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APPROXIMATION BY MARCINKIEWICZ

Θ–MEANS OF DOUBLE WALSH–FOURIER SERIES

ISTVÁN BLAHOTA, KÁROLY NAGY AND GEORGE TEPHNADZE

(Communicated by T. Erdélyi)

Abstract. In this article we discuss the behaviour of Θ -means of quadratical partial sums of
double Walsh series of a function in Lp(G2) (1 � p � ∞ ). In case p = ∞ by Lp(G2) we mean
C , the collection of continuous functions on G2 . We present the rate of the approximation by
Θ -means, in particular, in Lip(α , p), where α > 0 and 1 � p � ∞ .

Our main theorem generalizes two result of Nagy on Nörlund means and weighted means
of the cubical partial sums of double Walsh-Fourier series [15, 16]. Specifically, we give the two-
dimensional analogue of the two results of Móricz, Siddiqi on Nörlund means [14] and Móricz,
Rhoades on weighted means [12].

1. One- and two-dimensional Walsh-Fourier series and summation methods

Now, we give a brief introduction to the Walsh-Fourier analysis [1, 18].
Let P be the set of positive natural numbers and N := P∪{0} . Let G denote the

Walsh group. The elements of Walsh group G are sequences of numbers 0 and 1, that
is x = (x0,x1, . . . ,xk, . . .) with xk ∈ {0,1} (k ∈ N).

The group operation on G is the coordinate-wise addition modulo 2 (denoted by
+ ), the normalized Haar measure is denoted by μ . Dyadic intervals are defined in
usual way

I0(x) := G, In(x) := {y ∈ G : y = (x0, . . . ,xn−1,yn,yn+1, . . .)}

for x∈G,n∈P . They form a base for the neighbourhoodsof G . Let 0 = (0 : i∈N)∈G
denote the null element of G and In := In(0) for n ∈ N. Set ei := (0, . . . ,0,1,0, . . .) ,
where the i th coordinate is 1 and the rest are 0 ( i ∈ N).

Let Lp denote the usual Lebesgue spaces on G (with the corresponding norm
‖.‖p ). In the present paper we follow the notation of Móricz and Siddiqi [14]. For the
sake of brevity in notation, we agree to write L∞ instead of C , as Móricz and Siddiqi
did, and set ‖ f‖∞ := sup{| f (x)| : x ∈ G}.
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For x ∈ G we define |x| by

|x| :=
∞

∑
i=0

xi

2i+1 .

The modulus of continuity in Lp,1 � p � ∞, of a function f ∈ Lp is defined by

ωp( f ,δ ) := sup
|t|<δ

‖ f (.+ t)− f (.)‖p, δ > 0.

The Lipschitz classes in Lp for each α > 0 are defined by

Lip(α, p) := { f ∈ Lp : ωp( f ,δ ) = O(δ α) as δ → 0}.

For x = (x1,x2) ∈ G2 we define |x| by |x|2 := |x1|2 + |x2|2. Thus, for f ∈ Lp(G2)
(1 � p � ∞) the modulus of continuity ωp( f ,δ ) and Lipschitz classes Lip(α, p) are
well defined (δ > 0, α > 0). We define the mixed modulus of continuity as follows

ω p
1,2( f ,δ1,δ2) :=

sup{‖ f (.+ x1, .+ x2)− f (.+ x1, .)− f (., .+ x2)+ f (., .)‖p : |x1| � δ1, |x2| � δ2},

where δ1,δ2 > 0.
The Rademacher functions are defined as

rk(x) := (−1)xk (x ∈ G,k ∈ N).

The Walsh-Paley functions are defined by the help of Rademacher functions. That is,
w0 = 1 and for n � 1

wn(x) :=
∞

∏
k=0

(rk(x))nk = r|n|(x)(−1)∑|n|−1
k=0 nkxk ,

where the natural number n is expressed in the number system based 2, in the form

n =
∞

∑
i=0

ni2
i, ni ∈ {0,1} (i ∈ N)

(in this expression only a finite number of ni ’s different from zero). Let the order of
n > 0 be denoted by |n| := max{ j ∈ N : n j �= 0}. The Dirichlet kernels are defined by

Dn :=
n−1

∑
k=0

wk,

where n ∈ P, D0 := 0. The 2n th Dirichlet kernels have a closed form (see e.g. [18])

D2n(x) =

{
2n, if x ∈ In,

0, otherwise (n ∈ N).
(1)



APPROXIMATION BY MARCINKIEWICZ Θ -MEANS 839

It is also known that

D2A+ j(x) = D2A(x)+ rA(x)Dj(x), j = 0,1, . . . ,2A −1. (2)

(see [18]). The n th Fejér mean and Fejér kernel of Walsh-Fourier series are defined by

σn( f ;x) :=
1
n

n−1

∑
i=0

Si( f ;x), Kn(x) :=
1
n

n−1

∑
i=0

Di(x)

In 2018, Toledo [20] improved Yano’s [26] basic inequality. He proved that

‖Kn‖1 � 17
15

for all n ∈ N. (3)

A Sidon type inequality follows in the next lemma [13, Lemma 1], we will apply it,
later.

