APPROXIMATION BY MARCINKIEWICZ $\Theta-M E A N S$ OF DOUBLE WALSH-FOURIER SERIES

István Blahota, Károly Nagy and George Tephnadze

(Communicated by T. Erdélyi)

Abstract

In this article we discuss the behaviour of Θ-means of quadratical partial sums of double Walsh series of a function in $L^{p}\left(G^{2}\right)(1 \leqslant p \leqslant \infty)$. In case $p=\infty$ by $L^{p}\left(G^{2}\right)$ we mean C, the collection of continuous functions on G^{2}. We present the rate of the approximation by Θ-means, in particular, in $\operatorname{Lip}(\alpha, p)$, where $\alpha>0$ and $1 \leqslant p \leqslant \infty$.

Our main theorem generalizes two result of Nagy on Nörlund means and weighted means of the cubical partial sums of double Walsh-Fourier series [15, 16]. Specifically, we give the twodimensional analogue of the two results of Móricz, Siddiqi on Nörlund means [14] and Móricz, Rhoades on weighted means [12].

1. One- and two-dimensional Walsh-Fourier series and summation methods

Now, we give a brief introduction to the Walsh-Fourier analysis [1, 18].
Let \mathbb{P} be the set of positive natural numbers and $\mathbb{N}:=\mathbb{P} \cup\{0\}$. Let G denote the Walsh group. The elements of Walsh group G are sequences of numbers 0 and 1, that is $x=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$ with $x_{k} \in\{0,1\}(k \in \mathbb{N})$.

The group operation on G is the coordinate-wise addition modulo 2 (denoted by +), the normalized Haar measure is denoted by μ. Dyadic intervals are defined in usual way

$$
I_{0}(x):=G, \quad I_{n}(x):=\left\{y \in G: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, y_{n+1}, \ldots\right)\right\}
$$

for $x \in G, n \in \mathbb{P}$. They form a base for the neighbourhoods of G. Let $0=(0: i \in \mathbf{N}) \in G$ denote the null element of G and $I_{n}:=I_{n}(0)$ for $n \in \mathbb{N}$. Set $e_{i}:=(0, \ldots, 0,1,0, \ldots)$, where the i th coordinate is 1 and the rest are $0(i \in \mathbb{N})$.

Let L^{p} denote the usual Lebesgue spaces on G (with the corresponding norm $\|\cdot\|_{p}$). In the present paper we follow the notation of Móricz and Siddiqi [14]. For the sake of brevity in notation, we agree to write L^{∞} instead of C, as Móricz and Siddiqi did, and set $\|f\|_{\infty}:=\sup \{|f(x)|: x \in G\}$.

[^0]For $x \in G$ we define $|x|$ by

$$
|x|:=\sum_{i=0}^{\infty} \frac{x_{i}}{2^{i+1}}
$$

The modulus of continuity in $L^{p}, 1 \leqslant p \leqslant \infty$, of a function $f \in L^{p}$ is defined by

$$
\omega_{p}(f, \delta):=\sup _{|t|<\delta}\|f(.+t)-f(.)\|_{p}, \quad \delta>0
$$

The Lipschitz classes in L^{p} for each $\alpha>0$ are defined by

$$
\operatorname{Lip}(\alpha, p):=\left\{f \in L^{p}: \omega_{p}(f, \delta)=O\left(\delta^{\alpha}\right) \text { as } \delta \rightarrow 0\right\}
$$

For $x=\left(x^{1}, x^{2}\right) \in G^{2}$ we define $|x|$ by $|x|^{2}:=\left|x^{1}\right|^{2}+\left|x^{2}\right|^{2}$. Thus, for $f \in L^{p}\left(G^{2}\right)$ $(1 \leqslant p \leqslant \infty)$ the modulus of continuity $\omega_{p}(f, \delta)$ and Lipschitz classes $\operatorname{Lip}(\alpha, p)$ are well defined ($\delta>0, \alpha>0$). We define the mixed modulus of continuity as follows

$$
\begin{aligned}
& \omega_{1,2}^{p}\left(f, \delta_{1}, \delta_{2}\right):= \\
& \sup \left\{\left\|f\left(.+x^{1}, .+x^{2}\right)-f\left(.+x^{1}, .\right)-f\left(., .+x^{2}\right)+f(., .)\right\|_{p}:\left|x^{1}\right| \leqslant \delta_{1},\left|x^{2}\right| \leqslant \delta_{2}\right\},
\end{aligned}
$$

where $\delta_{1}, \delta_{2}>0$.
The Rademacher functions are defined as

$$
r_{k}(x):=(-1)^{x_{k}} \quad(x \in G, k \in \mathbb{N})
$$

The Walsh-Paley functions are defined by the help of Rademacher functions. That is, $w_{0}=1$ and for $n \geqslant 1$

$$
w_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}}=r_{|n|}(x)(-1)^{\sum_{k=0}^{|n|-1} n_{k} x_{k}}
$$

where the natural number n is expressed in the number system based 2 , in the form

$$
n=\sum_{i=0}^{\infty} n_{i} 2^{i}, \quad n_{i} \in\{0,1\}(i \in \mathbb{N})
$$

(in this expression only a finite number of n_{i} 's different from zero). Let the order of $n>0$ be denoted by $|n|:=\max \left\{j \in \mathbb{N}: n_{j} \neq 0\right\}$. The Dirichlet kernels are defined by

$$
D_{n}:=\sum_{k=0}^{n-1} w_{k}
$$

where $n \in \mathbb{P}, D_{0}:=0$. The 2^{n} th Dirichlet kernels have a closed form (see e.g. [18])

$$
D_{2^{n}}(x)= \begin{cases}2^{n}, & \text { if } x \in I_{n} \tag{1}\\ 0, & \text { otherwise }(n \in \mathbb{N})\end{cases}
$$

It is also known that

$$
\begin{equation*}
D_{2^{A}+j}(x)=D_{2^{A}}(x)+r_{A}(x) D_{j}(x), \quad j=0,1, \ldots, 2^{A}-1 . \tag{2}
\end{equation*}
$$

(see [18]). The nth Fejér mean and Fejér kernel of Walsh-Fourier series are defined by

$$
\sigma_{n}(f ; x):=\frac{1}{n} \sum_{i=0}^{n-1} S_{i}(f ; x), \quad K_{n}(x):=\frac{1}{n} \sum_{i=0}^{n-1} D_{i}(x)
$$

In 2018, Toledo [20] improved Yano's [26] basic inequality. He proved that

$$
\begin{equation*}
\left\|K_{n}\right\|_{1} \leqslant \frac{17}{15} \quad \text { for all } n \in \mathbb{N} \tag{3}
\end{equation*}
$$

A Sidon type inequality follows in the next lemma [13, Lemma 1], we will apply it, later.

Lemma 1. (Móricz, Schipp [13]) For every $1<p \leqslant 2$, sequence $\left\{a_{k}\right\}$ of real numbers, and integer $n \geqslant 1$,

$$
\left\|\sum_{k=1}^{n} a_{k} D_{k}\right\|_{1} \leqslant \frac{2 p}{p-1} n^{1-1 / p}\left[\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right]^{1 / p}
$$

On G^{2} we consider the two-dimensional system as $\left\{w_{n^{1}}\left(x^{1}\right) \times w_{n^{2}}\left(x^{2}\right): n:=\right.$ $\left.\left(n^{1}, n^{2}\right) \in \mathbb{N}^{2}\right\}$. The two-dimensional Fourier coefficients, the rectangular partial sums of the Fourier series and Dirichlet kernels are defined in the usual way. The nth Marcinkiewicz mean and Marcinkiewicz kernel of Walsh-Fourier series are defined by

$$
\mathscr{M}_{n}\left(f ; x^{1}, x^{2}\right):=\frac{1}{n} \sum_{i=0}^{n-1} S_{i, i}\left(f ; x^{1}, x^{2}\right), \quad \mathscr{K}_{n}\left(x^{1}, x^{2}\right):=\frac{1}{n} \sum_{i=0}^{n-1} D_{i}\left(x^{1}\right) D_{i}\left(x^{2}\right)
$$

Next lemma proved by Glukhov [8] is the two-dimensional analogue of Lemma 1 for $p=2$.

