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APPROXIMATION BY MARCINKIEWICZ
O-MEANS OF DOUBLE WALSH-FOURIER SERIES

ISTVAN BLAHOTA, KAROLY NAGY AND GEORGE TEPHNADZE

(Communicated by T. Erdélyi)

Abstract. In this article we discuss the behaviour of ®-means of quadratical partial sums of
double Walsh series of a function in L”(G?) (1 < p < o). In case p = o by LP(G?) we mean
C, the collection of continuous functions on G>. We present the rate of the approximation by
©-means, in particular, in Lip(ct,p), where o0 >0 and 1 < p <eo.

Our main theorem generalizes two result of Nagy on Norlund means and weighted means
of the cubical partial sums of double Walsh-Fourier series [15, 16]. Specifically, we give the two-
dimensional analogue of the two results of Méricz, Siddiqi on Norlund means [14] and Méricz,
Rhoades on weighted means [12].

1. One- and two-dimensional Walsh-Fourier series and summation methods

Now, we give a brief introduction to the Walsh-Fourier analysis [1, 18].

Let P be the set of positive natural numbers and N :=PU{0}. Let G denote the
Walsh group. The elements of Walsh group G are sequences of numbers O and 1, that
is x = (x0, X1, .-, X, ...) with x; € {0,1} (k € N).

The group operation on G is the coordinate-wise addition modulo 2 (denoted by
+), the normalized Haar measure is denoted by p. Dyadic intervals are defined in
usual way

Ih(x):=G, Li(x):={yeG:y=(x0,---sXn—1,Yn,Ynt1,---) }

for x € G,n € P. They form a base for the neighbourhoodsof G. Let 0= (0:i € N) € G
denote the null element of G and I, := I,(0) for n € N. Set ¢; := (0,...,0,1,0,...),
where the ith coordinate is 1 and the rest are O (i € N).

Let L? denote the usual Lebesgue spaces on G (with the corresponding norm
[|.1l). In the present paper we follow the notation of Mdricz and Siddiqi [14]. For the
sake of brevity in notation, we agree to write L™ instead of C, as Mdricz and Siddiqi
did, and set || f]|- := sup{|f(x)| : x € G}.
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For x € G we define |x| by

oo X;
‘x‘ = ZOF
i=

The modulus of continuity in L?,1 < p < oo, of a function f € L? is defined by

op(f,8) := e 1FC+0) = fOllps 6>0.

The Lipschitz classes in L? for each o > 0 are defined by
Lip(a,p) :=={f € L* : @p(f,0) = O(6%) as § — 0}.

For x = (x!,x?) € G* we define |x| by |x|? := |x!|? 4 |x?|>. Thus, for f € LP(G?)
(1 < p < o) the modulus of continuity @,(f,d) and Lipschitz classes Lip(ct,p) are
well defined (6 > 0, o > 0). We define the mixed modulus of continuity as follows

of 3 (f,81,8) =
sup{ /(- - +2%) = (A ) = fl )+ F ) s < 81 < 8,

where 6,06, > 0.
The Rademacher functions are defined as

re(x) = (=1)* (x€G,keN).

The Walsh-Paley functions are defined by the help of Rademacher functions. That is,
wo=1andforn>1

w(x) 1= TGO = g () (~ )% e,

k=0

where the natural number 7 is expressed in the number system based 2, in the form
n= 2?1,-2", n; € {0,1} (i e N)
i=0

(in this expression only a finite number of »n;’s different from zero). Let the order of
n >0 be denoted by |n| := max{j € N:n; # 0}. The Dirichlet kernels are defined by

n—1
D, = 2 Wi,
k=0
where n € P, Dy := 0. The 2" th Dirichlet kernels have a closed form (see e.g. [18])

Dy (x) = (1)

7 ifxel,
0, otherwise (n € N).
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It is also known that
Dy, j(x) = Dya (x) +ra(x)Dj(x), j=0,1,....28 1. (2)
(see [18]). The nth Fejér mean and Fejér kernel of Walsh-Fourier series are defined by

lnl

1 n—1
= - Si 5 b Kn D
3 2 5 »
In 2018, Toledo [20] improved Yano’s [26] basic inequality. He proved that
17
1K1 < 15 foralln € N. 3)

A Sidon type inequality follows in the next lemma [13, Lemma 1], we will apply it,
later.

