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QUANTITATIVE WEIGHTED Lp BOUNDS

FOR THE MARCINKIEWICZ INTEGRAL

GUOEN HU AND MENG QU ∗

(Communicated by Ivan Perić)

Abstract. Let Ω be homogeneous of degree zero, have mean value zero and integrable on the
unit sphere, and μΩ be the higher-dimensional Marcinkiewicz integral associated with Ω . In
this paper, the authors proved that if Ω ∈ Lq(Sn−1) for some q ∈ (1, ∞] , then for p ∈ (q′, ∞)

and w ∈ Ap(Rn) , the bound of μΩ on Lp(Rn, w) is less than C[w]
max{ 1

2 , 1
p−q′ }+max{1, q′

p−q′ }
Ap/q′

.

1. Introduction

We will work on R
n , n � 2. Let M be the Hardy-Littlewood maximal operator,

and Ap(Rn) (p ∈ (1, ∞)) be the weight function class of Muckenhoupt, that is,

Ap(Rn) = {w is nonnegative and locally integrable in R
n : [w]Ap < ∞}

(see [12, Chapter 9] for the properties of Ap(Rn)), where and in what follows,

[w]Ap := sup
Q

( 1
|Q|

∫
Q

w(x)dx
)( 1

|Q|
∫

Q
w− 1

p−1 (x)dx
)p−1

,

which is called the Ap constant of w . In the remarkable work, Buckley [4] proved that
if p ∈ (1, ∞) and w ∈ Ap(Rn) , then

‖M f‖Lp(Rn,w) �n, p [w]
1

p−1
Ap

‖ f‖Lp(Rn,w). (1.1)

Moreover, the estimate (1.1) is sharp since the exponent 1/(p−1) can not be replaced
by a smaller one. Since then, the sharp dependence of the weighted estimates of sin-
gular integral operators in terms of the Ap(Rn) constant has been considered by many
authors. Petermichl [22, 23] solved this question for Hilbert transform and Riesz trans-
form. Hytönen [13] proved that for a Calderón-Zygmund operator T and w ∈ A2(Rn) ,

‖T f‖L2(Rn,w) �n [w]A2‖ f‖L2(Rn,w). (1.2)
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This solved the so-called A2 conjecture. Lerner [17, 18] gave two simple proofs of the
A2 conjecture by controlling the Calderón-Zygmund operator using sparse operators.

Recently, considerable attention has been paid to the weighted bounds for rough
singular integral operators. Hytönen, Roncal and Tapiola [16] considered the weighted
bounds of rough homogeneous singular integral operators defined by

TΩ f (x) = p.v.

∫
Rn

Ω(y′)
|y|n f (x− y)dy = lim

ε→0
R→∞

∫
ε<|x−y|<R

Ω(y′)
|y|n f (x− y)dy,

where Ω is homogeneous of degree zero, integrable on the unit sphere Sn−1 and has
mean value zero. For w ∈ ∪p>1Ap(Rn) , [u]A∞ is the A∞ constant of u , defined by

[u]A∞ = sup
Q⊂Rd

1
u(Q)

∫
Q

M(uχQ)(x)dx,

see [28]. By a quantitative weighted estimate for the Calderón-Zygmund operators
satisfying a Dini-condition, approximation to the identity and interpolation with change
of measures, Hytönen, Roncal and Tapiola (see Theorem 1.4 in [16]) proved that

THEOREM 1.1. Let Ω be homogeneous of degree zero, have mean value zero on
Sn−1 and Ω ∈ L∞(Sn−1) . Then for p ∈ (1, ∞) and w ∈ Ap(Rn) ,

‖TΩ f‖Lp(Rn,w) � ‖Ω‖L∞(Sn−1){w}Ap(w)Ap‖ f‖Lp(Rn,w), (1.3)

where and in the following, for p ∈ (1, ∞) ,

{w}Ap = [w]
1
p
Ap

max{[w]
1
p′
A∞

, [w1−p′ ]
1
p
A∞
},

and
(w)Ap = max{[w]A∞ , [w1−p′ ]A∞}.