Lemma 2. (Glukhov [8]) Let $\alpha_{1}, \ldots, \alpha_{n}$ be real numbers. Then

$$
\frac{1}{n}\left\|\sum_{k=1}^{n} \alpha_{k} D_{k}(.) D_{k}(. .)\right\|_{1} \leqslant \frac{c}{\sqrt{n}}\left(\sum_{k=1}^{n} \alpha_{k}^{2}\right)^{1 / 2}
$$

where c is an absolute constant.
As a corollary of Lemma 2 there exists a positive constant c such that

$$
\begin{equation*}
\left\|\mathscr{K}_{n}\right\|_{1} \leqslant c \quad \text { for all } n \in \mathbb{N} \tag{4}
\end{equation*}
$$

Now, let us set the sequence of matrices Θ_{n} in the next form

$$
\Theta_{n}:=\left(\begin{array}{ccccc}
\theta_{0,1} & 0 & 0 & \ldots & 0 \\
\theta_{0,2} & \theta_{1,2} & 0 & \ldots & 0 \\
\theta_{0,3} & \theta_{1,3} & \theta_{2,3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\theta_{0, n} & \theta_{1, n} & \theta_{2, n} & \ldots & \theta_{n-1, n}
\end{array}\right)
$$

We always assume that $\theta_{0, k}=1$ for all $k \in\{1, \ldots, n\}$.
Let the nth (one-dimensional) Θ-mean and kernel be defined by

$$
\begin{equation*}
\sigma_{n}^{\Theta}(f ; x):=\sum_{k=0}^{n-1} \theta_{k, n} \hat{f}(k) w_{k}(x), \quad K_{n}^{\Theta}(x):=\sum_{k=0}^{n-1} \theta_{k, n} w_{k}(x) \tag{5}
\end{equation*}
$$

(see [5, 21]). It is easily seen that

$$
\sigma_{n}^{\Theta}(f ; x):=\int_{G} f(t) K_{n}^{\Theta}(t+x) d \mu(t)
$$

Using Abel's transformation we immediately have that

$$
\begin{equation*}
\sigma_{n}^{\Theta}(f ; x)=-\sum_{l=1}^{n} \Delta \theta_{l-1, n} S_{l}(f ; x) \tag{6}
\end{equation*}
$$

with the notation $\Delta \theta_{k, n}:=\theta_{k+1, n}-\theta_{k, n}\left(\theta_{n, n}=0\right)$ for $0 \leqslant k<n$. Let us set $\Delta^{2} \theta_{k, n}:=$ $\Delta \theta_{k+1, n}-\Delta \theta_{k, n}$, where $0 \leqslant k<n$ and $\theta_{n+1, n}:=0$ (it is natural, see the matrix Θ_{n+2}).

Taking into account equality (6) the nth Θ-mean and kernel of quadratical partial sums defined by

$$
\begin{align*}
\sigma_{n}^{\Theta}\left(f ; x^{1}, x^{2}\right) & =-\sum_{l=1}^{n} \Delta \theta_{l-1, n} S_{l, l}\left(f ; x^{1}, x^{2}\right) \\
\mathscr{K}_{n}^{\Theta}\left(x^{1}, x^{2}\right) & =-\sum_{l=1}^{n} \Delta \theta_{l-1, n} D_{l}\left(x^{1}\right) D_{l}\left(x^{2}\right) \tag{7}
\end{align*}
$$

It is also called Marcinkiewicz Θ-summation of double Walsh-Fourier series of a function $f \in L^{1}\left(G^{2}\right)$ (see [24]).

EXAMPLE 1. Let $\left\{q_{n}: n \geqslant 0\right\}$ be a sequence of nonnegative numbers. Let us set $Q_{n}:=\sum_{k=0}^{n-1} q_{k}(n \geqslant 1)$. (It is always assumed that $q_{0}>0$ and $\lim _{n \rightarrow \infty} Q_{n}=\infty$.) If we choose $\theta_{k, n}=\frac{\sum_{i=0}^{n-k-1} q_{i}}{Q_{n}}(0 \leqslant k \leqslant n-1)$, taking into account equality (7), we immediately have $\sigma_{n}^{\Theta}(f)=\sum_{k=1}^{n} \frac{q_{n-k}}{Q_{n}} S_{k, k}(f)$. It means that Nörlund-mean of quadratical partial sums is a special Θ-mean of quadratical partial sums.

For the one-dimensional Nörlund means of Walsh-Fourier series of a function f in $L^{p}(1 \leqslant p \leqslant \infty)$ the rate of the approximation was given in terms of modulus of continuity [14]. In particular, functions in $\operatorname{Lip}(\alpha, p)$, where $\alpha>0$ and $1 \leqslant p \leqslant \infty$ were
considered, also. As special cases Móricz and Siddiqi obtained the earlier results on the rate of the approximation by Cesàro means given by Yano [27], Jastrebova [10] and Skvortsov [19]. The approximation properties of the Cesàro means of negative order was studied by Goginava in 2002 [9]. Recently, Fridli, Manchanda and Siddiqi generalized the result of Móricz and Siddiqi for homogeneous Banach spaces and dyadic Hardy spaces [7]. A few years ago the second author investigated the rate of the approximation by Nörlund means of quadratical partial sums of double Walsh-Fourier series for functions in the space $L^{p}\left(G^{2}\right)(1 \leqslant p \leqslant \infty)$ [15]. In 2012, the general Nörlund mean method in dimension two was discussed [17], also. Recently, the first author, Baramidze, Memić, Persson, Tephnadze and Wall have some new results with respect to this topic [2, 4, 11].

EXAMPLE 2. Let $\left\{p_{n}: n \geqslant 1\right\}$ be a sequence of nonnegative numbers. (It is always assumed that $p_{1}>0$ and $\lim _{n \rightarrow \infty} P_{n}=\infty$, which is the condition for regularity.) If we choose $\theta_{k, n}=\frac{\sum_{i=k+1}^{n} p_{i}}{P_{n}}(0 \leqslant k \leqslant n-1)$, taking into account equality (7), we get $\sigma_{n}^{\Theta}(f)=\frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} S_{k, k}(f)$. It means that weighted mean of Marcinkiewicz type is a special Θ-mean of Marcinkiewicz type.

The rate of the approximation by weighted means of one-dimensional WalshFourier series of a function in $L^{p}(1 \leqslant p \leqslant \infty)$ was presented in terms of modulus of continuity [12]. In particular, functions in $\operatorname{Lip}(\alpha, p)$, where $\alpha>0$ and $1 \leqslant p \leqslant \infty$ were considered, also. As special cases Móricz and Rhoades obtained the earlier results given by Yano [27], Jastrebova [10] on the rate of the approximation by Cesàro means.

In 2010, the second author discussed the rate of the approximation by weighted means of quadratical partial sums of two-dimensional Walsh-Fourier series for functions in $L^{p}\left(G^{2}\right)(1 \leqslant p \leqslant \infty)$ [16].