LEMMA 1. (Móricz, Schipp [13]) For every 1 < p � 2 , sequence {ak} of real
numbers, and integer n � 1 ,

∥∥∥∥∥
n

∑
k=1

akDk

∥∥∥∥∥
1

� 2p
p−1

n1−1/p

[
n

∑
k=1

|ak|p
]1/p

.

On G2 we consider the two-dimensional system as {wn1(x1)×wn2(x2) : n :=
(n1,n2) ∈ N

2} . The two-dimensional Fourier coefficients, the rectangular partial sums
of the Fourier series and Dirichlet kernels are defined in the usual way. The n th
Marcinkiewicz mean and Marcinkiewicz kernel of Walsh-Fourier series are defined by

Mn( f ;x1,x2) :=
1
n

n−1

∑
i=0

Si,i( f ;x1,x2), Kn(x1,x2) :=
1
n

n−1

∑
i=0

Di(x1)Di(x2).

Next lemma proved by Glukhov [8] is the two-dimensional analogue of Lemma 1 for
p = 2.

LEMMA 2. (Glukhov [8]) Let α1, . . . ,αn be real numbers. Then

1
n

∥∥∥∥∥
n

∑
k=1

αkDk(.)Dk(..)

∥∥∥∥∥
1

� c√
n

(
n

∑
k=1

α2
k

)1/2

,

where c is an absolute constant.

As a corollary of Lemma 2 there exists a positive constant c such that

‖Kn‖1 � c for all n ∈ N. (4)
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Now, let us set the sequence of matrices Θn in the next form

Θn :=

⎛
⎜⎜⎜⎜⎜⎝

θ0,1 0 0 . . . 0
θ0,2 θ1,2 0 . . . 0
θ0,3 θ1,3 θ2,3 . . . 0
...

...
...

. . .
...

θ0,n θ1,n θ2,n . . . θn−1,n

⎞
⎟⎟⎟⎟⎟⎠

We always assume that θ0,k = 1 for all k ∈ {1, . . . ,n} .
Let the n th (one-dimensional) Θ -mean and kernel be defined by

σΘ
n ( f ;x) :=

n−1

∑
k=0

θk,n f̂ (k)wk(x), KΘ
n (x) :=

n−1

∑
k=0

θk,nwk(x) (5)

(see [5, 21]). It is easily seen that

σΘ
n ( f ;x) :=

∫
G

f (t)KΘ
n (t + x)dμ(t).

Using Abel’s transformation we immediately have that

σΘ
n ( f ;x) = −

n

∑
l=1

Δθl−1,nSl( f ;x), (6)

with the notation Δθk,n := θk+1,n −θk,n (θn,n = 0) for 0 � k < n . Let us set Δ2θk,n :=
Δθk+1,n−Δθk,n, where 0 � k < n and θn+1,n := 0 (it is natural, see the matrix Θn+2 ).

Taking into account equality (6) the n th Θ -mean and kernel of quadratical partial
sums defined by

σΘ
n ( f ;x1,x2) = −

n

∑
l=1

Δθl−1,nSl,l( f ;x1,x2),

K Θ
n (x1,x2) = −

n

∑
l=1

Δθl−1,nDl(x1)Dl(x2). (7)

It is also called Marcinkiewicz Θ -summation of double Walsh-Fourier series of a func-
tion f ∈ L1(G2) (see [24]).

EXAMPLE 1. Let {qn : n � 0} be a sequence of nonnegative numbers. Let us set
Qn := ∑n−1

k=0 qk (n � 1). (It is always assumed that q0 > 0 and limn→∞ Qn = ∞ .) If

we choose θk,n = ∑n−k−1
i=0 qi

Qn
(0 � k � n− 1 ), taking into account equality (7), we im-

mediately have σΘ
n ( f ) = ∑n

k=1
qn−k
Qn

Sk,k( f ) . It means that Nörlund-mean of quadratical
partial sums is a special Θ -mean of quadratical partial sums.