LEMMA 1. (Mdricz, Schipp [13]) For every 1 < p < 2, sequence {a;} of real
numbers, and integer n > 1,

n

2 a; Dy,

2p n 1/p
1-1
< 1" /p [2 a,ﬂ .

k=1

1

On G? we consider the two-dimensional system as {w,1(x!) x w»(x*) : n 1=

(n',n?) € N?}. The two-dimensional Fourier coefficients, the rectangular partial sums

of the Fourier series and Dirichlet kernels are defined in the usual way. The nth
Marcinkiewicz mean and Marcinkiewicz kernel of Walsh-Fourier series are defined by

My (fixt X ZS,, fixlxa?), (et a?) = . ZDi(xl)Di(xz).

Next lemma proved by Glukhov [&] is the two-dimensional analogue of Lemma 1 for
p=2.

LEMMA 2. (Glukhov [8]) Let «y,..., 0 be real numbers. Then
< n )1/2
1 k=1

As a corollary of Lemma 2 there exists a positive constant ¢ such that

(.)Dx(..

=1

where c¢ is an absolute constant.

||t <c forallneN. 4)
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Now, let us set the sequence of matrices ©,, in the next form

61 0 0 ... O
62612 0 ... 0
O, := 903 913 9;3 ... 0

GO,n el,n 927n en—l,n

We always assume that 6y = 1 forall k € {1,...,n}.
Let the nth (one-dimensional) ®-mean and kernel be defined by

n—1 n—1
) = Z ek,nf(k)wk(x)v Kne(x) = Z ek,nwk(x) &)
k=0 k=0
(see [5, 21]). It is easily seen that

oP(fix) i= [ FOKD(+2)dp ().
G

Using Abel’s transformation we immediately have that

o2(fix) = — 2 AO_1 ,Si(f3x), (6)

=1
with the notation A6, 1= 611, — Ok, (0, =0) for 0 <k < n. Let us set A? Ok p :=
ABy1,, — AB ), where 0 < k <n and 6,1, := 0 (it is natural, see the matrix ©,.>).

Taking into account equality (6) the nth ®-mean and kernel of quadratical partial
sums defined by

o2 (fix! 4 EAGZ LSt (fxt,2%),

=1
0 (x' X ZAel 12Dy (x")Dy (x?). (7)
=1

It is also called Marcinkiewicz ®-summation of double Walsh-Fourier series of a func-
tion f € L'(G?) (see [24]).

EXAMPLE 1. Let {q, :n > 0} be a sequence of nonnegative numbers. Let us set

0, = Zz;é G (n>1 ) (It is always assumed that gy > 0 and lim,_. Q, = .) If
—k—

we choose O, = Iy 4 ° g (0 < k< n—1), taking into account equality (7), we im-

mediately have 62 (f ) i e "Sk «(f). It means that Norlund-mean of quadratical
partial sums is a special @-mean of quadratical partial sums.

For the one-dimensional Norlund means of Walsh-Fourier series of a function f
in LP (1 < p < o) the rate of the approximation was given in terms of modulus of con-
tinuity [14]. In particular, functions in Lip(a, p), where o > 0 and 1 < p < o were
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considered, also. As special cases Moéricz and Siddiqi obtained the earlier results on
the rate of the approximation by Cesaro means given by Yano [27], Jastrebova [10] and
Skvortsov [19]. The approximation properties of the Cesaro means of negative order
was studied by Goginava in 2002 [9]. Recently, Fridli, Manchanda and Siddiqi gen-
eralized the result of Méricz and Siddiqi for homogeneous Banach spaces and dyadic
Hardy spaces [7]. A few years ago the second author investigated the rate of the approx-
imation by Norlund means of quadratical partial sums of double Walsh-Fourier series
for functions in the space L” (Gz) (1 < p <o) [15]. In 2012, the general Norlund
mean method in dimension two was discussed [17], also. Recently, the first author,
Baramidze, Memic, Persson, Tephnadze and Wall have some new results with respect
to this topic [2, 4, 11].