Our work is motivated by the paper of Móricz, Siddiqi [14] on Nörlund mean method and the paper of Móricz, Rhoades [12] on weighted mean method. Both of them present the result for one-dimensional Walsh-Fourier series. Recently, the results in papers [12, 14] were generalized by the authors in paper [3]. Namely the approximation properties of one-dimensional θ-mean was discussed. It is important to note that some ideas are coming from the paper of Chripkó [5]. She studied the order of convergence of Θ-mean with respect to Jacobi-Fourier series.

Our main aim is to investigate the rate of the approximation of Marcinkiewicz Θ-mean in terms of modulus of continuity under some general conditions. Our main theorem (Theorem 1) give a common generalization of two result of the second author [15, 16] (see Example 1 and 2). Specifically, we give the two-dimensional analogue of two results of Móricz, Siddiqi on Nörlund means [14] and Móricz, Rhoades on weighted means [12]. Moreover, we present some new results under general conditions for Marcinkiewicz Θ-summability.

It is important to note that other aspects of Θ-summability methods with respect to Walsh-Fourier series are treated in [21, 22, 23, 24].

2. Auxiliary results

Let \mathscr{P}_{n} be the collection of one-dimensional Walsh polynomials of order less than n, that is, functions of the form

$$
P(x)=\sum_{k=0}^{n-1} a_{k} w_{k}(x)
$$

where $n \geqslant 1$ and $\left\{a_{k}\right\}$ is a sequence of real numbers. On G^{2} we consider the twodimensional Walsh polynomials of order less than (n, n) as

$$
T\left(x^{1}, x^{2}\right):=\sum_{k=1}^{n} \alpha_{k} D_{k}\left(x^{1}\right) D_{k}\left(x^{2}\right)
$$

where $n \geqslant 1$ and $\left\{\alpha_{k}\right\}$ is a sequence of real numbers. We note that not every twodimensional Walsh-polynomial can be written in this form. The set of this special type two-dimensional polynomials are denoted by $\mathscr{P}_{n, n}$.

The next Lemma can be derived from the method presented in [15, page 313-314].

Lemma 3. (Nagy [15]) Let $P \in \mathscr{P}_{2^{A}, 2^{A}}, f \in L^{p}\left(G^{2}\right)$, where $A, B \in \mathbb{P}$ and $1 \leqslant$ $p \leqslant \infty$. Then there exists a positive constant c such that

$$
\left\|\int_{G^{2}}(f(.+x)-f(.)) r_{A}\left(x^{1}\right) r_{A}\left(x^{2}\right) P(x) d \mu(x)\right\|_{p} \leqslant c\|P\|_{1} \omega_{1,2}^{p}\left(f, 2^{-A}, 2^{-A}\right)
$$

with the notation $x=\left(x^{1}, x^{2}\right) \in G^{2}$.
As specially it is proved that

$$
\left\|\int_{G^{2}}(f(.+x)-f(.)) r_{A}\left(x^{1}\right) r_{A}\left(x^{2}\right) \mathscr{K}_{j}(x) d \mu(x)\right\|_{p} \leqslant c \omega_{1,2}^{p}\left(f, 2^{-A}, 2^{-A}\right)
$$

for $|j| \leqslant A$.
We need the next Lemma proved in [17].
Lemma 4. (Nagy [17]) Let $P \in \mathscr{P}_{2^{A}}, f \in L^{p}\left(G^{2}\right)(1 \leqslant p \leqslant \infty)$ and $A \in \mathbb{P}$. Then there exists a positive constant c such that

$$
\left\|\int_{G^{2}}(f(.+x)-f(.)) D_{2^{A}}\left(x^{2}\right) r_{A}\left(x^{1}\right) P\left(x^{1}\right) d \mu(x)\right\|_{p} \leqslant c\|P\|_{1} \omega_{p}\left(f, 2^{-A}\right)
$$

For two-dimensional variable $\left(x^{1}, x^{2}\right) \in G^{2}$ we use the notations

$$
\begin{array}{ll}
r_{n}^{1}\left(x^{1}, x^{2}\right):=r_{n}\left(x^{1}\right), & D_{n}^{1}\left(x^{1}, x^{2}\right):=D_{n}\left(x^{1}\right), \\
r_{n}^{2}\left(x^{1}, x^{2}\right):=r_{n}\left(x^{1}, x^{2}\right):=K_{n}\left(x^{1}\right), \\
D_{n}^{2}\left(x^{1}, x^{2}\right):=D_{n}\left(x^{2}\right), & K_{n}^{2}\left(x^{1}, x^{2}\right):=K_{n}\left(x^{2}\right)
\end{array}
$$

for any $n \in \mathbb{N}$.

Lemma 5. Let $n>2$ be a positive number, then we have

$$
\begin{aligned}
\mathscr{K}_{n}^{\Theta}= & -\sum_{j=0}^{|n|-1} \sum_{k=0}^{2^{j}-1} \Delta \theta_{2^{j}+k-1, n} D_{2^{j}}^{1} D_{2^{j}}^{2}-\sum_{k=0}^{n-2^{|n|}} \Delta \theta_{2^{|n|}+k-1, n} D_{2^{|n|}}^{1} D_{2^{|n|}}^{2} \\
& +\sum_{j=0}^{|n|-1} D_{2^{j}}^{2} r_{j}^{1} \sum_{k=0}^{2^{j}-2} \Delta^{2} \theta_{2^{j}+k-1, n}(k+1) K_{k+1}^{1}-\sum_{j=0}^{|n|-1} D_{2^{j}}^{2} r_{j}^{1} \Delta \theta_{2^{j+1}-2,2^{2}}{ }^{j} K_{2^{j}}^{1} \\
& +\sum_{j=0}^{|n|-1} D_{2^{j}}^{1} r_{j}^{2} \sum_{k=0}^{2^{j}-2} \Delta^{2} \theta_{2^{j}+k-1, n}(k+1) K_{k+1}^{2}-\sum_{j=0}^{|n|-1} D_{2^{j}}^{1} r_{j}^{2} \Delta \theta_{2^{j+1}-2,2^{2}}{ }^{j} K_{2^{j}}^{2} \\
& +\sum_{j=0}^{|n|-1} r_{j}^{1} r_{j}^{2} \sum_{k=0}^{2^{j}-2} \Delta^{2} \theta_{2^{j}+k-1, n}(k+1) \mathscr{K}_{k+1}-\sum_{j=0}^{|n|-1} r_{j}^{1} r_{j}^{2} \Delta \theta_{2^{j+1}-2, n^{j}} \mathscr{K}_{2^{j}} \\
& -D_{2^{|n|}}^{2} r_{|n|}^{1} R_{n}^{1}-D_{2^{|n|}}^{1} r_{|n|}^{2} R_{n}^{2}-r_{|n|}^{1} r_{|n|}^{2} \mathscr{R}_{n},
\end{aligned}
$$

with the notation $R_{n}=\sum_{k=0}^{n-2^{|n|}} \Delta \theta_{2^{|n|}+k-1, n} D_{k}$ and $\mathscr{R}_{n}=\sum_{k=0}^{n-2^{|n|}} \Delta \theta_{2^{|n|}+k-1, n} D_{k}^{1} D_{k}^{2}$.