For the one-dimensional Nörlund means of Walsh-Fourier series of a function f
in Lp (1 � p � ∞) the rate of the approximation was given in terms of modulus of con-
tinuity [14]. In particular, functions in Lip(α, p), where α > 0 and 1 � p � ∞ were
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considered, also. As special cases Móricz and Siddiqi obtained the earlier results on
the rate of the approximation by Cesàro means given by Yano [27], Jastrebova [10] and
Skvortsov [19]. The approximation properties of the Cesàro means of negative order
was studied by Goginava in 2002 [9]. Recently, Fridli, Manchanda and Siddiqi gen-
eralized the result of Móricz and Siddiqi for homogeneous Banach spaces and dyadic
Hardy spaces [7]. A few years ago the second author investigated the rate of the approx-
imation by Nörlund means of quadratical partial sums of double Walsh-Fourier series
for functions in the space Lp(G2) (1 � p � ∞) [15]. In 2012, the general Nörlund
mean method in dimension two was discussed [17], also. Recently, the first author,
Baramidze, Memić, Persson, Tephnadze and Wall have some new results with respect
to this topic [2, 4, 11].

EXAMPLE 2. Let {pn : n � 1} be a sequence of nonnegative numbers. (It is al-
ways assumed that p1 > 0 and limn→∞ Pn = ∞, which is the condition for regularity.)

If we choose θk,n = ∑n
i=k+1 pi

Pn
(0 � k � n− 1 ), taking into account equality (7), we get

σΘ
n ( f ) = 1

Pn
∑n

k=1 pkSk,k( f ) . It means that weighted mean of Marcinkiewicz type is a
special Θ -mean of Marcinkiewicz type.

The rate of the approximation by weighted means of one-dimensional Walsh-
Fourier series of a function in Lp (1 � p � ∞) was presented in terms of modulus
of continuity [12]. In particular, functions in Lip(α, p), where α > 0 and 1 � p � ∞
were considered, also. As special cases Móricz and Rhoades obtained the earlier results
given by Yano [27], Jastrebova [10] on the rate of the approximation by Cesàro means.

In 2010, the second author discussed the rate of the approximation by weighted
means of quadratical partial sums of two-dimensional Walsh-Fourier series for func-
tions in Lp(G2) (1 � p � ∞) [16].

Our work is motivated by the paper of Móricz, Siddiqi [14] on Nörlund mean
method and the paper of Móricz, Rhoades [12] on weighted mean method. Both of them
present the result for one-dimensional Walsh-Fourier series. Recently, the results in
papers [12, 14] were generalized by the authors in paper [3]. Namely the approximation
properties of one-dimensional θ -mean was discussed. It is important to note that some
ideas are coming from the paper of Chripkó [5]. She studied the order of convergence
of Θ -mean with respect to Jacobi-Fourier series.

Our main aim is to investigate the rate of the approximation of Marcinkiewicz
Θ -mean in terms of modulus of continuity under some general conditions. Our main
theorem (Theorem 1) give a common generalization of two result of the second author
[15, 16] (see Example 1 and 2). Specifically, we give the two-dimensional analogue
of two results of Móricz, Siddiqi on Nörlund means [14] and Móricz, Rhoades on
weighted means [12]. Moreover, we present some new results under general condi-
tions for Marcinkiewicz Θ -summability.

It is important to note that other aspects of Θ -summability methods with respect
to Walsh-Fourier series are treated in [21, 22, 23, 24].
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2. Auxiliary results

Let Pn be the collection of one-dimensionalWalsh polynomials of order less than
n , that is, functions of the form

P(x) =
n−1

∑
k=0

akwk(x),

where n � 1 and {ak} is a sequence of real numbers. On G2 we consider the two-
dimensional Walsh polynomials of order less than (n,n) as

T (x1,x2) :=
n

∑
k=1

αkDk(x1)Dk(x2),

where n � 1 and {αk} is a sequence of real numbers. We note that not every two-
dimensional Walsh-polynomial can be written in this form. The set of this special type
two-dimensional polynomials are denoted by Pn,n .

The next Lemma can be derived from the method presented in [15, page 313-314].

LEMMA 3. (Nagy [15]) Let P ∈ P2A,2A , f ∈ Lp(G2), where A,B ∈ P and 1 �
p � ∞ . Then there exists a positive constant c such that∥∥∥∥

∫
G2

( f (.+ x)− f (.))rA(x1)rA(x2)P(x)dμ(x)
∥∥∥∥

p
� c‖P‖1ω p

1,2( f ,2−A,2−A),

with the notation x = (x1,x2) ∈ G2 .

As specially it is proved that∥∥∥∥
∫

G2
( f (.+ x)− f (.))rA(x1)rA(x2)K j(x)dμ(x)

∥∥∥∥
p
� cω p

1,2( f ,2−A,2−A),

for | j| � A .
We need the next Lemma proved in [17].