EXAMPLE 2. Let {p,:n > 1} be a sequence of nonnegative numbers. (It is al-

ways assumed that p; > 0 and lim,_,. B, = oo, which is the condition for regularity.)
If we choose 6, = Z?%:lpi (0 < k< n—1), taking into account equality (7), we get
c2(f) = I%, Yi1 PiSki(f). It means that weighted mean of Marcinkiewicz type is a
special ©-mean of Marcinkiewicz type.

The rate of the approximation by weighted means of one-dimensional Walsh-
Fourier series of a function in L? (1 < p < o) was presented in terms of modulus
of continuity [12]. In particular, functions in Lip(c, p), where o¢ >0 and 1 < p < o0
were considered, also. As special cases Mdricz and Rhoades obtained the earlier results
given by Yano [27], Jastrebova [10] on the rate of the approximation by Cesaro means.

In 2010, the second author discussed the rate of the approximation by weighted
means of quadratical partial sums of two-dimensional Walsh-Fourier series for func-
tions in LP(G?) (1 < p < o) [16].

Our work is motivated by the paper of Mdricz, Siddiqi [14] on Norlund mean
method and the paper of Mdricz, Rhoades [ 12] on weighted mean method. Both of them
present the result for one-dimensional Walsh-Fourier series. Recently, the results in
papers [12, 14] were generalized by the authors in paper [3]. Namely the approximation
properties of one-dimensional 6 -mean was discussed. It is important to note that some
ideas are coming from the paper of Chripké [5]. She studied the order of convergence
of ®-mean with respect to Jacobi-Fourier series.

Our main aim is to investigate the rate of the approximation of Marcinkiewicz
©-mean in terms of modulus of continuity under some general conditions. Our main
theorem (Theorem 1) give a common generalization of two result of the second author
[15, 16] (see Example 1 and 2). Specifically, we give the two-dimensional analogue
of two results of Moéricz, Siddiqi on Norlund means [14] and Moéricz, Rhoades on
weighted means [12]. Moreover, we present some new results under general condi-
tions for Marcinkiewicz ©-summability.

It is important to note that other aspects of ®-summability methods with respect
to Walsh-Fourier series are treated in [21, 22, 23, 24].
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2. Auxiliary results

Let &, be the collection of one-dimensional Walsh polynomials of order less than
n, that is, functions of the form

n—1
= Z awy(x)
k=0

where n > 1 and {@;} is a sequence of real numbers. On G?> we consider the two-
dimensional Walsh polynomials of order less than (n,n) as

)= Y D)D),
k=1

where n > 1 and {04} is a sequence of real numbers. We note that not every two-
dimensional Walsh-polynomial can be written in this form. The set of this special type
two-dimensional polynomials are denoted by %, ,,.

The next Lemma can be derived from the method presented in [15, page 313-314].

LEMMA 3. (Nagy [15]) Let P € Py, f € LP(G?), where A,B€ P and 1 <
p < oo. Then there exists a positive constant ¢ such that

with the notation x = (x',x*) € G*.

Lel|Pliof,(f,274,274),
14

U2 = FOratera () P ) am (o)

As specially it is proved that

for |j] <A.
We need the next Lemma proved in [17].

