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Abstract. We prove that a generalized Fefferman-Phong type condition on a pair of weights u

and v is sufficient for the boundedness of the commutators of potential type operators from Lp(·)
v

into Lq(·)
u . We also give an improvement of this result in the sense that we not only consider a

variable version of power bump conditions, but also weaker norms related to Musielak-Orlicz
functions.

We consider a wider class of symbols including Lipschitz symbols and some generaliza-
tions.

1. Introduction and main results

In [17], E. Sawyer and R. Wheeden obtained Fefferman-Phong type conditions
on a pair of weights in order to prove boundedness results for the fractional integral
operator Iα , between Lebesgue spaces with different weights. For the case of one
weight, remarkably simple conditions on the weight characterizing the boundedness of
Iα were known to hold (see [13]). Motivated by the results above, in [14], C. Pérez
considered weaker norms than those involved in the Fefferman-Phong type conditions
in [17], and obtained two-weighted boundedness estimates for the potential operator
TK , formally defined by

TK f (x) =
ˆ

Rn
K(x− y) f (y)dy,

whenever this integral is finite where the kernel K is a non-negative and locally in-
tegrable function satisfying certain weak growth condition. This article was the mo-
tivation for a great variety of subsequent papers related to this kind of operator. For
example, in [8] and [9], the authors obtained weighted Lp inequalities of Fefferman-
Stein type for TK and for the higher order commutators with BMO symbols associated
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to this operator, respectively, whenever 1 < p < ∞ . If b ∈ L1
loc(R

n) and m ∈ N , the
commutator of order m of TK is formally defined by

Tb,m
K f (x) =

ˆ
Rn

(b(x)−b(y))mK(x− y) f (y)dy, (1)

whenever this integral is finite. In the multilinear context, similar results were proved in
[1]. For these commutators two-weighted norm inequalities in the spirit of those given
in [14] were proved in [7] in the classical Lp context, and in [11] on the general setting
of variable Lebesgue spaces.

The commutators of fractional type operators with Lipschitz symbols were studied
by several authors. For instance, in [12] the authors considered unweighted estimates
for the mentioned operator acting between different Lebesgue spaces in the context of
non-doubling measures.

Characterizations of Lipschitz functions via the boundedness of commutators of
fractional integral operators with generalized Lipschitz symbols were given in [15], in
the general setting of variable Lebesgue spaces.

In [2] the authors give weighted Lp−Lq estimates for the commutators, with Lip-
schitz symbols, of a great variety of fractional type operators. Later, in [14] certain
extrapolation techniques allow to obtain similar results in variable Lebesgue spaces.

The main aim of this paper is to describe the behavior of the commutators of the
potential type operators Tb,m

K between variable Lebesgue spaces with different weights,
for a wider class of symbols b including Lipschitz symbols and some generalizations.
Concretely, we prove that a generalized Fefferman-Phong type condition on a pair of

weights u and v is sufficient for the boundedness of the commutator Tb,m
K , from Lp(·)

v

into Lq(·)
u .

When the symbol b belongs to a variable Lipschitz space, we not only consider
variable version of power bump conditions, but also we consider weaker norms related
to Musielak-Orlicz functions. Thus, in this sense, we are providing an improvement.

In the definition of Tb,m
K , the function K belongs to a certain class of kernels that

satisfy that there exists positive constants δ , c and 0 � ε < 1, with the property that

sup
2k<|x|�2k+1

K(x) � c
2kn

ˆ
δ (1−ε)2k<|y|�2δ (1+ε)2k

K(y)dy,

for all k ∈ Z. We shall denote this class by D .
For example, if K is radial an non-increasing, then K ∈ D . A basic example

of potential operator with radial and non-increasing kernel K is given by the fractional
integral operator Iα , which is the convolutionwith the kernel K(t) = |t|α−n , 0 < α < n.
There are other important examples such as the Bessel potential Jβ ,λ , β ,λ > 0 with
kernels Kβ ,λ best defined by means of its Fourier transform by

K̂β ,λ (ξ ) = (λ 2 + |ξ |2)−β/2
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and Kβ ,λ is also radial and non-increasing.
Nevertheless, condition D involves other type of kernels K such as radial and

non-decreasing functions. Moreover, if K is essentially constant on annuli, that is,
K(y) � CK(x) for |y|/2 � |x| � 2|y| , then K ∈ D .

We will be working in a general context that we now introduce.
Let p(·) : Rn → [1,∞] be a measurable function. For A ⊂ Rn we define

p−A = inf
x∈A

p(x) p+
A = sup

x∈A
p(x).

For simplicity we denote p− = p−Rn and p+ = p+
Rn .

With p′(·) = p(·)/(p(·)−1) we denote the conjugate exponent of p(·) . It is not
hard to prove that (p′)− = (p+)′ and (p′)+ = (p−)′ .

We say that α(·) : Rn → R is globally log-Hölder continuous on Rn if it satisfies
the following inequalities

|α(x)−α(y)| � C
log(e+1/|x− y|), x,y ∈ Rn

and

|α(x)−α∞| � C
log(e+ |x|) , x ∈ Rn (2)

for some positive constants C and α∞ . It is easy to see that the inequality (2) implies
that lim|x|→∞ α(x) = α∞ .

We say that p(·) ∈ P(Rn) if 1 � p− � p+ � ∞ and we denote by P log(Rn) the
set of the exponents p(·)∈P(Rn) such that 1/p(·) is globally log-Hölder continuous.
If p∈P(Rn) with p+ < ∞ , then p∈P log(Rn) if and only if p is globally log-Hölder
continuous.

If p(·) ∈ P(Rn) , we define the function

ϕp(·)(y,t) =
{

t p(y), 1 � p(y) < ∞
∞ · χ(1,∞)(t), p(y) = ∞,

for t � 0 and y ∈ Rn , with the convention ∞ · 0 = 0, where χ(1,∞) denote the charac-

teristic function of (1,∞) . Then the variable exponent Lebesgue space Lp(·)(Rn) is the
set of the measurable functions f defined on Rn such that, for some positive λ ,

ˆ
Rn

ϕp(·)(x, | f (x)|/λ )dx < ∞.

A Luxemburg norm can be defined in Lp(·)(Rn) by taking

‖ f‖Lp(·) = inf

{
λ > 0 :

ˆ
Rn

ϕp(·)(x, | f (x)|/λ )dx � 1

}
.

By Lp(·)
loc (Rn) we denote the space of the functions f such that f χU ∈ Lp(·)(Rn) for

every compact set U ⊂ Rn .
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A locally integrable function w defined in Rn which is positive almost every-
where is called a weight. For p(·) ∈ P(Rn) we define the weighted variable Lebesgue

space Lp(·)
w (Rn) as the set of the measurable functions f defined on Rn such that

f w ∈ Lp(·)(Rn) , and ‖ f‖
Lp(·)

w
:= ‖ f w‖Lp(·) .

By a cube Q in Rn we shall understand a cube with sides parallel to the coordi-
nate axes. The sidelength of Q is denoted by �(Q) and γQ , γ > 0, denotes the cube
concentric with Q and with sidelength γ�(Q) .

We shall say that A � B if there exist two positive constants C1 and C2 such that
C1B � A � C2B .

We define now the functional related with the space where the symbol b belongs.
We use E to denote the class of all cubes Q in Rn with sides parallel to the axes and
consider a functional a : E → [0,∞) . We say that a satisfies the T∞ condition and
we denote by a ∈ T∞ , if there exists a finite positive constant t∞ such that for every
Q,Q′ ∈ E such that Q′ ⊂ Q ,

a(Q′) � t∞ a(Q). (3)

We denote the least constant t∞ in (3) by ‖a‖t∞ . Clearly, ‖a‖t∞ � 1.
Let 0 < ρ < ∞ and a ∈ T∞ . We say that a function b ∈ L1

loc(R
n) belongs to the

generalized Lipschitz space L
ρ
a if

sup
Q

1
a(Q)

(
1
|Q|

ˆ
Q
|b−bQ|ρ dx

)1/ρ
< ∞ (4)

where the supremum is taken over all cubes Q⊂Rn and bQ denote the average 1
|Q|

´
Q b

(which sometimes will be denoted by
ffl
Q b ).

We are now in position to state our main results.
The next theorem gives a two weighted boundedness result between variable

Lebesgue spaces with different exponents for the commutator Tb,m
K , when the symbol b

belongs to the class L
ρ
a defined previously. The function K̃ involved in the condition

on the weights is given by

K̃(t) =
ˆ
|z|�t

K(z)dz.

THEOREM 1.1. Let p(·),q(·)∈P log(Rn) such that 1 < p− � p(·) � q(·) � q+ <
∞ , K ∈ D and m ∈ N∪{0} . Let 1 � ρ < ∞ , a ∈ T∞ and b ∈ L

ρ
a . Let R,S be two

constants such that R > (p′)+/(p′)− and S > q+/q− . Suppose that (v,w) is any couple

of weights such that v∈ Lp(·)
loc (Rn) and, for some positive constant κ and for every cube

Q,

a(Q)mK̃(�(Q))
‖χQ‖Lq(·)
‖χQ‖Lp(·)

∥∥χQv−1
∥∥

LRp′(·)
‖χQ‖LRp′(·)

‖χQw‖LSq(·)
‖χQ‖LSq(·)

� κ . (5)

Then
Tb,m
K : Lp(·)

v (Rn) ↪→ Lq(·)
w (Rn).
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More precisely, ∥∥∥Tb,m
K f

∥∥∥
L

q(·)
w

� κ ‖b‖m
L 1

a
‖ f‖

L
p(·)
v

,∀ f ∈ Lp(·)
v (Rn).