Proof. First, we use equality (2) for \mathscr{K}_{n}^{Θ} (see equality (7), too)

$$
\begin{aligned}
\mathscr{K}_{n}^{\Theta}= & -\sum_{j=0}^{|n|-1} \sum_{l=2^{j}}^{2^{j+1}-1} \Delta \theta_{l-1, n} D_{l}^{1} D_{l}^{2}-\sum_{l=2^{|n|}}^{n} \Delta \theta_{l-1, n} D_{l}^{1} D_{l}^{2} \\
= & -\sum_{j=0}^{|n|-1} \sum_{2^{j}-1}^{2^{j}} \Delta \theta_{2^{j}+k-1, n} D_{2^{j}+k}^{1} D_{2^{j}+k}^{2}-\sum_{k=0}^{n-2^{|n|}} \Delta \theta_{2^{|n|}+k-1, n} D_{2^{|n|}+k}^{1} D_{2^{|n|}+k}^{2} \\
= & -\sum_{j=0}^{|n|-1} \sum_{2^{j}-1}^{2^{j}} \Delta \theta_{2^{j}+k-1, n} D_{2^{j}}^{1} D_{2^{j}}^{2}-\sum_{j=0}^{|n|-1} \sum_{k=0}^{2^{j}-1} \Delta \theta_{2^{j}+k-1, n} r_{j}^{1} D_{k}^{1} D_{2^{j}}^{2} \\
& -\sum_{j=0}^{|n|-1} \sum_{2^{j}-1}^{2^{j}} \Delta \theta_{2^{j}+k-1, n} D_{2^{j}}^{1} r_{j}^{2} D_{k}^{2}-\sum_{j=0}^{|n|-1} \sum_{k=0}^{j^{j}-1} \Delta \theta_{2^{j}+k-1, n} r_{j}^{1} r_{j}^{2} D_{k}^{1} D_{k}^{2} \\
& -\sum_{k=0}^{n-2^{|n|}} \Delta \theta_{2^{|n|}+k-1, n} D_{2^{|n|}}^{1} D_{2^{|n|}}^{2}-D_{2^{|n|}}^{2} r_{|n|}^{1} \sum_{k=0}^{n-2^{|n|}} \Delta \theta_{2^{|n|}+k-1, n} D_{k}^{1} \\
& -D_{2^{|n|}}^{1} r_{|n|}^{2} \sum_{k=0}^{n-2^{|n|}} \Delta \theta_{2^{|n|}+k-1, n} D_{k}^{2}-r_{|n|}^{1} r_{|n|}^{2} \sum_{k=0}^{n-2^{|n|}} \Delta \theta_{2^{|n|}+k-1, n} D_{k}^{1} D_{k}^{2} \\
= & \sum_{l=1}^{8} K_{n}^{\Theta, l} .
\end{aligned}
$$

For the expression $K_{n}^{\Theta, 2}, K_{n}^{\Theta, 3}$ and $K_{n}^{\Theta, 4}$ we use Abel's transformation

$$
\begin{aligned}
K_{n}^{\Theta, 2} & =-\sum_{j=0}^{|n|-1} D_{2^{j}}^{2} r_{j}^{1} \sum_{k=0}^{2^{j}-1} \Delta \theta_{2^{j}+k-1, n} D_{k}^{1} \\
& =-\sum_{j=0}^{|n|-1} D_{2^{j}}^{2} r_{j}^{1}\left(\sum_{k=0}^{2^{j}-2}\left(\Delta \theta_{2^{j}+k-1, n}-\Delta \theta_{2^{j}+k, n}\right) \sum_{i=0}^{k} D_{i}^{1}+\Delta \theta_{2^{j+1}-2, n} \sum_{k=0}^{2^{j}-1} D_{k}^{1}\right) \\
& =\sum_{j=0}^{|n|-1} D_{2^{j}}^{2} r_{j}^{1}\left(\sum_{k=0}^{2^{j}-2} \Delta^{2} \theta_{2^{j}+k-1, n}(k+1) K_{k+1}^{1}-\Delta \theta_{2^{j+1}-2, n^{2}}{ }^{j} K_{2^{j}}^{1}\right),
\end{aligned}
$$

($K_{n}^{\Theta, 3}$ has got a similar form) and

$$
\begin{aligned}
K_{n}^{\Theta, 4} & =-\sum_{j=0}^{|n|-1} r_{j}^{1} r_{j}^{2} \sum_{k=0}^{2^{j}-1} \Delta \theta_{2^{j}+k-1, n} D_{k}^{1} D_{k}^{2} \\
& =-\sum_{j=0}^{|n|-1} r_{j}^{1} r_{j}^{2}\left(\sum_{k=0}^{2^{j}-2}\left(\Delta \theta_{2^{j}+k-1, n}-\Delta \theta_{2^{j}+k, n}\right) \sum_{i=0}^{k} D_{i}^{1} D_{i}^{2}+\Delta \theta_{2^{j+1}-2, n} \sum_{k=0}^{2^{j}-1} D_{k}^{1} D_{k}^{2}\right) \\
& =\sum_{j=0}^{|n|-1} r_{j}^{1} r_{j}^{2}\left(\sum_{k=0}^{2^{j}-2} \Delta^{2} \theta_{2^{j}+k-1, n}(k+1) \mathscr{K}_{k+1}-\Delta \theta_{2^{j+1}-2, n^{j}} \mathscr{K}_{2^{j}}\right)
\end{aligned}
$$

Summarising our results on the expressions $K_{n}^{\Theta, 1}, \ldots, K_{n}^{\Theta, 8}$, we complete the proof.

3. The rate of the approximation by Θ-mean of cubical partial sums

In the next theorem the coefficients $\theta_{k, n} \in[0,1]$ for all $k, n \in \mathbb{N}$.
THEOREM 1. Let $f \in L^{p}\left(G^{2}\right)(1 \leqslant p \leqslant \infty)$. Let $n>2$ be a positive integer. Let the finite sequence $\left\{\theta_{k, n}: 0 \leqslant k \leqslant n-1\right\}$ of nonnegative numbers be nonincreasing (in $\operatorname{sign} \theta_{k, n} \downarrow$).
a.) Let the finite sequence of differences $\left\{\Delta \theta_{k, n}: 0 \leqslant k<n\right\}$ be nonincreasing (in sign $\Delta \theta_{k, n} \downarrow$). We suppose that

$$
\begin{equation*}
\theta_{n-1, n}=O\left(\frac{1}{n}\right) \tag{8}
\end{equation*}
$$

Then there exists a positive constant c such that

$$
\begin{equation*}
\left\|\sigma_{n}^{\Theta}(f)-f\right\|_{p} \leqslant c \sum_{j=0}^{|n|-1} 2^{j}\left|\Delta \theta_{2^{j+1}-2, n}\right| \omega_{p}\left(f, 2^{-j}\right)+O\left(\omega_{p}\left(f, 2^{-|n|}\right)\right) \tag{9}
\end{equation*}
$$

b.) Let the finite sequence of differences $\left\{\Delta \theta_{k, n}: 0 \leqslant k<n\right\}$ be nondecreasing (in sign $\Delta \theta_{k, n} \uparrow$). Then there exists a positive constant c such that

$$
\begin{equation*}
\left\|\sigma_{n}^{\Theta}(f)-f\right\|_{p} \leqslant c \sum_{j=0}^{|n|-1} 2^{j}\left|\Delta \theta_{2^{j}-1, n}\right| \omega_{p}\left(f, 2^{-j}\right)+O\left(\omega_{p}\left(f, 2^{-|n|}\right)\right) \tag{10}
\end{equation*}
$$

REMARK 1. The condition $0 \leqslant \theta_{k, n} \leqslant 1$ for all $k \in\{0, \ldots, n-1\}$ and $n \in \mathbb{P}$ is a usual condition, since in Example 1 and 2 it is satisfied.

For Example 1, easy to see that $\Delta \theta_{2^{j}-1, n}=-\frac{q_{n-2 j}}{Q_{n}}$ and $\Delta \theta_{2^{j+1}-2, n}=-\frac{q_{n-2}{ }^{j+1}+1}{Q_{n}}$. Thus, as a consequence of our main theorem we get back an analogical form of result of second author on Nörlund means of Marcinkiewicz type [15].