<cof,(f, 274,274,
P

L U0 = POl () 65 () (o)

LEMMA 4. (Nagy [17]) Let P€ P, f€LP(G?) (1< p< ) and A €P. Then
there exists a positive constant ¢ such that

For two-dimensional variable (x',x?) € G*> we use the notations

<c|Pliwp(f.274).
P

L2 = FOIDA D ra ()P ()

for any n € N.
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LEMMA 5. Let n > 2 be a positive number, then we have

[n|—12/-1 n—2lnl
o _ , 1 12 1 2
K0 == Y A0 1,DyD5 Y, By Dy D
j=0 k=0 k=0
[n|—1 ) [n|—1

+ 2 Dyr 2 N0y kb + DKLy — Y, D3rjABy 5,2 K),
=0

i 2 -1 ,
+ Z D};r; Z A0y 4y p(k+ 1)K, — Z D}riAy i, 20K,

\nfl ) \n\fl
+ Z Z A Opj k1 plk+ 1) Hg1 — Z rﬂ’ A0y 212’ |

—D r‘n‘R D rlann—rlnlrlnlg@n,

2lnl 2lnl

| |
with the notation R, = ¥ o Ay 1nDk and %, = ¥4 2"1 ‘,Mkfl_nD}cDi.

Proof. First, we use equality (2) for J{n@ (see equality (7), too)

[n|—12/+1_1

n
e 1192 12
Hy == Y A6_1,DIDj— Y A6 _1,DDj
Jj=0 |=2j 1=2lnl
[n|—12/—1 n—2ll
o 2
= Z Z AByj lnD2J+kD2/+k Z Ay 1nD2\ﬂ\+kD2\"\+k
j=0 k=0 k=0
ln|—12i_1 [n|—12/—1
B _ 1 2 _ 1yl 2
== 2 2 A6y DDy — Y Y Aby DDy
j=0 k=0 J=0 k=0
n|—12/ 1 5 | —12/—1
— Y X Aby iy DyrDE— Y, Y Ay, DLD]
j=0 k=0 J=0 k=0
n—alnl n—2lnl
— Y e D), D3, —Di,rly Y, A6 D;
bl 4k 1,0 2o Dot = Do 20l k1,07 k
k=0 k=0
n—2lnl n—2ll

1 2 2 1.2 112
Dyt D Ayl i1 Dk =TTy D A8yl oy DRDR
k=0 k=0

8
=: ZK,(?’Z.
=
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For the expression K,? ’2, K,(? 3 and K,(? “ we use Abel’s transformation

[n]—1 2/ 1
K;?g = Z D2/ Fi Z AByj lnDk

2 2 21
- 2 Dy;r} (2 (AByi g1 A02’+kn)2D + A1 5, Y, Dk)

k=0 =l k=0
|n|—1 2/ -2 .
= 2 sz j 2 A 92!+k 1n(k+1)Kk+l A921+1 2n2 sz )
Jj=0

(K,? 3 has got a similar form) and

[n|—1 i1

0.4 1,2 , 172
) Ty > AOyj i1 1 DiDi
j=0 k=0
|n|—1 s 2i-2 54
= 2 rer 2 (A62/+k ln_AGZIJrkn)ED D +A921+1 2.1 2 Dka
j=0 k=0 i=0
[n|—1 5 2/-2 , '
= 2 r}rj 2 A 02-/+k71,n(k+ 1)€%/k+l _A92j+1_27n2]e%/2j .
J=0 k=0
Summarising our results on the expressions K,? ’17 . ,K,? 8 , we complete the proof. [

3. The rate of the approximation by ©-mean of cubical partial sums
In the next theorem the coefficients 6, € [0,1] for all k,n € N.