In the classical Lebesgue spaces, a proof can be found in [14] for the case m = 0, that
is, Tb,m

K = TK ; and in [7] for m � 1 and b ∈ BMO = L 1
a where a(Q) = 1. In the

variable Lebesgue spaces, when b ∈ BMO the result above was proved in [11].
Let us observe that, if a(Q) = |Q|δ/n , 0 < δ < 1, then a ∈ T∞ and it is known

that L 1
a := L(δ ) coincides with the classical Lipschitz spaces Λδ define as the set of

functions b such that
|b(x)−b(y)|� C|x− y|δ

for some positive constant C and for every x,y ∈ Rn .
On the other hand, if r(·) ∈ P log(Rn) with r+ < ∞ ,

1 < γ � r− � r+ <
nγ

(n− γ)+
and 0 � δ (·)/n := 1/γ −1/r(·) < 1/n, (6)

in [15, Corollary 3.6] it was proved that the functional a(Q) = |Q|1/γ−1 ‖χQ‖Lr′(·) sat-
isfies the T∞ condition and L 1

a = L(δ (·)) are a variable version of the spaces L(δ )
defined above. Indeed, let us observe that the functional above can be written as

a(Q) � |Q|1/γ/‖χQ‖Lr(·) � ‖χQ‖Ln/δ (·) ,

(see Lemmas 2.5 and 2.6).

In the case that b ∈ L(δ (·)) , we can improve the theorem above in the sense
that we can introduce other type of norms in the conditions on the weights involving
generalized Φ-functions (GΦ-functions) (see Section 2 for more information about
GΦ-functions). In order to state the results we need some definitions.

The norm associated to a given GΦ-function Ψ is given by

‖ f‖Ψ(·,L) = inf

{
λ > 0 :

ˆ
Rn

Ψ
(

x,
| f (x)|

λ

)
dx � 1

}
and we denote by LΨ(Rn) the space of functions f such that ‖ f‖Ψ(·,L) < ∞ .

A corresponding maximal operator associated to Ψ is

MΨ(·,L) f (x) = sup
Q�x

‖χQ f‖Ψ(·,L)

‖χQ‖Ψ(·,L)
(7)

and, for β (·) ∈ P(Rn) , we define the following fractional type version of maximal
above as follows

Mβ (·),Ψ(·,L) f (x) = sup
Q�x

‖χQ‖Lβ(·)
‖χQ f‖Ψ(·,L)

‖χQ‖Ψ(·,L)
. (8)

We say that a 3-tuples of GΦ-functions (A,B,D) satisfy condition F if they
verify
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9. ‖χQ‖A(·,L) ‖χQ‖B(·,L) � ‖χQ‖D(·,L) where � means that there exists a positive
constant C such that 9 holds with � replaced by � C .

10. A−1(x, t)B−1(x,t) � D−1(x,t) where A−1 denote the inverse of A (for the
definition of the inverse of a GΦ-function see Section 2).

11. ‖χQ‖D(·,L) ‖χQ‖D∗(·,L) � |Q| , where D∗ is the conjugate function of D (for
the definition of the conjugate of a GΦ-function see Section 2).

Necessary conditions on D where given in [4, Remark 4.5.8] and [5, Lemma
4.4.5.] in order to verify 11.

We shall give later some examples of GΦ-functions that satisfy condition F .

We can now give our result.

THEOREM 1.2. Let p(·),q(·) ∈ P log(Rn) such that p(·) � q(·) , K ∈ D and m
a non-negative integer. Let β (·) be a function such that 1/β (·) = 1/p(·)−1/q(·) . Let
r(·) ∈ P log(Rn) and δ (·) defined as in (6), such that r∞ � r(·) and let b ∈ L(δ (·)) .
Let (A,B,D) and (E,H,J) GΦ-functions satisfying condition F ,

MB(·,L) : Lp(·)(Rn) → Lp(·)(Rn) (12)

and
Mβ (·),H(·,L) : Lq′(·)(Rn) → Lp′(·)(Rn). (13)

Suppose that (v,w) is any couple of weights such that v ∈ Lp(·)
loc (Rn) and, for some

positive constant κ and for every cube Q,

‖χQ‖m
Ln/δ (·) K̃(�(Q))

‖χQ‖Lq(·)
‖χQ‖Lp(·)

∥∥χQv−1
∥∥

A(·,L)

‖χQ‖A(·,L)

‖χQw‖E(·,L)

‖χQ‖E(·,L)
� κ . (14)

Then
Tb,m
K : Lp(·)

v (Rn) ↪→ Lq(·)
w (Rn).

More precisely, ∥∥∥Tb,m
K f

∥∥∥
Lq(·)

w
� κ ‖ f‖

L
p(·)
v

,∀ f ∈ Lp(·)
v (Rn).

Let us give some examples of GΦ-functions that satisfy the hypothesis of the
theorem above.

Notice first that, if we consider p(·) ∈ P(Rn) and q(·) with q+ < ∞ , then the
function Ψ(x, t) = t p(x)(log(e+ t))q(x) , x ∈ Rn, t � 0, is a GΦ-function. In this case,
the space LΨ(Rn) will be denoted by Lp(·)(logL)q(·)(Rn) . In [10, Proposition 2.5] the
authors proved that the Hardy-Littlewood maximal operator M is bounded in this space
when p(·) ∈ P log(Rn) with 1 < p− � p+ < ∞ , and q(·) ∈ P loglog(Rn) . We say that



COMMUTATORS OF POTENTIAL TYPE OPERATORS 861

q(·) ∈P loglog(Rn) if q(·) : Rn → R with q+ < ∞ such that, for some positive constant
C , it satisfies the following inequality

|q(x)−q(y)|� C
log(e+ log(e+1/|x− y|)), for every x,y ∈ Rn.

REMARK 1.3. Note that if p(·)∈P log(Rn) with p+ < ∞ and q(·)∈P loglog(Rn) ,
then (pq)(·) ∈ P loglog(Rn) and (q/p)(·) ∈ P loglog(Rn) . Indeed, for every x,y ∈ Rn ,

|p(x)q(x)− p(y)q(y)|� |p(x)||q(x)−q(y)|+ |q(y)||p(x)− p(y)|

� p+

log(e+ log(e+1/|x− y|)) +
q+

log(e+1/|x− y|)
� 1

log(e+ log(e+1/|x− y|)).

This gives (pq)(·)∈P loglog(Rn) . Since (1/p)+ < ∞ , (q/p)(·)∈P loglog(Rn) follows
from the first property.

Examples. Let p(·) ∈ P log(Rn) with 1 < p− � p+ < ∞ and σ > (p′)+/(p′)− . The
following GΦ-functions satisfy condition F and the hyphoteses (12) and (13) of the
Theorem 1.2.

EXAMPLE 1.1. The 3-tuple (A1,B1,D1) where A1(x,t)= tσ p′(x)(log(e+t))σ p′(x) ,
B1(x,t) = t(σ p′)′(x) and D1(t) = t log(e+ t) .

EXAMPLE 1.2. If, in addition, μ(·) ∈ P log(Rn) with 1 < μ− � μ+ < ∞ such
that

1/σ p′(·)−1/μ(·) > ε

for some constant ε ∈ (0,1) and ν(·) ∈ P loglog(Rn) then, the example of 3-tuple is
given by (A2,B2,D2) where A2(x,t) = tμ(x)(log(e+ t))ν(x)μ(x) , B2(x, t) = t(σ p′)′(x) and
D2(x, t) = tα(x)(log(e+ t))α(x)ν(x) where α(·) is defined by

1/α(·) = 1/μ(·)+1/(σ p′)′(·).

In Section 3 we check these examples.

The paper is organized as follows. In Section 2 we introduce basic definitions
and known results related to Musielak-Orlicz spaces. We also give some bounded-
ness estimates in this context. In Section 3 we prove a key estimate regarding the
Lp(·)(logL)q(·)(Rn) norm of χQ for Q ∈ E , using a series of auxiliary lemmas that we
prove as well. We also discuss the validity of Examples 1.1 and 1.2. Finally, in Section
4 we prove Theorem 1.1 and Theorem 1.2.
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2. Preliminaries

In this section we give some previous definitions and results that we shall be using
throughout this paper.

With M we denote the set of all Lebesgue real valued, measurable functions on
Rn .

A convex function ψ : [0,∞) → [0,∞] with ψ(0) = 0, limt→0+ ψ(t) = 0 and
limt→∞ ψ(t) = ∞ is called a Φ-function.

A real function Ψ : Rn × [0,∞) → [0,∞] is said to be a generalized Φ-function
(GΦ-function), and we denote Ψ ∈ GΦ(Rn) , if Ψ(x, t) is Lebesgue-measurable in x
for every t � 0 and Ψ(x, ·) is a Φ-function for every x ∈ Rn .