LEMMA 4. (Nagy [17]) Let P∈P2A , f ∈ Lp(G2) (1 � p � ∞) and A∈ P. Then
there exists a positive constant c such that∥∥∥∥

∫
G2

( f (.+ x)− f (.))D2A(x2)rA(x1)P(x1)dμ(x)
∥∥∥∥

p
� c‖P‖1ωp( f ,2−A).

For two-dimensional variable (x1,x2) ∈ G2 we use the notations

r1
n(x

1,x2) := rn(x1), D1
n(x

1,x2) := Dn(x1), K1
n (x1,x2) := Kn(x1),

r2
n(x

1,x2) := rn(x2), D2
n(x

1,x2) := Dn(x2), K2
n (x1,x2) := Kn(x2),

for any n ∈ N.
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LEMMA 5. Let n > 2 be a positive number, then we have

K Θ
n = −

|n|−1

∑
j=0

2 j−1

∑
k=0

Δθ2 j+k−1,nD
1
2 jD

2
2 j −

n−2|n|

∑
k=0

Δθ2|n|+k−1,nD
1
2|n|D

2
2|n|

+
|n|−1

∑
j=0

D2
2 j r1

j

2 j−2

∑
k=0

Δ2θ2 j+k−1,n(k+1)K1
k+1−

|n|−1

∑
j=0

D2
2 j r1

j Δθ2 j+1−2,n2
jK1

2 j

+
|n|−1

∑
j=0

D1
2 j r

2
j

2 j−2

∑
k=0

Δ2θ2 j+k−1,n(k+1)K2
k+1−

|n|−1

∑
j=0

D1
2 j r

2
j Δθ2 j+1−2,n2

jK2
2 j

+
|n|−1

∑
j=0

r1
j r

2
j

2 j−2

∑
k=0

Δ2θ2 j+k−1,n(k+1)Kk+1−
|n|−1

∑
j=0

r1
j r

2
j Δθ2 j+1−2,n2

jK2 j

−D2
2|n|r

1
|n|R

1
n−D1

2|n|r
2
|n|R

2
n− r1

|n|r
2
|n|Rn,

with the notation Rn = ∑n−2|n|
k=0 Δθ2|n|+k−1,nDk and Rn = ∑n−2|n|

k=0 Δθ2|n|+k−1,nD
1
kD

2
k .

Proof. First, we use equality (2) for K Θ
n (see equality (7), too)

K Θ
n = −

|n|−1

∑
j=0

2 j+1−1

∑
l=2 j

Δθl−1,nD
1
l D

2
l −

n

∑
l=2|n|

Δθl−1,nD
1
l D

2
l

= −
|n|−1

∑
j=0

2 j−1

∑
k=0

Δθ2 j+k−1,nD
1
2 j+kD

2
2 j+k −

n−2|n|

∑
k=0

Δθ2|n|+k−1,nD
1
2|n|+k

D2
2|n|+k

= −
|n|−1

∑
j=0

2 j−1

∑
k=0

Δθ2 j+k−1,nD
1
2 jD2

2 j −
|n|−1

∑
j=0

2 j−1

∑
k=0

Δθ2 j+k−1,nr
1
jD

1
kD

2
2 j

−
|n|−1

∑
j=0

2 j−1

∑
k=0

Δθ2 j+k−1,nD
1
2 j r

2
jD

2
k −

|n|−1

∑
j=0

2 j−1

∑
k=0

Δθ2 j+k−1,nr
1
j r

2
jD

1
kD

2
k

−
n−2|n|

∑
k=0

Δθ2|n|+k−1,nD
1
2|n|D

2
2|n| −D2

2|n|r
1
|n|

n−2|n|

∑
k=0

Δθ2|n|+k−1,nD
1
k

−D1
2|n|r

2
|n|

n−2|n|

∑
k=0

Δθ2|n|+k−1,nD
2
k − r1

|n|r
2
|n|

n−2|n|

∑
k=0

Δθ2|n|+k−1,nD
1
kD

2
k

=:
8

∑
l=1

KΘ,l
n .
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For the expression KΘ,2
n , KΘ,3

n and KΘ,4
n we use Abel’s transformation

KΘ,2
n = −

|n|−1

∑
j=0

D2
2 j r1

j

2 j−1

∑
k=0

Δθ2 j+k−1,nD
1
k

= −
|n|−1

∑
j=0

D2
2 j r

1
j

(
2 j−2

∑
k=0

(
Δθ2 j+k−1,n−Δθ2 j+k,n

) k

∑
i=0

D1
i + Δθ2 j+1−2,n

2 j−1

∑
k=0

D1
k

)