For Example 2, $\Delta \theta_{2^{j}-1, n}=-\frac{p_{2 j}}{P_{n}}$ and $\Delta \theta_{2^{j+1}-2, n}=-\frac{p_{2 j+1-1}}{P_{n}}$ hold. Thus, as a consequence of our theorem we have an analogical form of the result of Nagy on weighted means of Marcinkiewicz type [16].

Proof of Theorem 1. We carry out the proof for $1 \leqslant p<\infty$, for $p=\infty$ the proof is similar (where $L^{\infty}=C$). During this proof c denotes a positive constant, which may vary at different appearances. Keeping in mind that $\theta_{0, k}=1$ for all k, we use Lemma 5 and the usual Minkowski's inequality

$$
\begin{aligned}
\left\|\sigma_{n}^{\Theta}(f)-f\right\|_{p} & =\left(\int_{G^{2}}\left|\sigma_{n}^{\Theta}(f, x)-f(x)\right|^{p} d \mu(x)\right)^{\frac{1}{p}} \\
& =\left(\int_{G^{2}}\left|\int_{G^{2}} \mathscr{K}_{n}^{\Theta}(t)(f(x+t)-f(x)) d \mu(t)\right|^{p} d \mu(x)\right)^{\frac{1}{p}} \\
& \leqslant \sum_{k=1}^{8}\left(\int_{G^{2}}\left|\int_{G^{2}} K_{n}^{\Theta, k}(t)(f(x+t)-f(x)) d \mu(t)\right|^{p} d \mu(x)\right)^{\frac{1}{p}} \\
& =: \sum_{k=1}^{8} I_{k, n}
\end{aligned}
$$

Using generalized Minkowski's inequality ([28], vol. 1, p. 19) for the expressions $I_{1, n}$ and $I_{5, n}$, we obtain

$$
\begin{align*}
I_{1, n} & \leqslant \sum_{j=0}^{|n|-1}\left|\sum_{k=0}^{2^{j}-1} \Delta \theta_{2^{j}+k-1, n}\right| \int_{G^{2}} D_{2^{j}}\left(t^{1}\right) D_{2^{j}}\left(t^{2}\right)\left(\int_{G^{2}}|f(x+t)-f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}} d \mu(t) \\
& \leqslant c \sum_{j=0}^{|n|-1}\left|\sum_{k=0}^{2^{j}-1} \Delta \theta_{2^{j}+k-1, n}\right| \omega_{p}\left(f, 2^{-j}\right), \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
I_{5, n} & \leqslant\left|\sum_{k=0}^{n-2^{|n|}} \Delta \theta_{2^{|n|}+k-1, n}\right| \int_{G^{2}} D_{2^{|n|}}\left(t^{1}\right) D_{2^{|n|}}\left(t^{2}\right)\left(\int_{G^{2}}|f(x+t)-f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}} d \mu(t) \\
& \leqslant c\left|\sum_{k=0}^{n-2^{|n|}} \Delta \theta_{2^{|n|}+k-1, n}\right| \omega_{p}\left(f, 2^{-|n|}\right) . \tag{12}
\end{align*}
$$

In case a.) (in sign $\Delta \theta_{k, n} \downarrow$) we write $\left|\sum_{k=0}^{2^{j}-1} \Delta \theta_{2^{j}+k-1, n}\right| \leqslant-2^{j} \Delta \theta_{2^{j+1}-2, n}$ and

$$
I_{1, n} \leqslant c \sum_{j=0}^{|n|-1} 2^{j}\left|\Delta \theta_{2^{j+1}-2, n}\right| \omega_{p}\left(f, 2^{-j}\right) .
$$

In case b.) (in sign $\Delta \theta_{k, n} \uparrow$) we have $\left|\sum_{k=0}^{2^{j}-1} \Delta \theta_{2^{j}+k-1, n}\right| \leqslant-2^{j} \Delta \theta_{2^{j}-1, n}$ and

$$
I_{1, n} \leqslant-\sum_{j=0}^{|n|-1} 2^{j} \Delta \theta_{2^{j}-1, n} \omega_{p}\left(f, 2^{-j}\right)
$$

Since, $\left|\sum_{k=0}^{n-2^{|n|}} \Delta \theta_{2^{|n|}+k-1, n}\right|=\theta_{2^{|n|}-1, n}-\theta_{n, n} \leqslant 1$, in case a.) and b.) we immediately write

$$
I_{5, n} \leqslant c \omega_{p}\left(f, 2^{-|n|}\right)
$$

For the expression $I_{2, n}$ usual Minkowski's inequality yields

$$
\begin{aligned}
I_{2, n} \leqslant & \sum_{j=0}^{|n|-1} \sum_{k=0}^{2^{j}-2}\left|\Delta^{2} \theta_{2^{j}+k-1, n}\right|(k+1) \\
& \cdot\left(\int_{G^{2}}\left|\int_{G^{2}} D_{2^{j}}\left(t^{2}\right) r_{j}\left(t^{1}\right) K_{k+1}\left(t^{1}\right)(f(x+t)-f(x)) d \mu(t)\right|^{p} d \mu(x)\right)^{\frac{1}{p}} \\
& +\sum_{j=0}^{|n|-1}\left|\Delta \theta_{2^{j+1}-2, n}\right| 2^{j} \\
& \cdot\left(\int_{G^{2}}\left|\int_{G^{2}} D_{2^{j}}\left(t^{2}\right) r_{j}\left(t^{1}\right) K_{2^{j}}\left(t^{1}\right)(f(x+t)-f(x)) d \mu(t)\right|^{p} d \mu(x)\right)^{\frac{1}{p}} \\
= & I_{2, n}^{1}+I_{2, n}^{2}
\end{aligned}
$$

From Lemma 4 and inequality (3) we write

$$
\begin{align*}
I_{2, n}^{1} & \leqslant c \sum_{j=0}^{|n|-1} \sum_{k=0}^{2^{j}-2}\left|\Delta^{2} \theta_{2^{j}+k-1, n}\right|(k+1)\left\|K_{k+1}\right\|_{1} \omega_{p}\left(f, 2^{-j}\right) \\
& \leqslant c \sum_{j=0}^{|n|-1} \sum_{k=0}^{2^{j}-2}\left|\Delta^{2} \theta_{2^{j}+k-1, n}\right|(k+1) \omega_{p}\left(f, 2^{-j}\right) \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
I_{2, n}^{2} & \leqslant c \sum_{j=0}^{|n|-1}\left|\Delta \theta_{2^{j+1}-2, n}\right| 2^{j}\left\|K_{2 j}\right\|_{1} \omega_{p}\left(f, 2^{-j}\right) \tag{14}\\
& \leqslant c \sum_{j=0}^{|n|-1}\left|\Delta \theta_{2^{j+1}-2, n}\right| 2^{j} \omega_{p}\left(f, 2^{-j}\right) \tag{15}
\end{align*}
$$

At first, we deal with expression $I_{2, n}^{1}$. In case a.) (in sign $\Delta \theta_{k, n} \downarrow$),

$$
\begin{aligned}
\sum_{k=0}^{2^{j}-2}\left|\Delta^{2} \theta_{2^{j}+k-1, n}\right|(k+1) & =\sum_{k=0}^{2^{j}-2}\left(\Delta \theta_{2^{j}+k-1, n}-\Delta \theta_{2^{j}+k, n}\right)(k+1) \\
& =\sum_{k=0}^{2^{j}-2} \Delta \theta_{2^{j}+k-1, n}-\left(2^{j}-1\right) \Delta \theta_{2^{j+1}-2, n} \\
& \leqslant-2^{j} \Delta \theta_{2^{j+1}-2, n}
\end{aligned}
$$

and

$$
I_{2, n}^{1} \leqslant c \sum_{j=0}^{|n|-1} 2^{j}\left|\Delta \theta_{2^{j+1}-2, n}\right| \omega_{p}\left(f, 2^{-j}\right)
$$