THEOREM 1. Let f € LP(G?) (1 < p < ). Let n>2 be a positive integer. Let
the finite sequence {6y, : 0 <k < n— 1} of nonnegative numbers be nonincreasing (in

sign O, | ).
a.) Let the finite sequence of differences {A6, : 0 < k < n} be nonincreasing (in

sign A6, | ). We suppose that
1
enl,n:0<_) . 3)
n

Then there exists a positive constant ¢ such that

In|—

o2 (f) = fllp < e 2 2|80yj1 gl (£,277) +O0(wp(£.27)). (9)
=0
b.) Let the finite sequence of differences {A6, : 0 < k < n} be nondecreasing (in
sign A6, T). Then there exists a positive constant ¢ such that

[n|—1

lo2(f) = fllp <c Y, 2/[A0y o, (£,277) +O(wp(£,27")).  (10)
=0
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REMARK 1. The condition 0 < 6, < 1 forall ke {0,....n—1} and n€ P isa
usual condition, since in Example 1 and 2 it is satisfied.

For Example 1, easy to see that A6,;_, , = an_y and AByjv1_, ,
Thus, as a consequence of our main theorem we get back an analogical form of result
of second author on Norlund means of Marcinkiewicz type [15].

For Example 2, AB,;_, , = p2, and AByji1_,, = % hold. Thus, as a con-
sequence of our theorem we have an analogzcal form of the result of Nagy on weighted

means of Marcinkiewicz type [16].

Iy 2/+1+1

Proof of Theorem 1. We carry out the proof for 1 < p < oo, for p = oo the proof is
similar (where L™ = C ). During this proof ¢ denotes a positive constant, which may
vary at different appearances. Keeping in mind that 6y, = 1 for all k, we use Lemma
5 and the usual Minkowski’s inequality

192011l = ( [ 10200~ sl auts)”

(/.
(1,

8
= Zlkﬂ.
k=1

Using generalized Minkowski’s inequality ([28], vol. 1, p. 19) for the expressions
I, and Is,, we obtain

)’

pdu(x))%

L0000~ Fpaute)

N

LK@ (1) - £t

[n]=1]27—1

1
< 3| 3 80| [ Do D) ([ 15trtn) 01 ) auto
n|—1]2/-1 '
Z D A0 (£,277), (11)
and
n—2l %
Isn < 2 Ayl 14 1n/ Doy (t7) Dy (t (/ [f(x+1) = f(0)" du(x )) du(t)

n—2lnl

c| Y A6y, |0 (£271). (12)
k=0

< —2/A6,11 5, and

In case a.) (in sign A6, | ) we write )Zii’ol Ay k1 p

2|1

La<c 2 27|A8, 41 2n\a)p(f,2 J)
Jj=
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In case b.) (in sign A6, 1) we have ‘Ziif)l Ay k1 p

< —2/A6y;_;, and

|n|—1

ha<— Y, 206y ,0,(f.277).
j=0

. —2lnl
Since, ’ZZ:O Ay g1

ately write

=6, _,, —06,,<1,incasea.) and b.) we immedi-
21| 1,n s

I <o, (£,271).
For the expression I, , usual Minkowski’s inequality yields

[n|—12/—2

ha <Y Y [A%6y 1| (k+1)
j=0 k=0

1
P

P
( [ Dy Kes () +0)  F09)an ) du<x>)
In|— .
+ Z |AByj11_5 |27
Jj=0
» 1
P
(L] Losne im0 - renaue)| aue)
=: 12{,, + 1227”.
From Lemma 4 and inequality (3) we write
[n|—12/-2
I2n cy Y |A 03 14— 1n|(k+1)HKk+l||1wP(f7 /)
j=0 k=0
[n|—12/—
<c )y, 2 A0y 41| (k4 Doy (f,277) (13)
j=0 k=
and
) In]—1 , ,
L, <c Y A6y, |27 ||Kyll10p(f,277) (14)
j=0
In—1 , ,
<c Y [ABy1 |2 @, (f,277). (15)

Jj=0
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At first, we deal with expression 1217,1. In case a.) (in sign A6y, |),