=
|n|−1

∑
j=0

D2
2 j r1

j

(
2 j−2

∑
k=0

Δ2θ2 j+k−1,n(k+1)K1
k+1−Δθ2 j+1−2,n2

jK1
2 j

)
,

(KΘ,3
n has got a similar form) and

KΘ,4
n = −

|n|−1

∑
j=0

r1
j r

2
j

2 j−1

∑
k=0

Δθ2 j+k−1,nD
1
kD

2
k

= −
|n|−1

∑
j=0

r1
j r

2
j

(
2 j−2

∑
k=0

(
Δθ2 j+k−1,n−Δθ2 j+k,n

) k

∑
i=0

D1
i D

2
i + Δθ2 j+1−2,n

2 j−1

∑
k=0

D1
kD

2
k

)

=
|n|−1

∑
j=0

r1
j r

2
j

(
2 j−2

∑
k=0

Δ2θ2 j+k−1,n(k+1)Kk+1−Δθ2 j+1−2,n2
jK2 j

)
.

Summarising our results on the expressions KΘ,1
n , . . . ,KΘ,8

n , we complete the proof. �

3. The rate of the approximation by Θ -mean of cubical partial sums

In the next theorem the coefficients θk,n ∈ [0,1] for all k,n ∈ N .

THEOREM 1. Let f ∈ Lp(G2) (1 � p � ∞) . Let n > 2 be a positive integer. Let
the finite sequence {θk,n : 0 � k � n−1} of nonnegative numbers be nonincreasing (in
sign θk,n ↓ ).

a.) Let the finite sequence of differences {Δθk,n : 0 � k < n} be nonincreasing (in
sign Δθk,n ↓ ). We suppose that

θn−1,n = O

(
1
n

)
. (8)

Then there exists a positive constant c such that

‖σΘ
n ( f )− f‖p � c

|n|−1

∑
j=0

2 j|Δθ2 j+1−2,n|ωp
(
f ,2− j)+O(ωp( f ,2−|n|)). (9)

b.) Let the finite sequence of differences {Δθk,n : 0 � k < n} be nondecreasing (in
sign Δθk,n ↑ ). Then there exists a positive constant c such that

‖σΘ
n ( f )− f‖p � c

|n|−1

∑
j=0

2 j|Δθ2 j−1,n|ωp
(
f ,2− j)+O(ωp( f ,2−|n|)). (10)
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REMARK 1. The condition 0 � θk,n � 1 for all k ∈ {0, . . . ,n−1} and n ∈ P is a
usual condition, since in Example 1 and 2 it is satisfied.

For Example 1, easy to see that Δθ2 j−1,n = − qn−2 j

Qn
and Δθ2 j+1−2,n = − q

n−2 j+1+1
Qn

.
Thus, as a consequence of our main theorem we get back an analogical form of result
of second author on Nörlund means of Marcinkiewicz type [15].

For Example 2, Δθ2 j−1,n =− p2 j

Pn
and Δθ2 j+1−2,n =− p

2 j+1−1
Pn

hold. Thus, as a con-
sequence of our theorem we have an analogical form of the result of Nagy on weighted
means of Marcinkiewicz type [16].

Proof of Theorem 1. We carry out the proof for 1 � p < ∞ , for p = ∞ the proof is
similar (where L∞ = C ). During this proof c denotes a positive constant, which may
vary at different appearances. Keeping in mind that θ0,k = 1 for all k , we use Lemma
5 and the usual Minkowski’s inequality

‖σΘ
n ( f )− f‖p =

(∫
G2

|σΘ
n ( f ,x)− f (x)|pdμ(x)

) 1
p

=
(∫

G2

∣∣∣∣
∫

G2
K Θ

n (t)( f (x+ t)− f (x))dμ(t)
∣∣∣∣
p

dμ(x)
) 1

p

�
8

∑
k=1

(∫
G2

∣∣∣∣
∫

G2
KΘ,k

n (t)( f (x+ t)− f (x))dμ(t)
∣∣∣∣
p

dμ(x)
) 1

p

=:
8

∑
k=1

Ik,n.