In case b.) (in sign $\Delta \theta_{k, n} \uparrow$) we have

$$
\begin{aligned}
\sum_{k=0}^{2^{j}-2}\left|\Delta^{2} \theta_{2^{j}+k-1, n}\right|(k+1) & =\left(2^{j}-1\right) \Delta \theta_{2^{j+1}-2, n}-\sum_{k=0}^{2^{j}-2} \Delta \theta_{2^{j}+k-1, n} \\
& \leqslant-\sum_{k=0}^{2^{j}-2} \Delta \theta_{2^{j}+k-1, n} \leqslant-2^{j} \Delta \theta_{2^{j}-1, n}
\end{aligned}
$$

and

$$
I_{2, n}^{1} \leqslant c \sum_{j=0}^{|n|-1} 2^{j}\left|\Delta \theta_{2^{j}-1, n}\right| \omega_{p}\left(f, 2^{-j}\right)
$$

Now, we discuss expression $I_{2, n}^{2}$. In case a.) (in sign $\Delta \theta_{k, n} \downarrow$), we immediately write

$$
I_{2, n}^{2} \leqslant c \sum_{j=0}^{|n|-1} 2^{j}\left|\Delta \theta_{2^{j+1}-2, n}\right| \omega_{p}\left(f, 2^{-j}\right) .
$$

In case b.) (in sign $\Delta \theta_{k, n} \uparrow$) we have

$$
I_{2, n}^{2} \leqslant c \sum_{j=0}^{|n|-1} 2^{j}\left|\Delta \theta_{2^{j}-1, n}\right| \omega_{p}\left(f, 2^{-j}\right)
$$

We discuss expression $I_{3, n}$ analogously. For expression $I_{4, n}$ we apply usual Minkowski's inequality

$$
\begin{aligned}
I_{4, n} \leqslant & \sum_{j=0}^{|n|-1} \sum_{k=0}^{2^{j}-2}\left|\Delta^{2} \theta_{2^{j}+k-1, n}\right|(k+1) \\
& \cdot\left(\int_{G^{2}}\left|\int_{G^{2}} r_{j}\left(t^{1}\right) r_{j}\left(t^{2}\right) \mathscr{K}_{k+1}(t)(f(x+t)-f(x)) d \mu(t)\right|^{p} d \mu(x)\right)^{\frac{1}{p}} \\
& +\sum_{j=0}^{|n|-1}\left|\Delta \theta_{2^{j+1}-2, n}\right| 2^{j} \\
& \cdot\left(\int_{G^{2}}\left|\int_{G^{2}} r_{j}\left(t^{1}\right) r_{j}\left(t^{2}\right) \mathscr{K}_{2^{j}}(t)(f(x+t)-f(x)) d \mu(t)\right|^{p} d \mu(x)\right)^{\frac{1}{p}} \\
= & I_{4, n}^{1}+I_{4, n}^{2} .
\end{aligned}
$$

By Lemma 3 and inequality (4) we immediately have

$$
\begin{align*}
I_{4, n}^{1} & \leqslant c \sum_{j=0}^{|n|-1} \sum_{k=0}^{2^{j}-2}\left|\Delta^{2} \theta_{2^{j}+k-1, n}\right|(k+1)\left\|\mathscr{K}_{k+1}\right\|_{1} \omega_{1,2}^{p}\left(f, 2^{-j}, 2^{-j}\right) \\
& \leqslant c \sum_{j=0}^{|n|-1} \sum_{k=0}^{2^{j}-2}\left|\Delta^{2} \theta_{2^{j}+k-1, n}\right|(k+1) \omega_{p}\left(f, 2^{-j}\right) \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
I_{4, n}^{2} & \leqslant c \sum_{j=0}^{|n|-1}\left|\Delta \theta_{2^{j+1}-2, n}\right| 2^{j}\left\|\mathscr{K}_{2 j}\right\|_{1} \omega_{1,2}^{p}\left(f, 2^{-j}, 2^{-j}\right) \\
& \leqslant c \sum_{j=0}^{|n|-1}\left|\Delta \theta_{2^{j+1}-2, n}\right| 2^{j} \omega_{p}\left(f, 2^{-j}\right) \tag{17}
\end{align*}
$$

In this point we can apply the same methods for $I_{4, n}^{1}$ and $I_{4, n}^{2}$ as we used for the expressions $I_{2, n}^{1}$ and $I_{2, n}^{2}$, respectively.

Now, we discuss the expression $I_{6, n}$ (we discuss $I_{7, n}$ analogously). Lemma 4 yields

$$
\begin{align*}
I_{6, n} & =\left(\int_{G^{2}}\left|\int_{G^{2}} D_{2^{|n|}}\left(t^{1}\right) r_{|n|}\left(t^{2}\right) R_{n}\left(t^{2}\right)(f(x+t)-f(x)) d \mu(t)\right|^{p} d \mu(x)\right)^{1 / p} \\
& \leqslant c\left\|R_{n}\right\|_{1} \omega_{p}\left(f, 2^{-|n|}\right) \tag{18}
\end{align*}
$$

At last, by Lemma 3 we write

$$
\begin{align*}
I_{8, n} & =\left(\int_{G^{2}}\left|\int_{G^{2}} r_{|n|}\left(t^{1}\right) r_{|n|}\left(t^{2}\right) \mathscr{R}_{n}(t)(f(x+t)-f(x)) d \mu(t)\right|^{p} d \mu(x)\right)^{1 / p} \\
& \leqslant c\left\|\mathscr{R}_{n}\right\|_{1} \omega_{1,2}^{p}\left(f, 2^{-|n|}, 2^{-|n|}\right) \leqslant c\left\|\mathscr{R}_{n}\right\|_{1} \omega_{p}\left(f, 2^{-|n|}\right) \tag{19}
\end{align*}
$$

Lemma 1 with $p=2$ implies that

$$
\begin{equation*}
\left\|R_{n}\right\|_{1} \leqslant c \quad \text { for all } n \in \mathbb{P} \tag{20}
\end{equation*}
$$

and Lemma 2 yields that

$$
\begin{equation*}
\left\|\mathscr{R}_{n}\right\|_{1} \leqslant c \quad \text { for all } n \in \mathbb{P} \tag{21}
\end{equation*}
$$

in both cases a.) and b.). Namely, denote $\left\|\mathscr{R}_{n}\right\|_{1}$ or $\left\|R_{n}\right\|_{1}$ by H_{n}. From these lemmas we obtain

$$
\begin{equation*}
H_{n} \leqslant c\left(n-2^{|n|}\right)^{1 / 2}\left[\sum_{k=0}^{n-2^{|n|}}\left|\Delta \theta_{2^{|n|}+k-1, n}\right|^{2}\right]^{1 / 2} \tag{22}
\end{equation*}
$$

Case a.) ($\left.\Delta \theta_{k, n} \downarrow\right)$ then using condition (8)

$$
H_{n} \leqslant c\left(n-2^{|n|}+1\right)\left|\Delta \theta_{n-1, n}\right| \leqslant c n \theta_{n-1, n} \leqslant c
$$