Conde-Alonso, Culiuc, Di Plinio and Ou [6] proved that for bounded function f and
g , and p ∈ (1, ∞) , ∣∣∣TΩ f (x)g(x)dx

∣∣∣ � p′ sup
S

∑
Q∈S

〈| f |〉Q〈|g|〉Q, p|Q|, (1.4)

where the supremum is taken over all sparse family of cubes (see definition in Sec-
tion 2), 〈| f |〉Q denotes the mean value of | f | on Q , and for r ∈ (0, ∞) , 〈| f |〉Q,r =(〈| f |r〉Q)1/r

. By (1.4) Conde-Alonso et al recovered the conclusion in Theorem 1.1.
By some new estimates for sparse operators, Li, Pérez, Rivera-Rios and Roncal [21]
improved the estimate (1.3) proved that for p ∈ (1, ∞) and w ∈ Ap(Rn) ,

‖TΩ f‖Lp(Rn,w) � ‖Ω‖L∞(Sn−1){w}Ap min{[w]A∞ , [w− 1
1−p ]A∞}‖ f‖Lp(Rn,w).
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Now we consider the Marcinkiewicz integral operator. For n � 2, let Ω be homo-
geneous of degree zero, integrable and have mean value zero on the unit sphere Sn−1 .
Define the Marcinkiewicz integral operator μΩ by

μΩ( f )(x) =
(∫ ∞

0
|FΩ,t f (x)|2 dt

t3

)1/2
,

where

FΩ,t f (x) =
∫
|x−y|�t

Ω(x− y)
|x− y|n−1 f (y)dy

for f ∈ S (Rn) . Stein [24] proved that if Ω ∈ Lipγ (S
n−1) with γ ∈ (0, 1] , then μΩ

is bounded on Lp(Rn) for p ∈ (1, 2] . Benedek, Calderón and Panzone [3] showed
that the Lp(Rn) boundedness (p ∈ (1, ∞)) of μΩ holds true under the condition that
Ω ∈C1(Sn−1) . Walsh [26] proved that for each p ∈ (1, ∞) , Ω ∈
L(lnL)1/r(ln lnL)2(1−2/r′)(Sn−1) is a sufficient condition such that μΩ is bounded on
Lp(Rn) , where r = min{p, p′} and p′ = p/(p− 1) . Ding, Fan and Pan [7] proved
that if Ω ∈ H1(Sn−1) (the Hardy space on Sn−1 ), then μΩ is bounded on Lp(Rn) for
all p ∈ (1, ∞) ; Al-Salman et al. [2] proved that Ω ∈ L(lnL)1/2(Sn−1) is a sufficient
condition such that μΩ is bounded on Lp(Rn) for all p ∈ (1, ∞) . Ding, Fan and Pan
[8] considered the boundedness on weighted Lp(Rn) with Ap(Rn) when Ω ∈ Lq(Sn−1)
for some q ∈ (1, ∞] . For more details about the operator μΩ , one can see [1, 5, 7, 9]
and the related references therein.

The purpose of this paper is to establish an analogue of (1.3) for the Marcinkiewicz
integral operator with kernel Ω ∈ Lq(Sn−1) for some q∈ (1, ∞] . We remark that in this
paper, we are very much motivated by [16] and some ideas from Lerner’s recent paper
[18]. For p, r ∈ (1, ∞) and w ∈ Ap(Rn) , set

{w}Ap,r;s = [w]
1
r
Ap

max{[w]
( 1

s− 1
r )+

A∞
, [w1−p′ ]

1
r
A∞
},

where and in what follows, ( 1
r − 1

p)+ = max{ 1
r − 1

p , 0} . It is obvious that {w}Ap, p;1 =
{w}Ap . Moreover, by the fact that

[w]A∞ � [w]Ap , [w1−p′ ]A∞ � [w1−p′ ]Ap′ = [w]
1

p−1
Ap

,

we know that

(w)Ap � [w]
max{1, 1

p−1}
Ap

, (1.5)

and

{w}Ap,r;s � [w]
max{ 1

s , p
p−1

1
r }

Ap
. (1.6)

Our main result can be stated as follows.

THEOREM 1.2. Let Ω be homogeneous of degree zero, have mean value zero on
Sn−1 , and Ω∈ Lq(Sn−1) for some q∈ (1, ∞] . Let p∈ (q′, ∞) and w∈ Ap/q′(Rn) . Then

‖μΩ( f )‖Lp(Rn,w) � ‖Ω‖Lq(Sn−1){w}Ap/q′ , p;2(w)Ap/q′ ‖ f‖Lp(Rn,w).



888 G. HU AND M. QU

In particular (by (1.5) and (1.6)),

‖μΩ( f )‖Lp(Rn,w) � ‖Ω‖Lq(Sn−1)[w]
max{ 1

2 , 1
p−q′ }+max{1, q′

p−q′ }
Ap/q′

‖ f‖Lp(Rn,w).