If Ψ ∈ GΦ(Rn) , then the set

LΨ(Rn) :=
{

f ∈ M :
ˆ

Rn
Ψ(x, | f (x)|) dx < ∞

}
defines a Banach function space equipped with the Luxemburg-norm given by

‖ f‖Ψ(·,L) := inf

{
λ > 0 :

ˆ
Rn

Ψ
(

x,
| f (x)|

λ

)
dx � 1

}
.

The space LΨ(Rn) is called a Musielak-Orlicz space.
Let p(·)∈P(Rn) , then Ψ(x,t) = t p(x) ∈GΦ(Rn) . In this case, the space LΨ(Rn)

is the variable exponent Lebesgue space Lp(·)(Rn) defined in the introduction. If we
also consider r(·) with r+ < ∞ , then Ψ(x,t) = t p(x)(log(e+ t))r(x) ∈ GΦ(Rn) . In this
case, the space LΨ(Rn) is the space Lp(·)(logL)r(·)(Rn) introduced before.

Let Ψ ∈ GΦ(Rn) , then for any x ∈ Rn we denote by Ψ∗(x, ·) the conjugate func-
tion of Ψ(x, ·) which is defined by

Ψ∗(x,u) = sup
t�0

(tu−Ψ(x,t)), u � 0.

For Ψ ∈ GΦ(Rn) that verifies that every simple function belongs to LΨ∗
(Rn) , we have

the following norm conjugate formula,

‖ f‖Ψ(·,L) � sup
‖g‖Ψ∗(·,L)�1

ˆ
Rn

| f (x)g(x)|dx (15)

for every function f ∈ LΨ(Rn) (see [4, Corollary 2.7.5]).
The following lemma can be deduced from Lemma 4.4.5 in [5].

LEMMA 2.1. Let ψ a Φ-function, then the following inequality

‖χQ‖ψ ‖χQ‖ψ∗ � |Q|

holds for every cube Q in Rn .
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Also we can define Ψ−1 , the generalized inverse function of Ψ , by

Ψ−1(x,t) := inf{u � 0 : Ψ(x,u) � t}, x ∈ Rn,t � 0.

For example, if p ∈ P(Rn) and Ψ(x,t) = t p(x) , we have Ψ−1(x,t) = t1/p(x) and
Ψ∗(x, t) = t p′(x) .

Note that, by definition of Ψ∗ , the following generalization of the Young’s in-
equality holds in this context,

vu � Ψ(x,v)+ Ψ∗(x,u), ∀x ∈ Rn,∀v,u � 0, (16)

for any Ψ ∈ GΦ(Rn) . If we put v = Ψ−1(x,t) and u = (Ψ∗)−1(x,t) in equation (16)
we obtain

Ψ−1(x, t)(Ψ∗)−1(x,t) � Ψ(x,Ψ−1(x,t))+ Ψ∗(x,(Ψ∗)−1(x,t)) � 2t. (17)

Moreover, it can be proved that if Ψ,Λ,Θ ∈ GΦ(Rn) such that Ψ(x, ·),Λ(x, ·) are
strictly increasing and Ψ−1(x,t)Λ−1(x,t) � Θ−1(x,t) for every x ∈ Rn , and for every
t � 0, then

Θ(x,tu) � Ψ(x,t)+ Λ(x,u), ∀x ∈ Rn,∀t,u � 0.

The inequality above allows us to prove the following generalized Hölder type inequal-
ity in this context. The proof is standard and we omit it.

LEMMA 2.2. Let Ψ,Λ,Θ∈GΦ(Rn) such that Ψ(x, ·),Λ(x, ·) are strictly increas-
ing and

Ψ−1(x,t)Λ−1(x,t) � Θ−1(x,t), ∀x ∈ Rn,∀t � 0.

Then
‖ f g‖Θ(·,L) � ‖ f‖Ψ(·,L) ‖g‖Λ(·,L) (18)

for all f ∈ LΨ(Rn) and g ∈ LΛ(Rn) .

For example, if Θ(x,t) = ts(x) , Ψ(x,t) = t p(x) and Λ(x,t) = tq(x) with exponents
s(·), p(·),q(·) ∈ P(Rn) and 1/s(·) = 1/p(·)+1/q(·) , we obtain that

‖ f g‖Ls(·) � ‖ f‖Lp(·) ‖g‖Lq(·) . (19)

In the case s(·) ≡ 1 inequality (19) becomesˆ
Rn

| f (y)g(y)|dy � ‖ f‖Lp(·) ‖g‖Lp′(·) (20)

and, for a general Ψ ∈ GΦ(Rn) such that Ψ(x, ·) is strictly increasing, from inequality
(17) we obtain ˆ

Rn
| f (y)g(y)|dy � ‖ f‖Ψ(·,L) ‖g‖Ψ∗(·,L) , (21)

which is an extension of the classical Hölder inequality (see [4]).

Particularly, when we deal with variable Lebesgue spaces, we have the following
known results that we shall be using along this paper.
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LEMMA 2.3. [4, Lemma 3.4.2] Let p(·) ∈ P(Rn) with p+ < ∞ . Then

‖ f‖Lp(·) � C1 if and only if
ˆ

Rn
| f (x)|p(x) dx � C2.

Moreover, if either constant equals 1 we can take the other equal to 1 as well.

The following lemma describes some properties of the exponent in P log(Rn) .

LEMMA 2.4. Let p(·),q(·) ∈ P log(Rn) and c ∈ R such that c � 1/p− , then the
following properties hold:

(i) cp(·) ∈ P log(Rn) .

(ii) p′(·) ∈ P log(Rn) .

(iii) If α(·) is the exponent defined by 1/α(·)= 1/p(·)+1/q(·) , then α(·)∈P log(Rn) .

(iv) If, in addition, p+,q+ < ∞ , then (pq)(·) ∈ P log(Rn) .

The next lemma can be deduced from the Corollary 4.5.9 in [4].

LEMMA 2.5. ([4]) Let p(·) ∈ P log(Rn) . Then there exists two positive constants
C∗

p and C∗∗
p such that

|Q| � C∗
p ‖χQ‖Lp(·) ‖χQ‖Lp′(·) � C∗∗

p |Q|,
for every cubes Q ⊂ Rn . Note that we can suppose C∗

p,C
∗∗
p � 1 .

Moreover, we have the following result.

LEMMA 2.6. [11, Lemma 2.7] Let p(·),q(·) ∈ P log(Rn) such that p(·) � q(·) .
Suppose that 1/β (·) = 1/p(·)−1/q(·) , then

‖χQ‖Lp(·) ‖χQ‖−1
Lq(·) � ‖χQ‖Lβ(·) ,

for every cube Q ⊂ Rn .

Note that Lemma 2.6 implies Lemma 2.5 making the choices β (·) := p(·) , q(·) := p′(·)
and p(·) := 1.

The following lemma gives a doubling property for the functional f(Q) := ‖χQ‖Lp(·)
with p(·) ∈ P log(Rn) .

LEMMA 2.7. [15, Equation (2.11)] If p(·) ∈ P log(Rn) with p+ < ∞ , then there
exists a positive constant Cp such that the inequality

‖χ2Q‖Lp(·) � Cp ‖χQ‖Lp(·) (22)

holds for every cube Q ⊂ Rn .
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By iteration of inequality (22) it is not difficult to prove that∥∥χγQ
∥∥

Lp(·) � ‖χQ‖Lp(·) (23)

holds for every cube Q ⊂ Rn , with an appropriate constant depending on γ and Cp .

The next theorem is an useful tool in order to prove Theorem 1.1.

THEOREM 2.8. [4, Theorem 7.3.22] If p ∈ P log(Rn) , then

∑
Q∈D

‖χQ f‖Lp(·) ‖χQg‖Lp′(·) � Gp ‖ f‖Lp(·) ‖g‖Lp′(·)

for all f ∈ Lp(·)(Rn) , g ∈ Lp′(·)(Rn) and every family D of pairwise disjoint cubes.

Moreover, a similar result considering overlaping families is the following.

LEMMA 2.9. [11, Lemma 3.5] Let p(·) ∈ P log(Rn) , d ∈ Z and Q0 a dyadic
cube. If we define

Od = {Q dyadic cube : Q ⊂ Q0 and �(Q) = 2−d},

then

∑
Q∈Od

‖ f χ3Q‖Lp(·) ‖gχ3Q‖Lp′(·) �
∥∥ f χ3Q0

∥∥
Lp(·)

∥∥gχ3Q0

∥∥
Lp′(·) (24)

for every f ∈ Lp(·)
loc (Rn) and g ∈ Lp′(·)

loc (Rn) , where the implied constant in � does not
depend on d .

In order to prove Lemma 3.7 we state the next result that follows from [3, Lemma
5.5]. Recall that fQ denotes the average 1

|Q|
´
Q f .

LEMMA 2.10. ([3]) Let p(·) ∈ P log(Rn) with 1 < p− � p+ < ∞ . Then exists a
constant 0 < ν < 1 such that for every cube Q and every function f ∈ L1

loc(R
n) with

fQ = 0 ,
‖| f |ν χQ‖Lp(·) � ‖χQ‖Lp(·) | fQ|ν .

The next theorems give boundedness results in Musielak-Orlicz spaces for certain
maximal functions.