Using generalized Minkowski’s inequality ([28], vol. 1, p. 19) for the expressions
I1,n and I5,n , we obtain

I1,n �
|n|−1

∑
j=0

∣∣∣∣∣
2 j−1

∑
k=0

Δθ2 j+k−1,n

∣∣∣∣∣
∫

G2
D2 j(t1)D2 j(t2)

(∫
G2

| f (x+ t)− f (x)|p dμ(x)
) 1

p

dμ(t)

� c
|n|−1

∑
j=0

∣∣∣∣∣
2 j−1

∑
k=0

Δθ2 j+k−1,n

∣∣∣∣∣ωp
(
f ,2− j) , (11)

and

I5,n �
∣∣∣∣∣
n−2|n|

∑
k=0

Δθ2|n|+k−1,n

∣∣∣∣∣
∫

G2
D2|n|(t

1)D2|n|(t
2)
(∫

G2
| f (x+ t)− f (x)|p dμ(x)

) 1
p

dμ(t)

� c

∣∣∣∣∣
n−2|n|

∑
k=0

Δθ2|n|+k−1,n

∣∣∣∣∣ωp

(
f ,2−|n|

)
. (12)

In case a.) (in sign Δθk,n ↓ ) we write
∣∣∣∑2 j−1

k=0 Δθ2 j+k−1,n

∣∣∣� −2 jΔθ2 j+1−2,n and

I1,n � c
|n|−1

∑
j=0

2 j|Δθ2 j+1−2,n|ωp
(
f ,2− j) .
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In case b.) (in sign Δθk,n ↑ ) we have
∣∣∣∑2 j−1

k=0 Δθ2 j+k−1,n

∣∣∣� −2 jΔθ2 j−1,n and

I1,n � −
|n|−1

∑
j=0

2 jΔθ2 j−1,nωp
(
f ,2− j) .

Since,
∣∣∣∑n−2|n|

k=0 Δθ2|n|+k−1,n

∣∣∣= θ2|n|−1,n−θn,n � 1, in case a.) and b.) we immedi-

ately write

I5,n � cωp

(
f ,2−|n|

)
.

For the expression I2,n usual Minkowski’s inequality yields

I2,n �
|n|−1

∑
j=0

2 j−2

∑
k=0

∣∣Δ2θ2 j+k−1,n

∣∣(k+1)

·
(∫

G2

∣∣∣∣
∫

G2
D2 j(t2)r j(t1)Kk+1(t1)( f (x+ t)− f (x))dμ(t)

∣∣∣∣
p

dμ(x)
) 1

p

+
|n|−1

∑
j=0

|Δθ2 j+1−2,n|2 j

·
(∫

G2

∣∣∣∣
∫

G2
D2 j(t2)r j(t1)K2 j (t1)( f (x+ t)− f (x))dμ(t)

∣∣∣∣
p

dμ(x)
) 1

p

=: I1
2,n + I2

2,n.

From Lemma 4 and inequality (3) we write

I1
2,n � c

|n|−1

∑
j=0

2 j−2

∑
k=0

∣∣Δ2θ2 j+k−1,n

∣∣(k+1)‖Kk+1‖1ωp( f ,2− j)

� c
|n|−1

∑
j=0

2 j−2

∑
k=0

∣∣Δ2θ2 j+k−1,n

∣∣(k+1)ωp( f ,2− j) (13)

and

I2
2,n � c

|n|−1

∑
j=0

|Δθ2 j+1−2,n|2 j‖K2 j‖1ωp( f ,2− j) (14)

� c
|n|−1

∑
j=0

|Δθ2 j+1−2,n|2 jωp( f ,2− j). (15)
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At first, we deal with expression I1
2,n . In case a.) (in sign Δθk,n ↓ ),

2 j−2

∑
k=0

∣∣Δ2θ2 j+k−1,n

∣∣(k+1) =
2 j−2

∑
k=0

(Δθ2 j+k−1,n−Δθ2 j+k,n)(k+1)

=
2 j−2

∑
k=0

Δθ2 j+k−1,n− (2 j −1)Δθ2 j+1−2,n

� −2 jΔθ2 j+1−2,n

and

I1
2,n � c

|n|−1

∑
j=0

2 j|Δθ2 j+1−2,n|ωp
(
f ,2− j) .

In case b.) (in sign Δθk,n ↑ ) we have

2 j−2

∑
k=0

∣∣Δ2θ2 j+k−1,n

∣∣(k+1) = (2 j −1)Δθ2 j+1−2,n−
2 j−2

∑
k=0

Δθ2 j+k−1,n

� −
2 j−2

∑
k=0

Δθ2 j+k−1,n � −2 jΔθ2 j−1,n

and

I1
2,n � c

|n|−1

∑
j=0

2 j|Δθ2 j−1,n|ωp
(
f ,2− j) .

Now, we discuss expression I2
2,n . In case a.) (in sign Δθk,n ↓ ), we immediately

write

I2
2,n � c

|n|−1

∑
j=0

2 j|Δθ2 j+1−2,n|ωp
(
f ,2− j) .