REMARK 1.3. For t ∈ [1, 2] and j ∈ Z , set

K j
t (x) =

1
2 j

Ω(x)
|x|n−1 χ{2 j−1t<|x|�2 j t}(x). (1.7)

Let

μ̃Ω( f )(x) =
(∫ 2

1
∑
j∈Z

∣∣Fj f (x, t)
∣∣2dt

)1/2
, (1.8)

with

Fj f (x, t) =
∫

Rn
K j

t (x− y) f (y)dy.

A trivial computation shows that

μΩ( f )(x) ≈ μ̃Ω( f )(x). (1.9)

REMARK 1.4. To prove Theorem 1.2, we will employ the scheme used in [16],
that is, approximating the operator μ̃Ω defined in (1.8) by certain operators {μ̃ l

Ω}l with
smooth kernels, establishing the quantitative weighted bounds for {μ̃ l

Ω}l and then using
interpolation with change of measures. An ingredient in the procedure of establishing
the refined weighted bounds for {μ̃ l

Ω}l is a new grand maximal operator, which is a
variant of the grand maximal operator introduced by Lerner [18] and that is suitable for
square functions.

We make some conventions. In what follows, C always denotes a positive constant that
is independent of the main parameters involved but whose value may differ from line
to line. We use the symbol A � B to denote that there exists a positive constant C such
that A � CB . For a set E ⊂ R

n , χE denotes its characteristic function.

2. Proof of Theorem 1.2

Recall that the standard dyadic grid in R
n consists of all cubes of the form

2−k([0, 1)n + j), k ∈ Z, j ∈ Z
n.

Denote the standard grid by D .
As usual, by a general dyadic grid D , we mean a collection of cubes with the

following properties: (i) for any cube Q ∈ D , its side length �(Q) is of the form 2k

for some k ∈ Z ; (ii) for any cubes Q1, Q2 ∈ D , Q1 ∩Q2 ∈ {Q1, Q2, /0} ; (iii) for each
k ∈ Z , the cubes of side length 2k form a partition of R

n .
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Let η ∈ (0, 1) and S be a family of cubes. We say that S is η -sparse, if for
each fixed Q ∈ S , there exists a measurable subset EQ ⊂ Q , such that |EQ| � η |Q|
and {EQ} are pairwise disjoint. Associated with the sparse family S and r ∈ (0, ∞) ,
we define the sparse operator A r

S by

A r
S f (x) =

{
∑

Q∈S

(〈| f |〉Q)rχQ(x)
}1/r

.

We use AS to denote A 1
S .

The following result was proved by Hytönen and Lacey [14], see also Hytönen
and Li [15].

LEMMA 2.1. Let p ∈ (1, ∞) and r ∈ (0, ∞) , w ∈ Ap(Rn) . Then for a sparse
family S ⊂ D with D a dyadic grid,

‖A r
S f‖Lp(Rn,w) � [w]

1
p
Ap

(
[w]

( 1
r − 1

p )+
A∞

+[w− 1
p−1 ]

1
p
A∞

)‖ f‖Lp(Rn,w).

Let Ω be homogeneous of degree zero, integrable on Sn−1 and K j
t be defined as

in (1.7). It was proved in [11], if Ω ∈ Lq(Sn−1) for some q ∈ (1, ∞] , then there exists a
constant α ∈ (0, 1) such that for t ∈ [1, 2] and ξ ∈ R

n\{0} ,

|K̂ j
t (ξ )| � ‖Ω‖Lq(Sn−1) min{1, |2 jξ |−α}. (2.1)

Here and in what follows, for h ∈ S ′(Rn) , ĥ denotes the Fourier transform of h .
Moreover, if

∫
Sn−1 Ω(x′)dx′ = 0, then

|K̂ j
t (ξ )| � ‖Ω‖L1(Sn−1) min{1, |2 jξ |}. (2.2)

In what follows, we assume that ‖Ω‖Lq(Sn−1) = 1.
Let φ ∈ C∞

0 (Rn) be a nonnegative function such that
∫
Rn φ(x)dx = 1, suppφ ⊂

{x : |x| � 1/4} . For l ∈ Z , let φl(y) = 2−nlφ(2−ly) . It is easy to verify that for any
ς ∈ (0, 1) ,

|φ̂l(ξ )−1|� min{1, |2lξ |ς}. (2.3)

Let

Fl
j f (x, t) =

∫
Rn

K j
t ∗φ j−l(x− y) f (y)dy.