THEOREM 2.11. [10, Proposition 2.5] Let p(·) ∈P log(Rn) with 1 < p− � p+ <
∞ and q(·) ∈ P loglog(Rn) . Then

M : Lp(·)(logL)q(·)(Rn) ↪→ Lp(·)(logL)q(·)(Rn).
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THEOREM 2.12. [4, Theorem 7.3.27] Let p(·),s(·), l(·) ∈ P log(Rn) such that
p(·) = s(·)l(·) and l− > 1 . Then

MLs(·) : Lp(·)(Rn) ↪→ Lp(·)(Rn).

THEOREM 2.13. [11, Theorem 1.7] Let p(·),q(·) ∈ P log(Rn) such that p(·) �
q(·) and r(·) ∈P loglog(Rn) . Let s(·) ∈ P log(Rn) and β (·) be two functions such that
1/β (·) = 1/p(·)−1/q(·) and 1 � s− � s+ < p− . Then

Mβ (·),Ls(·) : Lp(·)(logL)r(·)(Rn) ↪→ Lq(·)(logL)r(·)(Rn).

REMARK 2.14. Since 1/β (·) = 1/q′(·)− 1/p′(·) , if 1 � s− � s+ < (q′)− we
have that

Mβ (·),Ls(·) : Lq′(·)(logL)r(·)(Rn) ↪→ Lp′(·)(logL)r(·)(Rn).

The following result establishes that the spaces L
ρ
a coincide, for 1 � ρ < ∞ .

THEOREM 2.15. [6, Corollary 2] Let 1 � ρ < ∞ and a ∈ T∞ , then L
ρ
a = L 1

a
and

sup
Q

1
a(Q)

( 
Q
|b−bQ|ρ dx

)1/ρ
� sup

Q

1
a(Q)

 
Q
|b−bQ|dx.

The following lemma can be deduced from the proof of Theorem 2.3 in [15] (see
[15, Equation (5.4)], and it will be useful in the proof of Theorem 1.2.

LEMMA 2.16. [15] Let r(·) ∈ P log(Rn)) with r+ < ∞ such that r∞ � r(·) ,

1 < γ � r− � r+ <
nγ

(n− γ)+
and δ (·)/n := 1/γ −1/r(·).

Let b ∈ L(δ (·)) then

|b(x)−b(z)|� |x− z|δ (x)

for every x,z ∈ Rn .

3. Key auxiliary results

In this section we give some technical lemmas that will be useful in the proof of
the main results.
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3.1. Estimates of ‖χQ‖Lp(·)(logL)q(·)

In [4] the authors proved that, if p(·) ∈ P log(Rn) , then ‖χQ‖Lp(·) � |Q|(1/p)Q

for any cube Q (see [4, Lemma 4.5.3]). Recall that (1/p)Q denotes the average
|Q|−1

´
Q 1/p(x)dx . We would like to generalize this result to the case of Lp(·)(logL)q(·)

norms, that is, estimates of ‖χQ‖Lp(·)(logL)q(·) with p(·),q(·) in certain classes of expo-
nents. Concretely, we prove the following result.

PROPOSITION 3.1. Let p(·) ∈P log(Rn) such that 1 < p− � p+ < ∞ and a non-
-negative function q(·) ∈ P loglog(Rn) . Then

‖χQ‖Lp(·)(logL)q(·) � |Q|(1/p)Q(log(e+1/|Q|))(q/p)Q,

for every cube Q in Rn .

REMARK 3.2. In particular, when p(·) = q(·) with 1 < p− � p+ < ∞ ,

‖χQ‖Lp(·)(logL)p(·) � |Q|(1/p)Q log(e+1/|Q|) (25)

and if, in addition, q(·) ≡ 0,

‖χQ‖Lp(·) � |Q|(1/p)Q. (26)

Since ψ(t) = t log(e+ t) is an invertible Young function, is easy to see that

‖χQ‖L logL � |Q| log(e+1/|Q|). (27)

In order to achieve Proposition 3.1 we need the following lemmas.

LEMMA 3.3. Let q(·) ∈ P loglog(Rn) and let Q be a cube in Rn . Then, for every
x,y ∈ Q,

(log(e+1/|Q|))q(x) � (log(e+1/|Q|))q(y).

Proof. It is enough to show that there exists a positive constant C such that

(log(e+1/|Q|))|q(x)−q(y)| � C,

or equivalenty
exp[|q(x)−q(y)| log(log(e+1/|Q|))] � C. (28)

Since q(·) ∈ P loglog(Rn) ,

exp(|q(x)−q(y)| log(log(e+1/|Q|))) � exp

(
C

log(e+ log(e+1/|Q|))
log(e+ log(e+1/|x− y|))

)
. (29)
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Since x,y ∈ Q , there exists a constant Cn > 1 such that |x− y|� Cn|Q|1/n . Then

log

(
e+ log

(
e+

1

Cn|Q|1/n

))
� log

(
e+ log

(
e+

1
|x− y|

))
.

If we prove that

log

(
e+ log

(
e+

1
|Q|
))

� κ log

(
e+ log

(
e+

1

Cn|Q|1/n

))
(30)

for some positive constant κ then, by (29), we conclude (28).
Let us prove inequality (30). Note that, since Cn � 1,

log

(
e+

1
|Q|
)

� log

(
e+

1

|Q|1/n

)
� log

(
Cn e+

Cn

Cn|Q|1/n

)
� log(Cn) log

(
e+

1

Cn|Q|1/n

)
+ log

(
e+

1

Cn|Q|1/n

)
� (1+ logCn) log

(
e+

1

Cn|Q|1/n

)
:= κ1 log

(
e+

1

Cn|Q|1/n

)
.

Thus, by similar argument, since κ1 � 1,

log

(
e+ log

(
e+

1
|Q|
))

� log

(
e+ κ1 log

(
e+

1

Cn|Q|1/n

))
� (1+ logκ1) log

(
e+ log

(
e+

1

Cn|Q|1/n

))
:= κ log

(
e+ log

(
e+

1

Cn|Q|1/n

))
. �

Let α(·) and θ (·) be two functions with 0 < α− � α+ < ∞ and 0 � θ− � θ+ < ∞
and x ∈ Rn , we denote

φα(x),θ(x)(t) := tα(x)(log(e+ t))θ(x).

Note that, for every fixed x∈Rn , φ−1
α(x),θ(x)(·) is a Young function, then it is not difficult

to prove that
φ−1

α(x),θ(x)(t) � t1/α(x)(log(e+ t))−θ(x)/α(x) (31)

(see, for example, [16]). If, in addition, α− > 1,

φ∗
α(x),θ(x)(t) � tα ′(x)(log(e+ t))−θ(x)/(α(x)−1). (32)

The constants involved in equations (31) and (32) only depend on the extremes of the
exponents α(·) and θ (·) .
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LEMMA 3.4. Let p(·) ∈ P log(Rn) such that 1 � p(·) � p+ < ∞ and a non-
-negative function q(·) ∈ P loglog(Rn) . Then for every cube Q ⊂ Rn we have

φ−1
1

(1/p)Q
,
(q/p)Q
(1/p)Q

(1/|Q|) �
 

Q
φ−1

p(x),q(x)(1/|Q|)dx.

Proof. Let Q ⊂ Rn a cube. Since

0 <
1

(1/p)Q
� p+ < ∞ and 0 � (q/p)Q

(1/p)Q
� q+p+ < ∞,

by equation (31) with α(·) := 1/(1/p)Q and θ (·) := (q/p)Q/(1/p)Q , we have

φ−1
1

(1/p)Q
,
(q/p)Q
(1/p)Q

(1/|Q|) � (1/|Q|)(1/p)Q (log(e+(1/|Q|)))(q/p)Q . (33)

Given x ∈ Q , define the mappings

h(z) := (1/|Q|)z (log(e+(1/|Q|)))−(q/p)Q

and
gx(z) := (1/|Q|)1/p(x) (log(e+(1/|Q|)))−z

for z � 0. Note that, as functions of z , the mappings h and gx are convex. Thus, by
(33) and applying Jensen’s inequality twice we have that

φ−1
1

(1/p)Q
,
(q/p)Q
(1/p)Q

(1/|Q|) � h

((
1
p

)
Q

)
�
 

Q
h

(
1

p(x)

)
dx

=
 

Q
(1/|Q|)1/p(x) (log(e+(1/|Q|)))−(q/p)Q dx

=
 

Q
gx

((
q
p

)
Q

)
dx �

 
Q

 
Q

gx

(
q(y)
p(y)

)
dydx

=
 

Q

 
Q

(1/|Q|)1/p(x)

(log(e+1/|Q|))q(y)/p(y) dydx.

From Remark (1.3) we can apply Lemma 3.3 with q(·) := (q/p)(·) to obtain that

φ−1
1

(1/p)Q
,
(q/p)Q
(1/p)Q

(1/|Q|) �
 

Q

(1/|Q|)1/p(x)

(log(e+1/|Q|))q(x)/p(x) dx �
 

Q
φ−1

p(x),q(x)(1/|Q|)dx,

where we have used equation (31) with α(·) := p(·) and θ (·) := q(·) . �
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LEMMA 3.5. Let p(·),q(·) such that 1 < p− � p+ < ∞ and 0 � q− � q+ < ∞
and let Q be a cube in Rn . Then for every t � 0 ,

t �
 

Q
φ−1

p(x),q(x)(t)dx
 

Q
(log(e+ t))q(x)φ−1

p′(x),q(x)(t)dx.