202 2/-2
2 |A292f+k—l,n’ (k+1) = 2 (A8y) k1 — Ay g ) (k+ 1)
k=0 k=0

2/-2

= Z Ay j1p— (2/— 1AG, 415,
k=0

g _2',A02j+1 —2.n

and

[n|—1

Izl'rn g ¢ 2 Zj‘A02j+l—2,n|wI7 (f7271) .
j=0

In case b.) (in sign A6, 1) we have

2/-2 2/-2

2 |A292j+k71,n} (k+ 1) = (Zj - 1)A92j+1—2,n - 2 A92j+k71,n
k=0 k=0

2/-2
< - Z Ayjij10 < =26y,
k=0

and

=1 ,
L,<c Y 2[A6, ,lo,(f,277).
j=0

Now, we discuss expression 122’,,. In case a.) (in sign A6, |), we immediately
write

|n|—1

1227” g ¢ 2 2.,"A02j+1—2,n‘w17 (f;zij) .
J=0

In case b.) (in sign A6, T) we have

[n|—1

B,<c Y 21A6_ o, (£,277).
Jj=0
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We discuss expression /3, analogously. For expression Iy, we apply usual Min-
kowski’s inequality

[n|—127—

I4JZ N 2 2 }A 92/+k ln} k+1)
Jj=0 k=0

(o

|n|—1

+ 2 [A0yj41 5, |2/
Jj=0

(/02 /62rj(tl)rj(tz)%j(t)(f(x—f—t)—f(x))du(;)

=Lty

1
p P

i) A (0 0) — ) (1)

aut))

1
p g

o))

By Lemma 3 and inequality (4) we immediately have

|12/~

La<c Z 026y 41 o] (ko D)l| H 1ol o (f,277,27)
j=0 k=0

[n|—12/-2 ‘
<c Y Y N0, (k+ Day(f,27) (16)
Jj=0 k=0
and

n|—1 . o
B,<c Y M6y, 27185 o], (f.277,277)

j=0

|1

Sc¢ Z |A92j+172,n‘2jw17(f72_j)' )
Jj=0

In this point we can apply the same methods for I} , and I;  as we used for the expres-
sions I} and 17, respectively.
Now, we discuss the expression g, (we discuss I7, analogously). Lemma 4

yields
p 1/p
lon = ( Lo L D ORa) 54 = £ (0) 1) du(x))

< c|[Rullwp(f,271M). (18)

At last, by Lemma 3 we write

P 1/p
I = ( L Lm0 a0 (54 = £0)du0) du<x>)
< cl|lZalliof y(F.271 271y < el Bl 1o (£,271M). (19)
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Lemma | with p =2 implies that
IRulli <c forallneP (20)

and Lemma 2 yields that
|Zn|h <c forallmeP (21)

in both cases a.) and b.). Namely, denote ||%,||1 or ||R,||1 by H,. From these lemmas
we obtain

n—al 172
H, < c(n—2"h172 l D |A62n+k_l’n2] . (22)
k=0
Case a.) (A6, | ) then using condition (8)
H, <c(n—2"+ D|AB, 14| < cnby_1,<c.
Incase b.) (A6, T) then
n—2ll
Z ‘Aez\n\+k_1,n|2 <(n— 2k + 1)‘A92\n\_1,n‘27
k=0
and |6 ,| < ¢ (here ¢ =1). Since n— 2+ 1 < 2l we write
H, < c(n — 2|"| + 1)|A92\"\717n| < C(‘AO()J,‘ +...+ |A92\,1\717n‘) < 0(907,, — 92\,1\#) <c.

This yields that the inequalities (20) and (21) are proved for all n. We immediately
get

Ion < OOy ( f,2—|"|) for all n
and
I3, < cwp, (f72_|"|> for all n.

This completes the proof. [

In the next Theorem we allow that the finite sequence {Okﬁn :0<k<n—1} has
some negative values. Namely, 6 , € [c., 1] with a negative number c .