In case b.) $\left(\Delta \theta_{k, n} \uparrow\right)$ then

$$
\sum_{k=0}^{n-2^{|n|}}\left|\Delta \theta_{2^{|n|}+k-1, n}\right|^{2} \leqslant\left(n-2^{|n|}+1\right)\left|\Delta \theta_{2^{|n|}-1, n}\right|^{2}
$$

and $\left|\theta_{k, n}\right| \leqslant c$ (here $c=1$). Since $n-2^{|n|}+1 \leqslant 2^{|n|}$ we write

$$
H_{n} \leqslant c\left(n-2^{|n|}+1\right)\left|\Delta \theta_{2^{|n|}-1, n}\right| \leqslant c\left(\left|\Delta \theta_{0, n}\right|+\ldots+\left|\Delta \theta_{2^{|n|}-1, n}\right|\right) \leqslant c\left(\theta_{0, n}-\theta_{2^{|n|}, n}\right) \leqslant c
$$

This yields that the inequalities (20) and (21) are proved for all n. We immediately get

$$
I_{6, n} \leqslant c \omega_{p}\left(f, 2^{-|n|}\right) \quad \text { for all } n
$$

and

$$
I_{8, n} \leqslant c \omega_{p}\left(f, 2^{-|n|}\right) \quad \text { for all } n
$$

This completes the proof.
In the next Theorem we allow that the finite sequence $\left\{\theta_{k, n}: 0 \leqslant k \leqslant n-1\right\}$ has some negative values. Namely, $\theta_{k, n} \in\left[c_{*}, 1\right]$ with a negative number c_{*}.

THEOREM 2. Let $f \in L^{p}\left(G^{2}\right)(1 \leqslant p \leqslant \infty)$. Let $n>2$ be a positive natural number. Let the finite sequence $\left\{\theta_{k, n}: 0 \leqslant k \leqslant n-1\right\}$ be nonincreasing (in sign $\theta_{k, n} \downarrow$) and $\theta_{n-1, n}<0$.
a.) Let the finite sequence of differences $\left\{\Delta \theta_{k, n}: 0 \leqslant k \leqslant n-2\right\}$ be nonincreasing (in sign $\Delta \theta_{k, n} \downarrow$). Moreover, we suppose that

$$
\begin{equation*}
\left|\theta_{n-1, n}\right|=O\left(\frac{1}{\sqrt{n}}\right) \quad \text { and } \quad\left|\Delta \theta_{n-2, n}\right|=O\left(\frac{1}{n}\right) . \tag{23}
\end{equation*}
$$

Then there exists a positive constant c such that

$$
\begin{equation*}
\left\|\sigma_{n}^{\Theta}(f)-f\right\|_{p} \leqslant c \sum_{j=0}^{|n|-1} 2^{j}\left|\Delta \theta_{2^{j+1}-2, n}\right| \omega_{p}\left(f, 2^{-j}\right)+O\left(\omega_{p}\left(f, 2^{-|n|}\right)\right) \tag{24}
\end{equation*}
$$

b.) Let the finite sequence of differences $\left\{\Delta \theta_{k, n}: 0 \leqslant k \leqslant n-2\right\}$ be nondecreasing (in sign $\Delta \theta_{k, n} \uparrow$). Moreover, we suppose that there exists a negative constant c_{*}, such that $\theta_{n-1, n} \geqslant c_{*}$ for all n. Then there exists a positive constant c such that

$$
\begin{equation*}
\left\|\sigma_{n}^{\Theta}(f)-f\right\|_{p} \leqslant c \sum_{j=0}^{|n|-1} 2^{j}\left|\Delta \theta_{2^{j}-1, n}\right| \omega_{p}\left(f, 2^{-j}\right)+O\left(\omega_{p}\left(f, 2^{-|n|}\right)\right) \tag{25}
\end{equation*}
$$

holds.
Proof of Theorem 2. We make the proof for such a finite sequence $\left\{\theta_{k, n}: 0 \leqslant k \leqslant\right.$ $n-1\}$ for which at least the last member $\theta_{n-1, n}$ is negative.

We use the method and notations of the proof given in Theorem 1.

$$
\left\|\sigma_{n}^{\Theta}(f)-f\right\|_{p} \leqslant \sum_{k=1}^{8} I_{k, n}
$$

Since, the most part of the proof goes in the same way as above written (proofs for $I_{1, n}, I_{2, n}, I_{3, n}$ and $I_{4, n}$), we give details about the necessary changes.

For the expression $I_{5, n}$ we have inequality (12). Since, $\left|\sum_{k=0}^{n-2^{|n|}} \Delta \theta_{2^{|n|}+k-1, n}\right|=$ $\left|\theta_{2^{|n|}-1, n}-\theta_{n, n}\right| \leqslant 1+\left|c^{\prime}\right|$ (where c^{\prime} is coming from condition (23)), in case a.) and
$\left|\theta_{2^{|n|}-1, n}-\theta_{n, n}\right| \leqslant 1+\left|c_{*}\right|$ in case b.), we write

$$
I_{5, n} \leqslant c \omega_{p}\left(f, 2^{-|n|}\right)
$$

For proving the necessary inequality for $I_{6, n}$ (and analogously for $I_{7, n}$) we get

$$
\begin{equation*}
I_{6, n} \leqslant c\left\|R_{n}\right\|_{1} \omega_{p}\left(f, 2^{-|n|}\right) \tag{26}
\end{equation*}
$$

from (18).
Lemma 1 with $p=2$ implies that

$$
\begin{equation*}
\left\|R_{n}\right\|_{1} \leqslant c \quad \text { for all } n \in \mathbb{P} \tag{27}
\end{equation*}
$$

and Lemma 2 yields that

$$
\begin{equation*}
\left\|\mathscr{R}_{n}\right\|_{1} \leqslant c \quad \text { for all } n \in \mathbb{P} \tag{28}
\end{equation*}
$$

in both cases a.) and b.). Namely, denote H_{n} the expressions $\left\|\mathscr{R}_{n}\right\|_{1}$ or $\left\|R_{n}\right\|_{1}$. From Lemmas 1. and 2. we obtain

$$
\begin{equation*}
H_{n} \leqslant c\left(n-2^{|n|}\right)^{1 / 2}\left[\sum_{k=0}^{n-2^{|n|}}\left|\Delta \theta_{2^{|n|}+k-1, n}\right|^{2}\right]^{1 / 2} \tag{29}
\end{equation*}
$$

Case a.) $\left(\Delta \theta_{k, n} \downarrow\right)$

$$
\sum_{k=0}^{n-2^{|n|}}\left|\Delta \theta_{2^{|n|}+k-1, n}\right|^{2} \leqslant\left(n-2^{|n|}\right)\left|\Delta \theta_{n-2, n}\right|^{2}+\left|\Delta \theta_{n-1, n}\right|^{2}
$$

Using condition (23)

$$
\begin{aligned}
H_{n} & \leqslant c\left(n-2^{|n|}\right)\left|\Delta \theta_{n-2, n}\right|+c\left(n-2^{|n|}\right)^{1 / 2}\left|\theta_{n-1, n}\right| \\
& \leqslant c n\left|\Delta \theta_{n-2, n}\right|+c n^{1 / 2}\left|\theta_{n-1, n}\right| \leqslant c .
\end{aligned}
$$

In case b.) $\left(\Delta \theta_{k, n} \uparrow\right)$

$$
H_{n} \leqslant c\left(n-2^{|n|}+1\right)\left|\Delta \theta_{2^{|n|}-1, n}\right| \leqslant c\left(\theta_{0, n}-\theta_{2^{|n|}, n}\right) \leqslant c
$$

(see the corresponding part in the proof of Theorem 1).
This yields that the inequality (27) and (28) are proved for all n. We immediately get

$$
I_{6, n} \leqslant c \omega_{p}\left(f, 2^{-|n|}\right) \quad \text { for all } n
$$

and

$$
I_{8, n} \leqslant c \omega_{p}\left(f, 2^{-|n|}\right) \quad \text { for all } n
$$

This completes the proof of our theorem.