Proof. It is enough to prove the case t > 0. Since, by equation (31),

φ−1
p(x),q(x)(t) φ−1

p′(x),q(x)(t) �
t1/p(x)

(log(e+ t))q(x)/p(x)

t1/p′(x)

(log(e+ t))q(x)/p′(x) =
t

(log(e+ t))q(x) ,

then, by Jensen’s inequality, we have
 

Q
φ−1

p(x),q(x)(t)dx � t
 

Q

1

(log(e+ t))q(x)φ−1
p′(x),q(x)(t)

dx

� t
1ffl

Q(log(e+ t))q(x)φ−1
p′(x),q(x)(t)dx

. �

Proof of Proposition 3.1. Let Q be a cube in Rn , define

f (x) := χQ(x)φ−1
p(x),q(x)(1/|Q|), x ∈ Rn

and
g(x) := χQ(x)(log(e+1/|Q|))q(x)φ−1

p′(x),q(x)(1/|Q|), x ∈ Rn.

Note that ‖ f‖Lp(·)(logL)q(·) � 1 and ‖g‖Lp′(·)(logL)−q(·)/(p(·)−1) �C2 with C2 a positive con-
stant independent of Q . Indeed, since by (31),

ˆ
Rn

φp(x),q(x)( f (x))dx =
ˆ

Q
φp(x),q(x)

(
φ−1

p(x),q(x)(1/|Q|)
)

dx � 1,

the estimation for f is clear. Note that, for x ∈ Q , by (31),

log(e+g(x)) = log
[
e+(log(e+1/|Q|))q(x)φ−1

p′(x),q(x)(1/|Q|)
]

� log
[
e+(log(e+1/|Q|))q(x)/p(x)(1/|Q|)1/p′(x)

]
� log

(
e+(1/|Q|)1/p′(x)

)
� 1

(p′)+
log(e+1/|Q|) � log(e+1/|Q|),

since (p′)+ < ∞ . Thus we have that

ˆ
Q

gp′(x)

(log(e+g))q(x)/(p(x)−1) dx �
ˆ

Q

gp′(x)

(log(e+1/|Q|))q(x)/(p(x)−1) dx

�
 

Q
(log(e+1/|Q|))q(x)

(
p′(x)− 1

p(x)−1−1
)
dx � 1,
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since p′(x)−1/(p(x)−1)−1 = 0.
By Lemma 3.5 with t := 1/|Q| we have

1 � |Q|
 

Q
φ−1

p(x),q(x)(1/|Q|)dx
 

Q
(log(e+1/|Q|))q(x) φ−1

p′(x),q(x)(1/|Q|)dx

=
 

Q
f dx

ˆ
Rn

χQ(x)g(x)dx. (34)

We can apply Hölder’s inequality (21) with the functions Ψ(x,t) := t p(x)(log(e+ t))q(x)

and Ψ∗(x, t) := t p′(x)(log(e+ t))−q(x)/(p(x)−1) (see equation (32)), to obtain

1 �
 

Q
f (x)dx‖χQ‖Lp(·)(logL)q(·) ‖g‖Lp′(·)(logL)−q(·)/(p(·)−1)

� ‖ fQχQ‖Lp(·)(logL)q(·) � ‖M f‖Lp(·)(logL)q(·) � ‖ f‖Lp(·)(logL)q(·) � 1, (35)

where we have used Theorem 2.11.
Since

ffl
Q f (x)dx =

ffl
Q φ−1

p(x),q(x)(1/|Q|)dx > 0, from equation (35) we obtain that

|Q|
 

Q
(log(e+1/|Q|))q(x) φ−1

p′(x),q(x)(1/|Q|)dx � ‖χQ‖Lp(·)(logL)q(·)

� 1ffl
Q φ−1

p(x),q(x)(1/|Q|)dx
. (36)

By Lemma 3.4 we can estimate the right-hand side of inequality (36) using equation
(31) as follow

1ffl
Q φ−1

p(x),q(x)(1/|Q|)dx
� 1

φ−1
1

(1/p)Q
,
(q/p)Q
(1/p)Q

(1/|Q|) � |Q|(1/p)Q(log(e+1/|Q|))(q/p)Q.

In order to estimate the left-hand side of inequality (36), if x∈Q , by Jensen’s inequality
and Lemma 3.3,

(log(e+1/|Q|))qQ �
 

Q
(log(e+1/|Q|))q(y)dy � (log(e+1/|Q|))q(x).

Thus by Lemma 3.4 we have

|Q|
 

Q
(log(e+1/|Q|))q(x) φ−1

p′(x),q(x)(1/|Q|)dx

� |Q|(log(e+1/|Q|))qQ

 
Q

φ−1
p′(x),q(x)(1/|Q|)dx

� |Q|(log(e+1/|Q|))qQ φ−1
1

(1/p′)Q
,
(q/p′)Q
(1/p′)Q

(1/|Q|)

� |Q|(log(e+1/|Q|))qQ |Q|−(1/p′)Q (log(e+1/|Q|))−(q/p′)Q

� |Q|(1/p)Q (log(e+1/|Q|))(q/p)Q. �
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COROLLARY 3.6. Let p(·) ∈ P log(Rn) with p+ < ∞ and let Q be a cube in Rn .
Then  

Q
|Q|1/p(x) dx � ‖χQ‖p(·) .

Proof. From the proof of Proposition 3.1, by using inequality (35) replacing p(·)
and q(·) by p′(·) and 0, respectively, we have

‖χQ‖p′(·)

 
Q
(1/|Q|)1/p′(x) dx � 1. (37)

Since ˆ
Q
(1/|Q|)1/p′(x) dx =

ˆ
Q
|Q|1/p(x)−1dx =

 
Q
|Q|1/p(x) dx

by (37) we obtain that

‖χQ‖p′(·)
|Q|

 
Q
|Q|1/p(x) dx � 1.

Thus, by Lemma 2.5,
 

Q
|Q|1/p(x) dx � ‖χQ‖p(·) . �

We now show that the Examples 1.1 and 1.2 satisfy the hypotheses of Theorem
1.2.

Let us see 1.1. For p(·)∈P log(Rn) with 1 < p− � p+ < ∞ and σ > (p′)+/(p′)− ,
A1(x,t) = tσ p′(x)(log(e+ t))σ p′(x) , B1(x,t) = t(σ p′)′(x) and D1(t) = t log(e+ t) .

If we define s(·) := (σ p′)′(·) and l(·) := p(·)/s(·) , by Lemma 2.4(ii) and (iv),
s(·), l(·) ∈ P log(Rn) . Moreover, l− > 1. In fact, since σ > (p′)+/(p′)− ,

(p−)′ = (p′)+ < σ(p′)− = (σ p′)−

which implies that
p− > [(σ p′)−]′ = [(σ p′)′]+

and then

1 <
p−

[(σ p′)′]+
� l−.

Thus, we can apply Theorem 2.12 and Theorem 2.13 to obtain that

ML(σ p′)′(·) : Lp(·)(Rn) → Lp(·)(Rn).

and
Mβ (·),L(σ p′)′(·) : Lp(·)(Rn) → Lp(·)(Rn),
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respectively. Condition 11 it follows from Lemma 2.1. By Remark 3.2,

‖χQ‖A1(·,L) ‖χQ‖B1(·,L) = ‖χQ‖Lσ p′(·)(logL)σ p′(·) ‖χQ‖L(σ p′)′(·)

� |Q|(1/σ p′)Q log(e+1/|Q|)|Q|(1/(σ p′)′)Q = |Q| log(e+1/|Q|)
� ‖χQ‖L logL = ‖χQ‖D1(L) ,

by equation (27), and thus condition 9 is satisfied. Condition 10 follows from the fact
that, by equation (31),

A−1
1 (x, t)B−1

1 (x,t) � t1/σ p′(x)

log(e+ t)
t1/(σ p′)′(x) =

t
log(e+ t)

� D−1
1 (t).

Let us now see 1.2. Recall that for p(·) ∈ P log(Rn) with 1 < p− � p+ < ∞ and
σ > (p′)+/(p′)− , μ(·) ∈ P log(Rn) such that 1 < μ− � μ+ < ∞ and

1/σ p′(·)−1/μ(·) > ε, (38)

for some constant ε ∈ (0,1) and ν(·) ∈ P log(Rn) , A2(x, t) = tμ(x)(log(e+ t))ν(x)μ(x) ,
B2(x,t) = t(σ p′)′(x) and D2(x,t) = tα(x)(log(e + t))α(x)ν(x) where α(·) is defined by
1/α(·) = 1/μ(·)+1/(σ p′)′(·).

Note that, by Lemma 2.4(iii), α(·) ∈ P log(Rn) . Moreover, 1 < α− � α+ < ∞ .
In fact, by inequality (38),

1
α(·) =

1
μ(·) +

1
(σ p′)′(·) <

1
σ p′(·) +

1
(σ p′)′(·) − ε = 1− ε.

Thus, α− � 1/(1− ε) > 1. Also,

α(·) =
μ(·)(σ p′)′(·)

μ(·)+ (σ p′)′(·) � μ+ < ∞.

