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(A,m)–SYMMETRIC COMMUTING TUPLES
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(Communicated by M. S. Moslehian)

Abstract. Let T = (T1, · · · ,Td) and A be a commuting d -tuple of operators and a positive op-
erator on a complex Hilbert space, respectively. We introduce an (A,m) -symmetric commuting
tuple of operators and characterize the joint approximate point spectrum of (A,m) -symmetric
commuting tuple T . Next we introduce an (A,m) -expansive symmetric commuting tuple of
operators and show basic properties of (A,m) -expansive symmetric commuting tuple.

1. Introduction

Throughout this paper H stands for a complex separable Hilbert space with inner
product 〈· | ·〉 and L (H ) is the Banach algebra of all bounded linear operators on H .
L (H )+ is the cone of positive (semi-definite) operators, i.e.,

L (H )+ = {A ∈ L (H ) : 〈Au | u〉 � 0, ∀ u ∈ H }.

For every T ∈ L (H ) , we write σp(T ) and σap(T ) respectively, for the point spec-
trum and the approximate point spectrum of T .

In 1970, J.W. Helton [11] initiated the study of operators T ∈ L (H ) which satisfies
an identity of the following form

∑
0�k�m

(−1)m−k
(

m
k

)
T ∗m−kT k = 0. (1.1)

(See [1, 2, 4, 12, 18]). Let R and S be in L (H ) . In [15], the authors studied the
operator

C(R,S) : L (H ) −→ L (H )

defined by C(R,S)(A) = RA−AS. Then

C(R,S)k(I) = ∑
0� j�k

(−1)k− j
(

k
j

)
RjSk− j. (1.2)
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In [15], the authors introduced the class of Hilton operators as follows: an operator
R ∈ L (H ) is said to be in the nth Helton class of S and write R ∈ Heltonn(S) if
C(R,S)n = 0.

Let A ∈ L (H ) be a positive operator and let m be a positive integer. An operator
T ∈ L (H ) is said an (A,m)-isometry if

∑
0�k�m

(−1)m−k
(

m
k

)
T ∗kATk = 0. (1.3)

If m = 1, it is called A-isometry, that is, T is an A-isometry if T ∗AT = A. The class
of (A,m)-isometries has been introduced by Sid Ahmed and Saddi [16], and studied by
other authors.

(
See [3, 5, 19]

)
.

In this paper, A will denote a positive operator.

The motivation for the present paper comes from the intensive study for consider-
able literature on tuples of commuting operators on infinite dimensional Hilbert space
H (refer to [6, 7, 8, 10, 13, 17]). It is natural to look for the higher-dimensional analogs
of (A,m)-symmetric operators.

A commuting d -tuple of operators T = (T1, · · · ,Td) of bounded linear operators on a
Hilbert space H is called an m-isometry (also called spherical m-isometry) if

∑
0�k�m

(−1)m−k
(

m
k

)
Qk

T(I) = 0, (1.4)

where

QT(X) = ∑
1� j�d

T ∗
j XTj

(
X ∈ L (H )

)
and Qk

T(I) = ∑
|α |=k

k!
α!

T∗αTα .

Note that α = (α1, · · · ,αd) ∈ Nd , |α| = α1 + · · ·+ αd , Tα = T α1
1 . · · · .T αd

d and T∗ =
(T ∗

1 , · · · ,T ∗
d ) . (See [7, 8, 10, 13]).

Recently, the authors [6] have introduced m-symmetric commuting tuple of operators
as follows: a tuple of operators T = (T1, · · · ,Td) ∈ L (H )d := L (H )×·· ·×L (H )
is said to be an m-symmetric commuting tuple of operators if T satisfies

∑
0�k�m

(−1)m−k
(

m
k

)(
T ∗
1 + · · ·+T ∗

d

)m−k(
T1 + · · ·+Td

)k = 0.

In this paper we are interested to the classes of tuple of commuting operators T =
(T1, · · · ,Td) ∈ L (H )d , which satisfy the following equation

ΔA
m(T) := ∑

0�k�m

(−1)m−k
(

m
k

)(
T ∗
1 + · · ·+T ∗

d

)m−k
A
(
T1 + · · ·+Td

)k = 0

(
resp. ΔA

m(T) � 0
)
. Such operators are called (A,m)-symmetric commuting tuple

(resp.(A,m)-expansive symmetric commuting tuple). We give some basic properties
concerning these classes of operators.
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The outline of the paper is as follows. In Section 2, we investigate various structural
properties of the class of (A,m)-symmetric single operators. In particular, we prove
that the class of (A,m)-symmetric single operator is translation invariant and further
if T is (A,m)-symmetric operator then eitT is (A,m)-isometric operator for t ∈ R. In
Section 3 and Section 4, we introduce the class of (A,m)-symmetric commuting tuple
of operators. Some of their algebraic and spectral properties are studied. The main
result in Section 4 is Theorem 4.1 which describes the structure of the joint approximate
spectrum of some (A,m)-symmetric commuting tuple. In Section 5, we introduce the
class of (A,m)-expansive symmetric commuting tuple of operators. We establish some
general facts about this class of tuple of operators.

2. (A,m)-symmetric operators

DEFINITION 2.1. For T ∈L (H ) , T is said to be an (A,m)-symmetric operator
if

ΔA
m(T ) := ∑

0�k�m

(−1)m−k
(

m
k

)
T ∗m−kATk = 0.