Define the operator μ̃ l
Ω by

μ̃ l
Ω( f )(x) =

(∫ 2

1
∑
j∈Z

∣∣Fl
j f (x, t)

∣∣2dt
)1/2

.
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By Fourier transform estimates (2.1), (2.2) and (2.3), and Plancherel’s theorem, we
have that for some positive constant θ depending only on n ,

‖μ̃Ω( f )− μ̃ l
Ω( f )‖2

L2(Rn) �
∫ 2

1

∥∥∥(
∑
j∈Z

∣∣Fl f (·, t)−Fl
j f (·, t)∣∣2) 1

2
∥∥∥2

L2(Rn)
dt (2.4)

=
∫ 2

1
∑
j∈Z

∫
Rn

|K̂ j
t (ξ )|2|1− φ̂ j−l(ξ )|2| f̂ (ξ )|2dξdt

� 2−2θ l‖ f‖2
L2(Rn).

LEMMA 2.2. Let Ω be homogeneous of degree zero and belong to Lq(Sn−1) for
some q ∈ (1, ∞] , K j

t be defined as in (1.7). Then for l ∈ N , R > 0 and y ∈ R
n with

|y| < R/4 ,

∑
j∈Z

(∫
2kR<|x|�2k+1R

sup
t∈[1,2]

∣∣∣K j
t ∗φ j−l(x+ y)−K j

t ∗φ j−l(x)
∣∣∣qdx

) 1
q

� 1

(2kR)n/q′ min{1, 2l |y|
2kR

}.

Proof. We will employ the idea from [27]. It is obvious that for r ∈ [1,∞) ,

‖φ j−l(·+ y)−φ j−l(·)‖Lr′ (Rn) � 2(l− j)n/r min{1, 2l− j|y|}.

Observe that

sup
t∈[1,2]

∣∣∣K j
t ∗φ j−l(x+ y)−K j

t ∗φ j−l(x)
∣∣∣ �

∫
Rn

K̃ j(z)
∣∣φ j−l(x+ y− z)−φ j−l(x− z)

∣∣dz,

with K̃ j(z) = |z|−n|Ω(z)|χ{2 j−2�|z|�2 j+2}(z). Thus, by the fact suppK j
t ∗ φ j−l ⊂ {x ∈

R
n : 2 j−2 � |x| � 2 j+2} , we deduce that

∑
j∈Z

(∫
2kR<|x|�2k+1R

sup
t∈[1,2]

∣∣∣K j
t ∗φ j−l(x+ y)−K j

t ∗φ j−l(x)
∣∣∣qdx

) 1
q

� ∑
j∈Z:2 j≈2kR

‖K̃ j‖Lq(Rn)‖φ j−l(·+ y)−φ j−l(·)‖L1(Rn) � (2kR)−n/q′ min{1, 2l |y|
2kR

}.

This completes the proof of Lemma 2.2. �

LEMMA 2.3. Let Ω be homogeneous of degree zero and have mean value zero.
Suppose that Ω ∈ Lq(Sn−1) for some q ∈ (1, ∞] . Then for any l ∈ N , μ̃ l

Ω is bounded
from L1(Rn) to L1,∞(Rn) with bound Cl .
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Proof. The proof is fairly standard. For the sake of self-containedness, we present
the proof here. Our goal is to prove that for any λ > 0,∣∣{x ∈ R

n : μ̃ l
Ω( f )(x) > λ

}∣∣ � lλ−1‖ f‖L1(Rn). (2.5)

For each fixed λ > 0, applying the Calderón-Zygmund decomposition to | f | at level
λ , we obtain a sequence of cubes {Qi} with disjoint interiors, such that

λ <
1

|Qi|
∫

Qi

| f (y)|dy � 2nλ ,

and | f (y)| � λ for a. e. y ∈ R
n\(∪i Qi

)
. Set

g(y) = f (y)χRn\∪iQi
(y)+∑

i
〈 f 〉Qi χQi(y),

b(y) = ∑
i

bi(y), with bi(y) =
(
f (y)−〈 f 〉Qi

)
χQi(y).

By (2.4) and the L2(Rn) boundedness of μ̃Ω , we know that μ̃ l
Ω is also bounded on

L2(Rn) with bound independent of l . Therefore,

|{x ∈ R
n : μ̃ l

Ω(g)(x) > λ/2}|� λ−2‖μ̃ l
Ωg‖2

L2(Rn) � λ−1‖ f‖L1(Rn).

Let Eλ = ∪i4nQi . It is obvious that |Eλ | � λ−1‖ f‖L1(Rn) . The proof of (2.5) is now
reduced to prove that

|{x ∈ R
n\Eλ : μ̃ l

Ω(b)(x) > λ/2}|� lλ−1‖ f‖L1(Rn). (2.6)

We now prove (2.6). For each fixed cube Qi , let yi be the center of Qi . For
x, y, z ∈ R

n , set

S j, l
t (x; y, z) = |K j

t ∗φ j−l(x− y)−K j
t ∗φ j−l(x− z)|.