In case b.) (in sign Δθk,n ↑ ) we have

I2
2,n � c

|n|−1

∑
j=0

2 j|Δθ2 j−1,n|ωp
(
f ,2− j) .
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We discuss expression I3,n analogously. For expression I4,n we apply usual Min-
kowski’s inequality

I4,n �
|n|−1

∑
j=0

2 j−2

∑
k=0

∣∣Δ2θ2 j+k−1,n

∣∣(k+1)

·
(∫

G2

∣∣∣∣
∫

G2
r j(t1)r j(t2)Kk+1(t)( f (x+ t)− f (x))dμ(t)

∣∣∣∣
p

dμ(x)
) 1

p

+
|n|−1

∑
j=0

|Δθ2 j+1−2,n|2 j

·
(∫

G2

∣∣∣∣
∫

G2
r j(t1)r j(t2)K2 j(t)( f (x+ t)− f (x))dμ(t)

∣∣∣∣
p

dμ(x)
) 1

p

=: I1
4,n + I2

4,n.

By Lemma 3 and inequality (4) we immediately have

I1
4,n � c

|n|−1

∑
j=0

2 j−2

∑
k=0

∣∣Δ2θ2 j+k−1,n

∣∣(k+1)‖Kk+1‖1ω p
1,2( f ,2− j,2− j)

� c
|n|−1

∑
j=0

2 j−2

∑
k=0

∣∣Δ2θ2 j+k−1,n

∣∣(k+1)ωp( f ,2− j) (16)

and

I2
4,n � c

|n|−1

∑
j=0

|Δθ2 j+1−2,n|2 j‖K2 j‖1ω p
1,2( f ,2− j,2− j)

� c
|n|−1

∑
j=0

|Δθ2 j+1−2,n|2 jωp( f ,2− j). (17)

In this point we can apply the same methods for I1
4,n and I2

4,n as we used for the expres-

sions I1
2,n and I2

2,n , respectively.
Now, we discuss the expression I6,n (we discuss I7,n analogously). Lemma 4

yields

I6,n =
(∫

G2

∣∣∣∣
∫

G2
D2|n|(t

1)r|n|(t2)Rn(t2)( f (x+ t)− f (x))dμ(t)
∣∣∣∣
p

dμ(x)
)1/p

� c‖Rn‖1ωp( f ,2−|n|). (18)

At last, by Lemma 3 we write

I8,n =
(∫

G2

∣∣∣∣
∫

G2
r|n|(t1)r|n|(t2)Rn(t)( f (x+ t)− f (x))dμ(t)

∣∣∣∣
p

dμ(x)
)1/p

� c‖Rn‖1ω p
1,2( f ,2−|n|,2−|n|) � c‖Rn‖1ωp( f ,2−|n|). (19)
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Lemma 1 with p = 2 implies that

‖Rn‖1 � c for all n ∈ P (20)

and Lemma 2 yields that
‖Rn‖1 � c for all n ∈ P (21)

in both cases a.) and b.). Namely, denote ‖Rn‖1 or ‖Rn‖1 by Hn . From these lemmas
we obtain

Hn � c(n−2|n|)1/2

[
n−2|n|

∑
k=0

|Δθ2|n|+k−1,n|2
]1/2

. (22)

Case a.) (Δθk,n ↓ ) then using condition (8)

Hn � c(n−2|n|+1)|Δθn−1,n| � cnθn−1,n � c.

In case b.) (Δθk,n ↑ ) then

n−2|n|

∑
k=0

|Δθ2|n|+k−1,n|2 � (n−2|n|+1)|Δθ2|n|−1,n|2,

and |θk,n| � c (here c = 1). Since n−2|n|+1 � 2|n| we write

Hn � c(n−2|n|+1)|Δθ2|n|−1,n| � c(|Δθ0,n|+ . . .+ |Δθ2|n|−1,n|) � c(θ0,n −θ2|n|,n) � c.

This yields that the inequalities (20) and (21) are proved for all n . We immediately
get

I6,n � cωp

(
f ,2−|n|

)
for all n

and

I8,n � cωp

(
f ,2−|n|

)
for all n.

This completes the proof. �
In the next Theorem we allow that the finite sequence {θk,n : 0 � k � n− 1} has

some negative values. Namely, θk,n ∈ [c∗,1] with a negative number c∗ .

