice that the L1 ∩ L2 -version of Donoho-Stark uncertainty principle was first
proved in [8]. In this paper we give similarly the result : L1(K)∩ L2(K)-version of
Donoho-Stark theorem for Laguerre-Bessel transform.

THEOREM 6. Let f ∈ L1(K)∩L2(K) . If f is εT -concentrated to T in L1(K)
and FLB( f ) is εW -concentrated to W in L2(K̂) then

μα(T )μ̂α (W ) � (1− εT )2(1− εW )2. (31)

Proof. Assume that μα(T ) < ∞ and μ̂α(W ) < ∞.
Let f ∈ L1(K)∩L2(K). Since FLB( f ) is εW -concentrated to W in L2(K̂) then

‖ f‖2,μα � εW ‖ f‖2,μα +(
∫

W

|FLB( f )(λ )|2dμ̂α(λ ))1/2

� εW ‖ f‖2,μα +
√

μ̂α(W ) ‖FLB f‖∞,μ̂α .

Using relation (12), we obtain

(1− εW )‖ f‖2,μα �
√

μ̂α(W )‖ f‖1,μα . (32)

On the other hand, since f is εT -concentrated to T in L1(K) we get

‖ f‖1,μα � εT‖ f‖1,μα +
∫

T

| f (λ )|dμα(λ )

Then, from Cauchy-Schwartz inequality, we get

(1− εT )‖ f‖1,μα �
√

μα(T )‖ f‖2,μα . (33)

Combining (32) and (33) we obtain the result of this theorem. �
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