A trivial computation involving Minkowski’s inequality and vanishing moment of bi

gives us that for x ∈ R
n ,

μ̃ l
Ω(b)(x) � ∑

i

(∫ 2

1
∑
j∈Z

(∫
Rn

S j, l
t (x; y, yi)|bi(y)|dy

)2
dt

) 1
2

� ∑
i

∑
j∈Z

∫
Rn

(∫ 2

1
{S j, l

t (x; y, yi)}2dt
) 1

2 |bi(y)|dy

� ∑
i

∑
j∈Z

∫
Rn

sup
t∈[1,2]

S j, l
t (x; y, yi)|bi(y)|dy.

On the other hand, we get from Lemma 2.2 that

∑
j∈Z

∫
Rn\Eλ

sup
t∈[1,2]

S j,l
t (x;y,yi)dx =

l

∑
k=1

∑
j∈Z

∫
2k+2nQi\2k+1nQi

sup
t∈[1,2]

S j,l
t (x;y,yi)dx

+
∞

∑
k=l+1

∑
j∈Z

∫
2k+2nQi\2k+1nQi

sup
t∈[1,2]

S j, l
t (x; y, yi)dx � l.
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This in turn yields to that

∫
Rn\Eλ

μ̃ l
Ω(b)(x)dx � ∑

i
∑
j∈Z

∫
Rn

∫
Rn\Eλ

sup
t∈[1,2]

S j, l
t (x; y, yi)dx|bi(y)|dy � l

∫
Rn

| f (y)|dy.

Inequality (2.6) now follows directly. �

LEMMA 2.4. Let Ω be homogeneous of degree zero and have mean value zero.
Suppose that Ω ∈ Lq(Sn−1) for some q ∈ (1, ∞] . Let Mμ̃ l

Ω
be the grand maximal

operator defined by

Mμ̃ l
Ω

f (x) = sup
Q
x

sup
ξ∈Q

|μ̃ l
Ω( f χRn\3Q)(ξ )|.

Then Mμ̃ l
Ω

is bounded from Lq′(Rn) to Lq′,∞(Rn) with bound Cl .

Proof. Let x ∈ R
n and Q ⊂ R

n be a cube containing x . Denote by Bx the closed
ball centered at x with radius 2diamQ . Then 3Q ⊂ Bx . For each ξ ∈ Q , we can write

|μ̃ l
Ω( f χRn\3Q)(ξ )| � |μ̃ l

Ω( f χRn\Bx)(ξ )− μ̃ l
Ω( f χRn\Bx)(x)|

+|μ̃ l
Ω( f χBx\3Q)(ξ )|+ |μ̃ l

Ω( f χRn\Bx)(x)|.

It is obvious that

|μ̃ l
Ω( f χRn\Bx)(ξ )− μ̃ l

Ω( f χRn\Bx)(x)|

�
(∫ 2

1
∑
j∈Z

∣∣∣∫
Rn

R j, l
t (x; y, ξ ) f (y)χRn\Bx(y)dy

∣∣∣2dt
) 1

2
,

where
Rj, l

t (x; y, ξ ) = |K j
t ∗φl− j(x− y)−K j

t ∗φl− j(ξ − y)|.
A trivial computation involving Hölder’s inequality gives us that

sup
t∈[1,2]

∑
j∈Z

∣∣∣∫
Rn

R j, l
t (x; y, ξ ) f (y)χRn\Bx(y)dy

∣∣∣
� ∑

j

∞

∑
k=1

(∫
2kBx\2k−1Bx

sup
t∈[1,2]

|Rj, l
t (x;y,ξ )|qdy

) 1
q
(∫

2kBx

| f (y)|q′dy
) 1

q′

� lMq′ f (x), (2.7)

where Mq′ f (x) = {M(| f |q′)(x)}1/q′
. For each fixed t ∈ [1, 2] and j ∈ Z with 2 j ≈

diamQ ,

|Fl
j ( f χBx\3Q)(x, t)| � ‖K j

t ∗φl− j‖Lq(Rn)‖ f χBx‖Lq′ (Rn) � Mq′ f (x).
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Recall that suppK j
t ∗φ j−l ⊂ {x ∈ R

n : 2 j−2 � |x| � 2 j+2} . It then follows that

|μ̃ l
Ω( f χBx\3Q)(ξ )| =

(∫ 2

1
∑
j

|Fl
j ( f χBx\3Q)(x, t)|2dt

) 1
2

� ∑
j:2 j≈diamQ

(∫ 2

1
|Fl

j ( f χBx\3Q)(x, t)|2dt
) 1

2 � Mq′ f (x). (2.8)