THEOREM 3. Let $f \in \operatorname{Lip}(\alpha, p)$ for some $\alpha>0$ and $1 \leqslant p \leqslant \infty$. For Θ-mean σ_{n}^{Θ} of quadratical partial sums we suppose that the conditions in Theorem 1 hold.

In case Theorem 1 a.) and Theorem 2 a.) the next equality holds

$$
\left\|\sigma_{n}^{\Theta}(f)-f\right\|_{p}= \begin{cases}O\left(n^{-\alpha}\right), & \text { if } 0<\alpha<1 \\ O(\log n / n), & \text { if } \alpha=1 \\ O(1 / n), & \text { if } \alpha>1\end{cases}
$$

In case Theorem 1 b.), Theorem 2 b.) we have

$$
\left\|\sigma_{n}^{\Theta}(f)-f\right\|_{p}=O\left(\sum_{j=0}^{|n|-1}\left|\Delta \theta_{2^{j}-1, n}\right| 2^{j(1-\alpha)}+2^{-|n| \alpha}\right)
$$

Proof. The proof is similar to the proof of analogical theorem of Móricz and Siddiqi [14] (for more details see [12, 3]).

REMARK 2. Let us suppose that the finite sequence of $\left\{\theta_{k, n}: 0 \leqslant k<n-1\right\}$ is nondecreasing $\left(\theta_{k, n} \uparrow\right)$ and bounded by a positive constant. Then Lemma 1 and Lemma 2 do not guarantee the uniform boundedness of the L_{1}-norm of kernels R_{n} and \mathscr{R}_{n}, in both cases $\Delta \theta_{k, n} \uparrow$ and $\Delta \theta_{k, n} \downarrow$. So, we do not discuss this case. That is, the situation is the same as in the one-dimensional case.

REFERENCES

[1] G.H. Agaev, N.Ja. Vilenkin, G.M. Dzhafarli, and A.I. Rubinstein, Multiplicative systems of functions and harmonic analysis on 0-dimensional groups, Izd. ("ELM"), Baku, (1981) (in Russian).
[2] L. Baramidze, L.-E. Persson, G. Tephnadze and P. Wall, Sharp $H_{p}-L_{p}$ type inequalities of weighted maximal operators of Vilenkin-Nörlund means and its applications, Journal of Inequalities and Applications, 242, (2016).
[3] I. Blahota and K. NagY, Approximation by Θ-means of Walsh-Fourier series, Analysis Mathematica, 44, (1) (2018), 57-71.
[4] I. Blahota and G. Tephnadze, On the Nörlund means of Vilenkin-Fourier series, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 32, (2) (2016), 203-213.
[5] Á. Chripkó, Weighted approximation via Θ-summations of Fourier-Jacobi series, Studia Sci. Math. Hungar., 47, (2) (2010), 139-154.
[6] T. EISNER, The Θ-summation on local fields, Annales Universitatis Scientiarum Budapestinensis de Rolando Eotvos Nominatae Sectio Computatorica, 33, (2011), 137-160.
[7] S. Fridli, P. Manchanda, and A.H. Siddiel, Approximation by Walsh-Nörlund means, Acta Sci. Math., 74, (2008), 593-608.
[8] V.A. Glukhov, On the summability of multiple Fourier series with respect to multiplicative systems, Mat. Zametki, 39, (1986), 665-673 (in Russian).
[9] U. Goginava, On the approximation properties of Cesàro means of negative order of Walsh-Fourier series, J. Approx. Theory, 115, (2002), 9-20.
[10] M.A. Jastrebova, On approximation of functions satisfying the Lipschitz condition by arithmetic means of their Walsh-Fourier series, Mat. Sb., 71, (1966), 214-226 (in Russian).
[11] N. Memić, L.-E. Persson and G. Tephnadze, A note on the maximal operators of VilenkinNörlund means with non-increasing coefficients, Studia Scientiarum Mathematicarum Hungarica, 53, (4) (2016), 545-556.
[12] F. Móricz and B. E. Rhoades, Approximation by weighted means of Walsh-Fourier series, Int. J. Math. Sci., 19, (1) (1996), 1-8.
[13] F. MóricZ and F. Schipp, On the integrability and L^{1}-convergence of Walsh series with coefficients of bounded variation, J. Math. Anal. Appl., 146, (1) (1990), 99-109.
[14] F. Móricz and A. SiddiQI, Approximation by Nörlund means of Walsh-Fourier series, J. Approx. Theory, 70, (1992), 375-389.
[15] K. NagY, Approximation by Nörlund means of Walsh-Kaczmarz-Fourier series, Georgian Math. J., 18, (1) (2011), 147-162.
[16] K. NAGY, Approximation by weighted means of Walsh-Kaczmarz-Fourier series, Rendiconti del Circolo Matematico di Palermo, Serie II, 82, (2010), 387-406.
[17] K. NAGY, Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz functions, Math. Ineq. Appl., 15, (2) (2012), 301-322.
[18] F. Schipp, W. R. Wade, P. Simon, and J. PáL, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, (Bristol-New York 1990).
[19] V.A. Skvortsov, Certain estimates of approximation offunctions by Cesàro means of Walsh-Fourier series, Mat. Zametki, 29, (1981), 539-547 (in Russian).
[20] R. Toledo, On the boundedness of the L^{1}-norm of Walsh-Fejer kernels, Journal of Math. Anal. and Appl., 457, (1) (2018), 153-178.
[21] F. Weisz, Θ-summability of Fourier series, Acta Math. Hungar., 103, (1-2) (2004), 139-175.
[22] F. Weisz, Θ-summation and Hardy spaces, J. Approx. Theory, 107, (2000), 121-142.
[23] F. Weisz, Several dimensional Θ-summability and Hardy spaces, Math. Nachr., 230, (2001), 159180.
[24] F. Weisz, Marcinkiewicz- Θ-summability of double Fourier series, Annales Univ. Sci. Budapest., Sect. Comp., 24, (2004), 103-118.
[25] C. Watari, Best approximation by Walsh polynomials, Tohoku Math. J., 15, (1963), 1-5.
[26] Sh. Yano, On Walsh-Fourier series, Tohoku Math. J., 3, (1951), 223-242.
[27] Sh. Yano, On approximation by Walsh functions, Proc. Amer. Math. Soc., 2, (1951), 962-967.
[28] A. ZYGMUND, Trigonometric series, 3rd edition, Vol. $1 \& 2$ and combined, Cambridge Univ. Press, (2015).
(Received May 14, 2018)
István Blahota
Institute of Mathematics and Computer Sciences
University of Nyíregyháza
P.O. Box 166, H-4400 Nyíregyháza, Hungary
e-mail: blahota.istvan@nye.hu
Károly Nagy
Institute of Mathematics and Computer Sciences
University of Nyíregyháza
P.O. Box 166, H-4400 Nyíregyháza, Hungary
e-mail: nagy.karoly@nye. hu
George Tephnadze
The University of Georgia
School of IT, Engineering and Mathematics, IV
77a Merab Kostava St, Tbilisi, 0128, Georgia
e-mail: g.tephnadze@ug.edu.ge

[^0]: Mathematics subject classification (2010): 42C10.
 Keywords and phrases: Walsh group, Walsh system, Walsh-Fourier series, Nörlund mean, weighted mean, approximation, modulus of continuity, Lipschitz function, Θ-mean, two-dimensional system, quadratical partial sum.

 Research supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0051, GINOP-2.2.1-15-2017-00055 and Shota Rustaveli National Science Foundation grant YS-18-043.