Then, by Remark 1.3, (αν)(·),(μν)(·) ∈ P loglog(Rn) . Thus, by Proposition 3.1 and
equation (26), we have

‖χQ‖A2(·,L) ‖χQ‖B2(·,L) = ‖χQ‖Lμ(·)(logL)(μν)(·) ‖χQ‖L(σ p′)′(·)

� |Q|(1/μ)Q(log(e+1/|Q|))νQ|Q|(1/(σ p′)′)Q

� |Q|(1/α)Q(log(e+1/|Q|))νQ � ‖χQ‖Lα(·)(logL)(αν)(·)

� ‖χQ‖D2(·,L) .

Then 9 holds. On the other hand, by equation (31),

A−1
2 (x, t)B−1

2 (x, t) � t1/μ(x)

(log(e+ t))ν(x) t
1/(σ p′)′(x) � t1/α(x)

(log(e+ t))ν(x) � D−1
2 (x, t),
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thus 10 holds. Note that, by Lemma 2.11 with p(·) := α(·) and q(·) := (αν)(·) ,
M : Lα(·)(logL)(αν)(·)(Rn) → Lα(·)(logL)(αν)(·)(Rn) . Thus, by duality (see equation
(15)), we have that

‖χQ‖D2(·,L) ‖χQ‖D∗
2(·,L) � ‖χQ‖D2(·,L) sup

‖g‖D2(·,L)�1

ˆ
Q
|g(x)|dx

= sup
‖g‖D2(·,L)�1

∥∥∥∥χQ

ˆ
Q
|g(x)|dx

∥∥∥∥
D2(·,L)

= |Q| sup
‖g‖D2(·,L)�1

∥∥∥∥χQ
1
|Q|

ˆ
Q
|g(x)|dx

∥∥∥∥
D2(·,L)

� |Q| sup
‖g‖D2(·,L)�1

‖χQMg‖D2(·,L) � |Q|.

Then condition 11 holds.

3.2. Estimates in L(δ (·))
We now give some previous estimates for the symbol functions we are interested

in.

LEMMA 3.7. Let k be a positive integer and p(·) ∈ P log(Rn) with 1 < p− �
p+ < ∞ . Let a ∈ T∞ and b ∈ L 1

a . Then, for every cube Q ⊂ Rn ,∥∥χQ(b−bQ)k
∥∥

Lp(·)

‖χQ‖Lp(·)
�
(
a(Q)‖b‖L 1

a

)k
. (39)

Proof. Let Q be a fixed cube. By Lemma 2.10 there exist a constant 0 < ν < 1
independent of Q such that for all f ∈ L1

loc(R
n) ,

‖χQ| f |ν‖Lp(·) � (| f |Q)ν ‖χQ‖Lp(·) . (40)

We now put f (x) = (b(x)−bQ)k/ν . Noticing that k/ν > 1, by Theorem 2.15, we
have

(| f |Q)ν =
(

1
|Q|

ˆ
Q
|b(x)−bQ|k/ν dx

)ν
=

[
a(Q)
a(Q)

(
1
|Q|

ˆ
Q
|b(x)−bQ|k/ν dx

)ν/k
]k

�
[
a(Q)

(
1

a(Q)|Q|
ˆ

Q
|b(x)−bQ|dx

)]k

�
[
a(Q)‖b‖L 1

a

]k
. �

LEMMA 3.8. Let a ∈ T∞ and b ∈ L 1
a , then the following inequality

|b3Q−bQ| � ‖a‖t∞ a(3Q)‖b‖L 1
a

holds for every cube Q ⊂ Rn .
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Proof. Let Q be a fixed cube. Then, by T∞ condition (3), we have that

|b3Q −bQ| � |b3Q−b2Q|+ |b2Q−bQ|
� 1

|2Q|
ˆ

2Q
|b(x)−b3Q|dx+

1
|Q|

ˆ
Q
|b(x)−b2Q|dx

� 1
|3Q|

ˆ
3Q

|b(x)−b3Q|dx+
1

|2Q|
ˆ

2Q
|b(x)−b2Q|dx

� a(3Q)‖b‖L 1
a

+a(2Q)‖b‖L 1
a

� ‖a‖t∞ a(3Q)‖b‖L 1
a
. �

In the proof of Theorem 1.2 we shall use the following pointwise estimate for
b ∈ L(δ (·)) .

LEMMA 3.9. Let r(·) ∈ P log(Rn) with r∞ � r(·) � r+ < ∞ and δ (·) be defined
as in (6) and b ∈ L(δ (·)) . Let Q be a cube in Rn and z ∈ kQ for some positive integer
k . Then

|b(z)−bQ| � ‖χQ‖n/δ (·) .

Proof. Note that if x ∈ Q and z ∈ kQ for some positive integer k , then we have
|z− x|� |Q|1/n . Thus by Lemma 2.16 and Corollary 3.6 we obtain

|b(z)−bQ| �
 

Q
|b(z)−b(x)| dx �

 
Q
|z− x|δ (x) dx �

 
Q
|Q|δ (x)/n dx � ‖χQ‖n/δ (·) . �

4. Proof of main results

In this section we present the proofs of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Since v ∈ Lp(·)
loc (Rn) implies that the set of bounded func-

tions with compact support is dense in Lp(·)
v (Rn) , it is enough to show that∥∥∥Tb,m

K f
∥∥∥

L
q(·)
w

� ‖ f‖
Lp(·)

v

for each non-negative bounded function with compact support f . Moreover, by duality
(see equation (15)) this is equivalent to prove that

ˆ
Rn

|Tb,m
K f (x)|w(x)g(x)dx � ‖ f‖

L
p(·)
v

for all non-negative bounded functions with compact support f ,g with ‖g‖Lq′(·) � 1.
Let K be the function defined by

K(t) = sup
t<|x|�2t

K(x),
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for every t > 0. It was proved in [7, Proof of Theorem 2.2] that, if K ∈ D , we can
estimate the commutator as follows

|Tb,m
K f (x)| � ∑

Q

K

(
�(Q)

2

) m

∑
j=0

(
m
j

)
|b(x)−bQ|m− jχQ(x)

ˆ
3Q

|b(z)−bQ| j f (z)dz,

where the sum is taken over all dyadic cubes of Rn . Henceˆ
Rn

|Tb,m
K f (x)|w(x)g(x)dx

� ∑
Q

K

(
�(Q)

2

) m

∑
j=0

ˆ
3Q

|b(z)−bQ| j f (z)dz
ˆ

Q
|b(x)−bQ|m− jg(x)w(x)dx. (41)

Let us denote s(·) := Rp′(·) and l(·) := Sq(·) . Since (p′)+ < R(p′)− and q+ < Sq−
then (s′)+ < p− and (l′)+ < (q+)′ . Let μ ,ν be two constants such that

(s′)+ < μ < p− and (l′)+ < ν < (q+)′,

and ω(·),τ(·) defined by

1
ω(·) =

1
s(·) +

1
μ

and
1

τ(·) =
1

l(·) +
1
ν

.

Observe that, by Lemma 2.4, ω(·),τ(·) ∈P log(Rn) since s(·), l(·) ∈P log(Rn) . Using
Hölder’s inequality (20) twice and Lemma 2.5, we can estimate (41) by a multiple of

∑
Q

K

(
�(Q)

2

) m

∑
j=0

|3Q|
∥∥χ3Q|b−bQ| j

∥∥
Lω′(·)

‖χ3Q‖Lω′(·)

‖χ3Q f‖Lω(·)
‖χ3Q‖Lω(·)

×|Q|
∥∥χQ|b−bQ|m− j

∥∥
Lτ ′(·)

‖χQ‖Lτ ′(·)

‖χQgw‖Lτ(·)
‖χQ‖Lτ(·)

. (42)

Notice that, by Lemmas 3.7 and 3.8, we have∥∥χ3Q|b−bQ| j
∥∥

Lω′(·)
‖χ3Q‖Lω′(·)

�
∥∥χ3Q|b−b3Q| j

∥∥
Lω′(·)

‖χ3Q‖Lω′(·)
+

∥∥χ3Q|b3Q−bQ| j
∥∥

Lω′(·)
‖χ3Q‖Lω′(·)

�
(
‖a‖t∞a(3Q)‖b‖L 1

a

) j
.

Thus, since a ∈ T∞ , we can estimate (42) as followsˆ
Rn

|Tb,m
K f (x)|w(x)g(x)dx

� ∑
Q

K

(
�(Q)

2

) m

∑
j=0

|3Q|
(
‖a‖t∞a(3Q)‖b‖L 1

a

) j ‖χ3Q f‖Lω(·)
‖χ3Q‖Lω(·)

×|Q|
(
‖a‖t∞a(Q)‖b‖L 1

a

)m− j ‖χQgw‖Lτ(·)
‖χQ‖Lτ(·)

� ‖b‖m
L 1

a ∑
Q

a(3Q)m K

(
�(Q)

2

)
|3Q| ‖χ3Q f‖Lω(·)

‖χ3Q‖Lω(·)
|Q| ‖χQgw‖Lτ(·)

‖χQ‖Lτ(·)
. (43)
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Since g has compact support and w ∈ LSq
loc(R

n) ,

lim
�(Q)→∞

‖χQgw‖Lτ(·)
‖χQ‖Lτ(·)

= 0.