To estimate μ̃ l
Ω( f χRn\Bx)(x) , write

μ̃ l
Ω( f χRn\Bx)(x) � μ̃ l

Ω( f )(x)+
(∫ 2

1
∑
j∈Z

|Fl
j ( f χBx)(x, t)|2dt

) 1
2

= μ̃ l
Ω( f )(x)+

(∫ 2

1
∑

j:2 j�4diamQ

|Fl
j ( f χBx)(x, t)|2dt

) 1
2

� 2μ̃ l
Ω( f )(x)+

(∫ 2

1
∑

j:2 j�4diamQ

|Fl
j ( f χRn\Bx)(x, t)|2dt

) 1
2

=: 2μ̃ l
Ω( f )(x)+D f (x).

For the case of q = ∞ ,

|K j
t ∗φl− j(x)| � |x|−nχ2 j−2�|x|�2 j+2(x), t ∈ [1, 2]. (2.9)

On the other hand, if q ∈ (1, ∞) , then we have that

sup
t∈[1,2]

∫
Rn

|K j
t ∗φl− j(x− y)|| f (y)|dy � Mq′M f (x) � Mq′ f (x). (2.10)

Therefore,

D f (x) � ∑
j∈Z:diamQ/4�2 j�4diamQ

sup
t∈[1,2]

∫
Rn

|K j
t ∗φl− j(x− y)|| f (y)|dy

� Mq′ f (x). (2.11)

Combining estimates (2.7), (2.8) and (2.11) yields that

Mμ̃ l
Ω

f (x) � lMq′ f (x)+ μ̃ l
Ω f (x).

The desired boundedness for Mμ̃ l
Ω
, follows from the last inequality and Lemma 2.3. �

LEMMA 2.5. Let Ω be homogeneous of degree zero and have mean value zero.
Suppose that Ω∈ Lq(Sn−1) for some q∈ (1, ∞] . Then for p∈ (q′, ∞) and w∈Ap(Rn) ,

‖μ̃ l
Ω f‖Lp(Rn,w) � l{w}Ap/q′, p; 2

‖ f‖Lp(Rn,w).



894 G. HU AND M. QU

Proof. First, we claim that for each bounded function f with compact support,
there exists a sparse family of cubes S , such that for almost everywhere x ∈ R

n ,[
μ̃ l

Ω( f )(x)
]2 � l2 ∑

Q∈S

〈| f |〉2Q,q′χQ(x). (2.12)

If we can prove this estimate, then for p ∈ (q′, ∞) and w ∈ Ap/q′(Rn) , we deduce from
Lemma 2.1 that .

‖μ̃ l
Ω( f )‖Lp(Rn,w) � l

∥∥A
2
q′

S (| f |q′)∥∥ 1
q′
Lp/q′ (Rn,w)

� l{w}Ap/q′ , p;2‖ f‖Lp(Rn,w).

We now prove the estimate (2.12). We will employ the ideas of Lerner [17], via
a variant of the grand maximal operator Mμ̃ l

Ω
. Let Q0 ⊂ R

n be a cube. We define the

operator M ∗
μ̃ l

Ω,Q0
as

M ∗
μ̃ l

Ω,Q0
f (x) = sup

Q
x,Q⊂Q0

∥∥∥(∫ 2

1

∞

∑
j=JQ

|F j
l ( f χ3Q0)(·, t)|2

dt
t

) 1
2
∥∥∥

L∞(Q)
,

where and in what follows, for a cube Q ⊂ R
n , JQ is the integer such that 2JQ−1 �

4�(Q) < 2JQ , and J∗Q ∈ Z such that 2J∗Q−1 � 16n�(Q) < 2J∗Q . Let x ∈ R
n , Q⊂ Q0 such

that x ∈ Q . For each ξ ∈ Q , write

∫ 2

1

∞

∑
j= jQ

|F j
l ( f χ3Q0)(ξ , t)|2 dt

t
=

∫ 2

1

J∗Q
∑
j=JQ

|F j
l ( f χ3Q0)(ξ , t)|2 dt

t

+
∫ 2

1

∞

∑
j=J∗Q

|F j
l ( f χ3Q0)(ξ , t)|2 dt

t
.

Applying estimates (2.9) and (2.10), we have that

∫ 2

1

J∗Q
∑
j=JQ

|F j
l ( f χ3Q0)(ξ , t)|2 dt

t
�

(
Mq′( f χ3Q0)(x)

)2
.