THEOREM 2. Let f € LP(G?) (1
number. Let the finite sequence {6, : 0
and 6,1, <0.

a.) Let the finite sequence of differences {A6y, : 0 < k <n—2} be nonincreasing
(in sign A6y, | ). Moreover, we suppose that

p < eo). Let n> 2 be a positive natural
k

<
< k< n—1} be nonincreasing (in sign Oknl)

1 1
|9n_1’n‘ =0 (W) and ‘Aen_z.’n‘ =0 (Z) . (23)
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Then there exists a positive constant ¢ such that

In|—

lo (f) = fllp < CZZJIA%/H 2@ (£,277) +0(0p(£,27M)). (24
j=0

b.) Let the finite sequence of differences {A6, : 0 < k < n—2} be nondecreasing
(in sign ABy, 1). Moreover, we suppose that there exists a negative constant c, such
that 6,_1, = cs for all n. Then there exists a positive constant ¢ such that

|n|—1

o () = fllp<e 2 271865y 4@, (£,277) + 0@, (f,27M)) (25)

=0
holds.

Proof of Theorem 2. 'We make the proof for such a finite sequence {6y, : 0 <k <
n— 1} for which at least the last member 6,_ , is negative.
We use the method and notations of the proof given in Theorem 1.

l62(f) — fllp < 2

o]

Since, the most part of the proof goes in the same way as above written (proofs for
Iy, by, I3, and 1y ,), we give details about the necessary changes.

n—2nl _
240 AeZ‘"‘+k—l7n -
103041, — Onn| <1+ |c'| (Where ¢’ is coming from condition (23) ), in case a.) and
|05n 1, — Onn| < 14 |ci| in case b.), we write

For the expression I5s, we have inequality (12). Since,

Is, < co, (f,ﬂ”‘) .

For proving the necessary inequality for /g, (and analogously for /7 ,) we get

o < cl|Rall1@p(f,27). (26)
from (18).
Lemma | with p =2 implies that
|Ru|li <c  forallneP (27)
and Lemma 2 yields that
%, <c forallneP (28)

in both cases a.) and b.). Namely, denote H, the expressions ||%y||1 or ||R,]||;. From
Lemmas 1. and 2. we obtain

w2l 12
H, <c(n—21")'/? [ > 1AOy 1,12] : (29)
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Case a.) (A, |)

n—2ln
D 1Ay, < (0 2" AGy—2.u* + |AB 1 .
k=0 :
Using condition (23)
H, < c(n—21")[A8, ] +c(n—2")1/2|6, |

<
< cn|AB, 2 .| +cn1/2|9,,,17n\ <ec.

Incase b.) (AB, 1)
Hy <c(n—2I"41)|A6,_, | <c(B0n— 60y ,) <c

(see the corresponding part in the proof of Theorem 1).
This yields that the inequality (27) and (28) are proved for all n. We immediately
get

Ion < oy ( f,2—|"|) for all n
and
Iy < cop (f,2_|"|> for all n.

This completes the proof of our theorem. [l

THEOREM 3. Let f € Lip(ct,p) for some o >0 and 1 < p < eo. For ©-mean
Gf’ of quadratical partial sums we suppose that the conditions in Theorem 1 hold.
In case Theorem 1 a.) and Theorem 2 a.) the next equality holds

o(n=%), fo<oa<l,
16> (f) = fllp = { O(logn/n), ifa=1,
o(1/n),  ifo>1.

In case Theorem 1 b.), Theorem 2 b.) we have

[n|—1 '
oy (f) = fl,=0 ( S (80,2707 +2|nla> .

J=0

Proof. The proof is similar to the proof of analogical theorem of Méricz and Sid-
diqi [14] (for more details see [12, 3]). [

REMARK 2. Let us suppose that the finite sequence of {6, : 0 <k <n—1} is
nondecreasing ( 6y, 1) and bounded by a positive constant. Then Lemma 1 and Lemma
2 do not guarantee the uniform boundedness of the L) -norm of kernels R, and %, in
both cases ABy, 1 and A6, |. So, we do not discuss this case. That is, the situation
is the same as in the one-dimensional case.
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