Let Cτ , C∗
τ , C∗∗

τ and Gτ be the constants provided by Lemma 2.7, Lemma 2.5 and
Theorem 2.8 respectively. If α > CτC∗

τC
∗∗
τ Gτ and k ∈ Z , it follows that, if for some

dyadic cube Q ,

αk <
‖χQgw‖Lτ(·)
‖χQ‖Lτ(·)

, (44)

then Q is contained in dyadic cubes satisfying this condition, which are maximal with
respect to the inclusion. Thus, for each integer k there is a family of maximal non-
overlapping dyadic cubes {Qk, j} j∈Z satisfying (44). Let Q′

k, j be the dyadic cube con-
taining Qk, j with sidelength 2�(Qk, j) . Then, by maximality and Lemma 2.7, we have

αk <

∥∥∥χQk, j gw
∥∥∥

Lτ(·)∥∥∥χQk, j

∥∥∥
Lτ(·)

�

∥∥∥χQ′
k, j

∥∥∥
Lτ(·)∥∥∥χQk, j

∥∥∥
Lτ(·)

∥∥∥χQ′
k, j

gw
∥∥∥

Lτ(·)∥∥∥χQ′
k, j

∥∥∥
Lτ(·)

� Cτ αk � αk+1.

For k ∈ Z we define the set

Ck :=
{

Q dyadic : αk <
‖χQgw‖Lτ(·)
‖χQ‖Lτ(·)

� αk+1
}

.

Then every dyadic cube Q for which ‖χQgw‖Lτ(·) /‖χQ‖Lτ(·) = 0 belongs to exactly
one Ck . Furthermore, if Q ∈ Ck , it follows that Q ⊂ Qk, j for some j . Then, from (43)
and T∞ condition (3), we obtain thatˆ

Rn
|Tb,m

K f (x)|w(x)g(x)dx

� ‖b‖m
L 1

a ∑
k∈Z

∑
Q∈Ck

a(3Q)m K

(
�(Q)

2

)
|3Q| ‖χ3Q f‖Lω(·)

‖χ3Q‖Lω(·)
|Q| ‖χQgw‖Lτ(·)

‖χQ‖Lτ(·)

� ‖b‖m
L 1

a ∑
(k, j)∈Z×Z

αk+1 ∑
Q∈Ck :Q⊂Qk, j

a(3Q)mK

(
�(Q)

2

)
|3Q||Q| ‖χ3Q f‖Lω(·)

‖χ3Q‖Lω(·)

� ‖b‖m
L 1

a
α ∑

(k, j)∈Z×Z

∥∥∥χQk, j gw
∥∥∥

Lτ(·)∥∥∥χQk, j

∥∥∥
Lτ(·)

a(3Qk, j)m

× ∑
Q∈Ck :Q⊂Qk, j

K

(
�(Q)

2

)
|3Q||Q| ‖χ3Q f‖Lω(·)

‖χ3Q‖Lω(·)
. (45)

If we show that there is a constant CK such that, for any dyadic cube Q0 ,

∑
Q :Q⊂Q0

K

(
�(Q)

2

)
|3Q||Q| ‖χ3Q f‖Lω(·)

‖χ3Q‖Lω(·)
� CKK̃(δ (1+ ε)�(Q0))|3Q0|

∥∥χ3Q0 f
∥∥

Lω(·)∥∥χ3Q0

∥∥
Lω(·)

,

(46)
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with ε,δ the numbers provided by condition D and K̃(t) =
´
|z|�t K(z)dz , from (45)

we obtain thatˆ
Rn

|Tb,m
K f (x)|w(x)g(x)dx

� ‖b‖m
L 1

a ∑
(k, j)∈Z×Z

a(3Qk, j)mCKK̃(δ (1+ ε)�(Qk, j))|3Qk, j|

×

∥∥∥χ3Qk, j f
∥∥∥

Lω(·)∥∥∥χ3Qk, j

∥∥∥
Lω(·)

∥∥∥χQk, j gw
∥∥∥

Lτ(·)∥∥∥χQk, j

∥∥∥
Lτ(·)

. (47)

Let γ = max{3,δ (1 + ε)} . Note that K̃ is an increasing function. From (47), by
Lemma 2.7, T∞ condition (3), Hölder’s inequality and Lemma 2.6 we have that
ˆ

Rn
|Tb,m

K f (x)|w(x)g(x)dx

� ‖b‖m
L 1

a ∑
(k, j)∈Z×Z

a(γQk, j)m K̃(γ�(Qk, j))|γQk, j|

∥∥∥χγQk, j f
∥∥∥

Lω(·)∥∥∥χγQk, j

∥∥∥
Lω(·)

∥∥∥χγQk, j gw
∥∥∥

Lτ(·)∥∥∥χγQk, j

∥∥∥
Lτ(·)

� ‖b‖m
L 1

a ∑
(k, j)∈Z×Z

a(γQk, j)mK̃(γ�(Qk, j))|γQk, j|

∥∥∥χγQk, j f v
∥∥∥

μ∥∥∥χγQk, j

∥∥∥
μ

∥∥∥χγQk, j v
−1
∥∥∥

Ls(·)∥∥∥χγQk, j

∥∥∥
Ls(·)

×

∥∥∥χγQk, j g
∥∥∥

ν∥∥∥χγQk, j

∥∥∥
ν

∥∥∥χγQk, jw
∥∥∥

Ll(·)∥∥∥χγQk, j

∥∥∥
Ll(·)

.

Thus, by Fefferman-Phong type condition (5) on the weights we obtain
ˆ

Rn
|Tb,m

K f (x)|w(x)g(x)dx

� κ ‖b‖m
L 1

a ∑
(k, j)∈Z×Z

|Qk, j|

∥∥∥χγQk, j f v
∥∥∥

μ∥∥∥χγQk, j

∥∥∥
μ

∥∥∥χγQk, j g
∥∥∥

ν∥∥∥χγQk, j

∥∥∥
ν

∥∥∥χγQk, j

∥∥∥
Lp(·)∥∥∥χγQk, j

∥∥∥
Lq(·)

.

Let β (·) defined as in Lemma 2.6. Then, by this lemma, the last sum is equivalent to

κ ‖b‖m
L 1

a ∑
(k, j)∈Z×Z

|Qk, j|

∥∥∥χγQk, j f v
∥∥∥

μ∥∥∥χγQk, j

∥∥∥
μ

∥∥∥χγQk, j

∥∥∥
Lβ(·)

∥∥∥χγQk, j g
∥∥∥

ν∥∥∥χγQk, j

∥∥∥
ν

. (48)

For each k, j ∈ Z we can consider the sets

Dk =
⋃
j∈Z

Qk, j and Fk, j = Qk, j\(Qk, j ∩Dk+1).
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Thus {Fk, j}(k, j)∈Z×Z is a disjoint family of sets which satisfy

|Qk, j ∩Dk+1| < Π
α
|Qk, j| (49)

for some positive constant Π < α , and

|Qk, j| < 1
1−Π/α

|Fk, j|. (50)

Deferring the proof of these inequalities for the moment, we can estimate (48) to obtain
ˆ

Rn
|Tb,m

K f (x)|w(x)g(x)dx

�κ ‖b‖m
L 1

a ∑
(k, j)∈Z×Z

|Fk, j|

∥∥∥χγQk, j f v
∥∥∥

μ∥∥∥χγQk, j

∥∥∥
μ

∥∥∥χγQk, j

∥∥∥
Lβ(·)

∥∥∥χγQk, j g
∥∥∥

ν∥∥∥χγQk, j

∥∥∥
ν

�κ ‖b‖m
L 1

a

ˆ
Rn

MLμ ( f v)(y)dyMβ (·),ν(g)(y) � κ ‖b‖m
L 1

a
‖MLμ ( f v)‖Lp(·)

∥∥Mβ (·),Lν (g)
∥∥

Lp′(·)

�κ ‖b‖m
L 1

a
‖ f v‖Lp(·) ,

where we have used that by Theorem 2.12, MLμ : Lp(·)(Rn) ↪→ Lp(·)(Rn) since p− > μ ,
and by Remark 2.14, Mβ (·),Lν : Lq′(·)(Rn) ↪→ Lp′(·)(Rn) since (q′)− > ν (see (7) and
(8) for the definition of this maximal operatos).