Note that for each t ∈ [1, 2] ,

F j
l ( f χ3Q0)(ξ , t) = F j

l ( f χ3Q0\3Q)(ξ , t).

Therefore,

M ∗
μ̃ l

Ω,Q0
f (x) � Mq′( f χ3Q0)(x)+Mμ̃ l

Ω
( f χ3Q0)(x). (2.13)

Let

E =
{
x ∈ Q0 : μ̃ l

Ω( f χ3Q0)(x) > Dl〈| f |〉3Q0,q′
}

∪{
x ∈ Q0 : M ∗

μ̃ l
Ω,Q0

f (x) > Dl〈| f |〉3Q0 ,q′
}
,
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where D is a positive constant. By Lemma 2.3, Lemma 2.4 and (2.13), we have that
|E| � 1

2n+2 |Q0| if we choose D large enough. Now on the cube Q0 , we apply the

Calderón-Zygmund decomposition to χE at level 1
2n+1 , and obtain pairwise disjoint

cubes {Pj} ⊂ D(Q0) , such that

1
2n+1 |Pj| � |Pj ∩E| � 1

2
|Pj|

and |E\∪ j Pj| = 0. Observe that ∑ j |Pj| � 1
2 |Q0| . Write

μ̃ l
Ω( f χ3Q0)(x)

2χQ0(x) = μ̃ l
Ω( f χ3Q0)(x)

2χQ0\∪ jPj
(x)

+∑
j

(∫ 2

1

∞

∑
m=JPj

|Fm
l ( f χ3Q0)(x, t)|2

dt
t

)
χPj(x)

+∑
j

(∫ 2

1

JPj−1

∑
m=−∞

|Fm
l ( f χ3Q0)(x, t)|2

dt
t

)
χPj (x).

The facts that |E\∪ j Pj| = 0 implies that

μ̃ l
Ω( f χ3Q0)(x)

2χQ0\∪ jPj
(x) � l2〈| f |〉23Q0,q′χQ0(x).

Since Pl ∩Ec �= /0 , we deduce that

∑
j

(∫ 2

1

∞

∑
m=JPj

|Fm
l ( f χ3Q0)(x, t)|2

dt
t

)
χPj(x) � ∑

j
inf
y∈Pj

(
M ∗

μ̃ l
Ω,Q0

f (y)
)2χPj(x)

� l2〈| f |〉23Q0,q′χQ0(x).

On the other hand, it is easy to verify that when t ∈ [1, 2] , x ∈ Pj and m � JPj −1,

Fm
l ( f χ3Q0\3Pj

)(x, t) = 0,

and

(∫ 2

1

JPj−1

∑
m=−∞

|Fm
l ( f χ3Q0)(x, t)|2

dt
t

)
χPj(x) � l2

(
μ̃ l

Ω( f χ3Pj)(x)
)2χPj (x).

Thus, for almost everywhere x ∈ Q0 ,(
μ̃ l

Ω( f χ3Q0)(x)
)2 � C〈| f |〉23Q0,q′χQ0(x)+∑

j

{
μ̃ l

Ω( f χ3Pj )(x)
}2χPj(x). (2.14)

By iterating (2.14), we immediately get that there exists a 1
2 - sparse family of cubes

F ⊂ D(Q0) such that for almost everywhere x ∈ Q0 ,

(
μ̃ l

Ω( f χ3Q0)(x)
)2χQ0(x) � l2 ∑

Q∈F

〈| f |〉23Q,q′χQ(x). (2.15)
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We can now conclude the proof of Lemma 2.5. In fact, as in [17], we decompose
R

n by cubes {Ql} , such that supp f ⊂ 3Ql for each l , and Ql ’s have disjoint interiors.
Then for each l , we have a 1

2 -sparse family of cubes Fl ⊂D(Ql) , such that for almost
everywhere x ∈ R

n ,

(
μ̃ l

Ω( f χ3Ql )(x)
)2χQl (x) � l2 ∑

Q∈Fl

〈| f |〉23Q,q′χQ(x).

Let S = ∪l{3Q : Q ∈ Fl} . Summing over the last inequality yields (2.12). �

REMARK 2.6. Lerner [19] established the sharp weighted bounds for square func-
tions. Let ψ be an integrable function, have integral zero, and for some constant
ε ∈ (0, 1) ,

|ψ(x)| � 1
(1+ |x|)n+ε ,

∫
Rn

|ψ(x+h)−ψ(x)|dx � |h|ε .