THEOREM 2. Let f ∈ Lp(G2) (1 � p � ∞) . Let n > 2 be a positive natural
number. Let the finite sequence {θk,n : 0 � k � n−1} be nonincreasing (in sign θk,n ↓ )
and θn−1,n < 0 .

a.) Let the finite sequence of differences {Δθk,n : 0 � k � n−2} be nonincreasing
(in sign Δθk,n ↓ ). Moreover, we suppose that

|θn−1,n| = O

(
1√
n

)
and |Δθn−2,n| = O

(
1
n

)
. (23)
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Then there exists a positive constant c such that

‖σΘ
n ( f )− f‖p � c

|n|−1

∑
j=0

2 j|Δθ2 j+1−2,n|ωp
(
f ,2− j)+O(ωp( f ,2−|n|)). (24)

b.) Let the finite sequence of differences {Δθk,n : 0 � k � n−2} be nondecreasing
(in sign Δθk,n ↑ ). Moreover, we suppose that there exists a negative constant c∗ , such
that θn−1,n � c∗ for all n . Then there exists a positive constant c such that

‖σΘ
n ( f )− f‖p � c

|n|−1

∑
j=0

2 j|Δθ2 j−1,n|ωp
(
f ,2− j)+O(ωp( f ,2−|n|)) (25)

holds.

Proof of Theorem 2. We make the proof for such a finite sequence {θk,n : 0 � k �
n−1} for which at least the last member θn−1,n is negative.

We use the method and notations of the proof given in Theorem 1.

‖σΘ
n ( f )− f‖p �

8

∑
k=1

Ik,n.

Since, the most part of the proof goes in the same way as above written (proofs for
I1,n, I2,n, I3,n and I4,n ), we give details about the necessary changes.

For the expression I5,n we have inequality (12). Since,
∣∣∣∑n−2|n|

k=0 Δθ2|n|+k−1,n

∣∣∣ =
|θ2|n|−1,n−θn,n| � 1+ |c′| (where c′ is coming from condition (23) ), in case a.) and

|θ2|n|−1,n−θn,n| � 1+ |c∗| in case b.), we write

I5,n � cωp

(
f ,2−|n|

)
.

For proving the necessary inequality for I6,n (and analogously for I7,n ) we get

I6,n � c‖Rn‖1ωp( f ,2−|n|). (26)

from (18).
Lemma 1 with p = 2 implies that

‖Rn‖1 � c for all n ∈ P (27)

and Lemma 2 yields that
‖Rn‖1 � c for all n ∈ P (28)

in both cases a.) and b.). Namely, denote Hn the expressions ‖Rn‖1 or ‖Rn‖1 . From
Lemmas 1. and 2. we obtain

Hn � c(n−2|n|)1/2

[
n−2|n|

∑
k=0

|Δθ2|n|+k−1,n|2
]1/2

. (29)



APPROXIMATION BY MARCINKIEWICZ Θ -MEANS 851

Case a.) (Δθk,n ↓ )

n−2|n|

∑
k=0

|Δθ2|n|+k−1,n|2 � (n−2|n|)|Δθn−2,n|2 + |Δθn−1,n|2.

Using condition (23)

Hn � c(n−2|n|)|Δθn−2,n|+ c(n−2|n|)1/2|θn−1,n|
� cn|Δθn−2,n|+ cn1/2|θn−1,n| � c.

In case b.) (Δθk,n ↑ )

Hn � c(n−2|n|+1)|Δθ2|n|−1,n| � c(θ0,n−θ2|n|,n) � c

(see the corresponding part in the proof of Theorem 1).
This yields that the inequality (27) and (28) are proved for all n . We immediately

get

I6,n � cωp

(
f ,2−|n|

)
for all n

and

I8,n � cωp

(
f ,2−|n|

)
for all n.

This completes the proof of our theorem. �

THEOREM 3. Let f ∈ Lip(α, p) for some α > 0 and 1 � p � ∞ . For Θ -mean
σΘ

n of quadratical partial sums we suppose that the conditions in Theorem 1 hold.
In case Theorem 1 a.) and Theorem 2 a.) the next equality holds

‖σΘ
n ( f )− f‖p =

⎧⎪⎨
⎪⎩

O(n−α), if 0 < α < 1,

O(logn/n), if α = 1,

O(1/n), if α > 1.

In case Theorem 1 b.), Theorem 2 b.) we have

‖σΘ
n ( f )− f‖p = O

(|n|−1

∑
j=0

|Δθ2 j−1,n|2 j(1−α) +2−|n|α
)

.

Proof. The proof is similar to the proof of analogical theorem of Móricz and Sid-
diqi [14] (for more details see [12, 3]). �

REMARK 2. Let us suppose that the finite sequence of {θk,n : 0 � k < n− 1} is
nondecreasing (θk,n ↑ ) and bounded by a positive constant. Then Lemma 1 and Lemma
2 do not guarantee the uniform boundedness of the L1 -norm of kernels Rn and Rn , in
both cases Δθk,n ↑ and Δθk,n ↓ . So, we do not discuss this case. That is, the situation
is the same as in the one-dimensional case.
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P.O. Box 166, H-4400 Nyı́regyháza, Hungary
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