To prove (49), note that if for some k, j, i ∈ Z , Qk, j ∩Qk+1,i = /0 then, by maxi-
mality and the fact that α > 1, Qk+1,i � Qk, j . Thus

|Qk, j ∩Dk+1| =
∣∣∣∣∣Qk, j ∩

⋃
i∈Z

Qk+1,i

∣∣∣∣∣=
∣∣∣∣∣⋃
i∈Z

(Qk, j ∩Qk+1,i)

∣∣∣∣∣= ∑
i:Qk+1,i⊆Qk, j

|Qk+1,i|

� C∗
τ ∑

i:Qk+1,i⊆Qk, j

∥∥∥χQk+1,i

∥∥∥
Lτ(·)

∥∥∥χQk+1,i

∥∥∥
Lτ ′(·) ,

where the constant C∗
τ is provided by Lemma 2.5. On the other hand, by maximality

and the property (44) of the cubes Qk+1,i and Qk, j we have

(i) αk+1 <

∥∥∥χQk+1,igw
∥∥∥

Lτ(·)∥∥∥χQk+1,i

∥∥∥
Lτ(·)

and (ii)

∥∥∥χQk, j gw
∥∥∥

Lτ(·)∥∥∥χQk, j

∥∥∥
Lτ(·)

� Cτ αk. (51)

Then, by (51)(i) we have

|Qk, j ∩Dk+1| � C∗
τ ∑

i:Qk+1,i⊆Qk, j

∥∥∥χQk+1,i

∥∥∥
Lτ(·)

∥∥∥χQk+1,i

∥∥∥
Lτ ′(·)

< C∗
τ α−(k+1) ∑

i:Qk+1,i⊆Qk, j

∥∥∥χQk+1,igwχQk, j

∥∥∥
Lτ(·)

∥∥∥χQk+1,i χQk, j

∥∥∥
Lτ ′(·) . (52)
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Note that, by Theorem 2.8, the following inequality holds

∑
i∈Z

∥∥∥χQk+1,i r
∥∥∥

Lτ(·)

∥∥∥χQk+1,ih
∥∥∥

Lτ ′(·) � Gτ ‖r‖Lτ(·) ‖h‖Lτ ′(·) ,

for every r ∈ Lτ(·)(Rn) and h ∈ Lτ ′(·)(Rn) . Applying this with r := gwχQk, j and h :=
χQk, j we can estimate (52) as follows

|Qk, j ∩Dk+1| < C∗
τ α−(k+1)Gτ

∥∥∥gwχQk, j

∥∥∥
Lτ(·)

∥∥∥χQk, j

∥∥∥
Lτ ′(·) .

Then, by (51)(ii), we obtain that

|Qk, j ∩Dk+1| < C∗
τ α−(k+1)Cτ αkGτ

∥∥∥χQk, j

∥∥∥
Lτ(·)

∥∥∥χQk, j

∥∥∥
Lτ ′(·)

� C∗
τ α−(k+1)Cτ αkGτC

∗∗
τ |Qk, j| := Π

α
|Qk, j|

where the constant C∗∗
τ is provided by Lemma 2.5. This gives (49). Finally,

|Fk, j|
|Qk, j| =

|Qk, j \ (Qk, j ∩Dk+1)|
|Qk, j| = 1− |Qk, j ∩Dk+1|

|Qk, j| > 1− Π
α

> 0

since, α > Π , and we obtain (50).
In order to complete the proof we must show that (46) holds. In fact, if �(Q0) =

2−d0 with d0 ∈ Z , by Lemma 2.5 we have

∑
Q :Q⊂Q0

K

(
�(Q)

2

)
|3Q||Q| ‖χ3Q f‖Lω(·)

‖χ3Q‖Lω(·)

� ∑
d�d0

K(2−d−1)2−dn ∑
Q⊂Q0 :�(Q)=2−d

‖ f χ3Q‖Lω(·) ‖χ3Q‖Lω′(·) .

Thus, applying Lemma 2.9 with f and g := χ3Q0 , we obtain that

∑
Q :Q⊂Q0

K

(
�(Q)

2

)
|3Q||Q| ‖χ3Q f‖Lω(·)

‖χ3Q‖Lω(·)
�
∥∥ f χ3Q0

∥∥
Lω(·)

∥∥χ3Q0

∥∥
Lω′(·) ∑

d�d0

K(2−d−1)2−dn

�
∥∥ f χ3Q0

∥∥
Lω(·)

∥∥χ3Q0

∥∥
Lω′(·) K̃(δ (1+ ε)�(Q0)),

where the last estimate follows as in [14]. This proves (46) and concludes the proof of
Theorem 1.1. �

Proof of Theorem 1.2. We use the same technique as in the proof of the Theorem
1.1 to obtain thatˆ

Rn
|Tb,m

K f (x)|w(x)g(x)dx

� ∑
Q

K

(
�(Q)

2

) m

∑
j=0

ˆ
3Q

|b(z)−bQ| j f (z)dz
ˆ

Q
|b(x)−bQ|m− jg(x)w(x)dx.
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Hence, by Lemma 3.9,ˆ
Rn

|Tb,m
K f (x)|w(x)g(x)dx � ∑

Q

K

(
�(Q)

2

)
‖χQ‖m

n/δ (·) |Q|
ˆ

3Q
f (z)dz

 
Q

g(x)w(x)dx.

(53)

Thus, given some constant α larger than 2n and proceeding as in [14, proof of theorem
2.1], for each k ∈ Z there exists a family of maximal non-overlaping dyadic cubes
{Qk, j} j∈Z , the Calderón-Zygmund cubes, such that we can estimate (53) by a multiple
of

∑
(k, j)∈Z×Z

K̃(�(γQk, j))
∥∥∥χQk, j

∥∥∥m

n/δ (·)
|Qk, j|

 
γQk, j

f (z)dz
 

γQk, j

g(z)w(z)dz, (54)

where γ = max{3,δ (1 + ε)} with ε,δ the numbers provided by condition D . By
condition F and Hölder’s inequality we have

 
γQk, j

f (z)dz �

∥∥∥χγQk, j f
∥∥∥

D(·,L)∥∥∥χγQk, j

∥∥∥
D(·,L)

∥∥∥χγQk, j

∥∥∥
D∗(·,L)∥∥∥χγQk, j

∥∥∥
D∗(·,L)

�

∥∥∥χγQk, j f v
∥∥∥

B(·,L)∥∥∥χγQk, j

∥∥∥
B(·,L)

∥∥∥χγQk, j v
−1
∥∥∥

A(·,L)∥∥∥χγQk, j

∥∥∥
A(·,L)

and

 
γQk, j

g(z)w(z)dz �

∥∥∥χγQk, j gw
∥∥∥

J(·,L)∥∥∥χγQk, j

∥∥∥
J(·,L)

∥∥∥χγQk, j

∥∥∥
J∗(·,L)∥∥∥χγQk, j

∥∥∥
J∗(·,L)

�

∥∥∥χγQk, j g
∥∥∥

H(·,L)∥∥∥χγQk, j

∥∥∥
H(·,L)

∥∥∥χγQk, jw
∥∥∥

E(·,L)∥∥∥χγQk, j

∥∥∥
E(·,L)

.

Then from (54) and by Fefferman-Phong type condition (14) on the weights we haveˆ
Rn

|Tb,m
K f (x)|w(x)g(x)dx

� ∑
(k, j)∈Z×Z

K̃(l(γQk, j))
∥∥∥χQk, j

∥∥∥m

n/δ (·)
|Qk, j|

∥∥∥χγQk, j f v
∥∥∥

B(·,L)∥∥∥χγQk, j

∥∥∥
B(·,L)

∥∥∥χγQk, j v
−1
∥∥∥

A(·,L)∥∥∥χγQk, j

∥∥∥
A(·,L)

×

∥∥∥χγQk, j g
∥∥∥

H(·,L)∥∥∥χγQk, j

∥∥∥
H(·,L)

∥∥∥χγQk, jw
∥∥∥

E(·,L)∥∥∥χγQk, j

∥∥∥
E(·,L)

� κ ∑
(k, j)∈Z×Z

|Qk, j|

∥∥∥χγQk, j f v
∥∥∥

B(·,L)∥∥∥χγQk, j

∥∥∥
B(·,L)

∥∥∥χγQk, j g
∥∥∥

H(·,L)∥∥∥χγQk, j

∥∥∥
H(·,L)

∥∥∥χγQk, j

∥∥∥
Lp(·)∥∥∥χγQk, j

∥∥∥
Lq(·)

.

Let β (·) be defined as in Lemma 2.6. Then, by this lemma, the last sum is equivalent
to

κ ∑
(k, j)∈Z×Z

|Qk, j|

∥∥∥χγQk, j f v
∥∥∥

B(·,L)∥∥∥χγQk, j

∥∥∥
B(·,L)

∥∥∥χγQk, j

∥∥∥
Lβ(·)

∥∥∥χγQk, j g
∥∥∥

H(·,L)∥∥∥χγQk, j

∥∥∥
H(·,L)

.
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We shall use the following properties of Calderón-Zygmund cubes. For each integers k
and j we can consider the sets Dk =

⋃
j∈Z Qk, j and Fk, j = Qk, j \ (Qk, j ∩Dk+1) . Thus

{Fk, j}(k, j)∈Z×Z is a disjoint family of sets which satisfy

|Qk, j| < 1

1− 2n

α
|Fk, j|.

Then

ˆ
Rn

TK f (x)g(x)w(x)dx � κ ∑
(k, j)∈Z×Z

|Fk, j|

∥∥∥χγQk, j f v
∥∥∥

B(·,L)∥∥∥χγQk, j

∥∥∥
B(·,L)

∥∥∥χγQk, j

∥∥∥
Lβ(·)

∥∥∥χγQk, j g
∥∥∥

H(·,L)∥∥∥χγQk, j

∥∥∥
H(·,L)

� κ
ˆ

Rn
MB(L,·)( f v)(y)Mβ (·),H(L,·)(g)(y)dy

� κ
∥∥MB(L,·)( f v)

∥∥
Lp(·)

∥∥Mβ (·),H(L,·)(g)
∥∥

Lp′(·) � κ ‖ f v‖Lp(·)

where we have used the hyphotesis (12) and (13). �
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