Let R
n+1
+ = R

n×R+ and Γα(x)= {(y, t)∈R
n+1
+ : |y−x|� αt} . Set ψt(x)= t−nψ(x/t) .

Define the square function Sα ,ψ by

Sα ,ψ( f )(x) =
(∫

Γα (x)
| f ∗ψt(x)|2 dtdy

tn+1

) 1
2
.

Lerner [19, Section 4] proved that for p ∈ (1, ∞) , w ∈ Ap(Rn) and α ∈ [1, ∞) ,

‖Sα ,ψ( f )‖Lp(Rn,w) � αn sup
S

‖A 2
S f‖Lp(Rn,w),

where the supremum is taken over all sparse family of cubes. Thus,

‖Sα ,ψ( f )‖Lp(Rn,w) � Cn,ψ, pαn{w}Ap,p;2‖ f‖Lp(Rn,w). (2.16)

Moreover, this estimate is sharp. Repeating the proof of Lemma 2.5, we can prove the
following result, which is new for the Marcinkiewicz integral.

THEOREM 2.7. Let Ω be homogeneous of degree zero and have mean value zero.
Suppose that Ω ∈ Lipα(Sn−1) for some α ∈ (0, 1] . Then

(1) for bounded function f with compact support, there exists a sparse family of
cubes S , such that for almost everywhere x ∈ R

n ,

μΩ( f )(x) � A 2
S f (x);

(2) for p ∈ (1, ∞) and w ∈ Ap(Rn) ,

‖μΩ( f )‖Lp(Rn,w) � {w}Ap,p;2‖ f‖Lp(Rn,w). (2.17)

Note that (2.17) is analogue to (2.16).
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Armed with the preceding results we are in the position to prove Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality, we may assume that ‖Ω‖Lq(Sn−1) =
1. By (2.4), we know that

‖μ̃2l

Ω ( f )− μ̃2l+1

Ω ( f )
∥∥

L2(Rn) � 2−θ2l‖ f‖L2(Rn), (2.18)

and the series

μ̃Ω =
∞

∑
l=1

(μ̃2l+1

Ω − μ̃2l

Ω )+ μ̃2
Ω

converges in the L2(Rn) operator norm. Let p ∈ (q′, ∞) and w ∈ Ap/q′(Rn) , by [?,
Corollary 3.16 and Corollary 3.17], we know that for ε = cn/(w)Ap/q′ with cn a con-

stant depending only on n , w1+ε ∈ Ap/q′(Rn) ,

[w1+ε ]Ap/q′ � [w]1+ε
Ap/q′

,

and
[w1+ε ]A∞ � [w]1+ε

A∞
, [w(1−( p

q′ )
′)(1+ε)]A∞ � [w1−( p

q′ )
′
]1+ε
A∞

.

Therefore,
{w1+ε}Ap/q′ , p;2 � {w}1+ε

Ap/q′ , p;2.

Lemma 2.4 tells us that∥∥μ̃2l

Ω ( f )− μ̃2l+1

Ω ( f )
∥∥

Lp(Rn,w1+ε ) � 2l{w1+ε}Ap/q′ , p;2‖ f‖Lp(Rn,w1+ε ). (2.19)

On the other hand, by interpolating the estimates (2.18) and (2.19) with w = 1, we
know that for some ρ = ρp ∈ (0, 1) ,

∥∥μ̃2l

Ω ( f )− μ̃2l+1

Ω ( f )
∥∥

Lp(Rn) � 2−ρ2l‖ f‖Lp(Rn). (2.20)

By interpolation with change of measures (see [25]), we deduce from (2.19) and (2.20)
that ∥∥μ̃2l

Ω ( f )− μ̃2l+1

Ω ( f )
∥∥

Lp(Rn,w) � 2l2−ρ ε
1+ε 2l{w}Ap/q′ ,p;2‖ f‖Lp(Rn,w).

As in [16], a trivial computation involving the inequality ex � x2/2, now shows that

∞

∑
l=1

2l2−ρ2l ε
1+ε � ∑

l:2l�ε−1

2l + ∑
l:2l>ε−1

2l( 2lε
1+ ε

)−2 � (w)Ap/q′ .

We finally get that

‖μ̃Ω( f )‖Lp(Rn,w) � ‖μ̃2
Ω( f )‖Lp(Rn,w) +

∞

∑
l=1

∥∥μ̃2l+1

Ω ( f )− μ̃2l

Ω ( f )
∥∥

Lp(Rn,w)

� {w}Ap/q′ , p;2(w)Ap/q′ ‖ f‖Lp(Rn,w).
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This via (1.9) completes the proof of Theorem 1.2. �
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