REMARK 2.1. If A = I (the identity operator), every (I,m)-symmetric operator
is called m-symmetric operator ([18]).

THEOREM 2.1. For an operator T ∈ L (H ) , if A � 0 is invertible and T is
(A,m)-symmetric, then σ(T ) ⊂ R.

Proof. Let λ ∈ σap(T ) and {xn} be a sequence of unit vectors such that (T −
λ )xn → 0 (n → ∞) . Then

0 = lim
n→∞

〈
(

∑
0�k�m

(−1)m−k
(

m
k

)
T ∗m−k ATk

)
xn |xn〉 = (λ −λ)m lim

n→∞
〈Axn |xn〉.

If lim
n→∞

〈Axn |xn〉 = 0, then 0 ∈W (A) , where W (A) denotes the numerical range of A .

Since A is positive, W (A) = coσ(A) , where coσ(A) denotes the convex hull of σ(A) .
Hence, 0 ∈ σ(A) . Since A is invertible, it’s a contradiction. Therefore, λ = λ and λ
is a real number. Since the boundary of σ(T ) is included in R , σ(T ) ⊂ R. �

We prepare a symbol. We define a polynomial {(x− y)m}a by

{(x− y)m}a =
{

∑
0�k�m

(−1)m−k
(

m
k

)
ym−k xk

}
a
:= ∑

0�k�m

(−1)m−k
(

m
k

)
ym−k axk.

For T ∈ L (H ) and A � 0, we define({
∑

0�k�m

(−1)m−k
(

m
k

)
ym−k xk

}
a

)
(T, A) := ∑

0�k�m

(−1)m−k
(

m
k

)
ym−k axk∣∣∣∣y=T ∗,x=T,a=A

= ∑
0�k�m

(−1)m−k
(

m
k

)
T ∗m−k ATk.
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Then we have

ΔA
m+1(T ) =

(
{(x− y)m+1}a

)
(T, A) =

(({(x− y)m}a
)
x− y

({(x− y)m}a
))

(T, A)

= ΔA
m(T )T −T∗ ΔA

m(T ).

Hence we have an equation

ΔA
m+1(T ) = ΔA

m(T )T −T ∗ ΔA
m(T ). (2.1)

Therefore, if T is (A,m)-symmetric, then T is (A,n)-symmetric for every n (n � m) .

The following theorem shows that the class of (A,m)-symmetric operators is translation
invariant.

THEOREM 2.2. If T ∈ L (H ) is (A,m)-symmetric and A � 0 , then, for a real
number t , T − t is (A,m)-symmetric.

Proof. By the previous symbol since

(
{(x− y)m}a

)
(T, A) = Δm

A (T ) = 0, the

proof follows from
(
{((x− t)− (y− t)

)m}a

)
(T, A) =

(
{(x− y)m}a

)
(T, A). �

For T ∈ L (H ) and t ∈ R ,

eitT = I + itT +
(it)2

2!
T 2 +

(it)3

3!
T 3 + · · ·

and

(eitT )∗ = I− itT ∗ +
(−it)2

2!
T ∗2 +

(−it)3

3!
T ∗3 + · · · .

Hence

(eitT )∗AeitT = A− it(T∗A−AT)+
(−it)2

2!

(
T ∗2 A−2T∗AT +AT2

)
+ · · ·

= A− itΔA
1(T )+

(−it)2

2!
ΔA

2 (T )+
(−it)3

3!
ΔA

3 (T )+ · · · .

Therefore, if T is (A,m)-symmetric, then

(eitT )∗AeitT = A− itΔA
1(T )+

(−it)2

2!
ΔA

2 (T )+ · · ·+ (−it)m−1

(m−1)!
ΔA

m−1(T ).

Hence, in this case,
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(eitT )∗k A(eitT )k = (eiktT )∗AeiktT

= A− iktΔA
1(T )+

(−it)2

2!
k2ΔA

2 (T )+ · · ·+ (−it)m−1

(m−1)!
km−1ΔA

m−1(T ).

THEOREM 2.3. If T ∈ L (H ) is (A,m)-symmetric and A � 0 , then

(−i)m−1ΔA
m−1(T ) � 0.

Proof. Let t be a real number. Then it holds

e−itT ∗
AeitT =A+(−it)ΔA

1(T )+
(−it)2

2!
ΔA

2 (T )+ · · ·

+
(−it)m−1

(m−1)!
ΔA

m−1(T )+
(−it)m

m!
ΔA

m(T )+ · · · .

Since T is (A,m)-symmetric, by equation (2.1) it holds ΔA
n (T ) = 0 for every n � m .

Hence we have

e−itT ∗
AeitT = A+(−it)ΔA

1(T )+
(−it)2

2!
ΔA

2 (T )+ · · ·+ (−it)m−1

(m−1)!
ΔA

m−1(T ).

Therefore it holds

(−i)m−1

(m−1)!
ΔA

m−1(T ) =
1

tm−1 e−itT ∗
AeitT

− 1
tm−1

(
A+(−it)ΔA

1(T )+
(−it)2

2!
ΔA

2 (T )+ · · ·+ (−it)m−2

(m−2)!
ΔA

m−2(T )
)

.

Since, for t > 0,
1

tm−1 e−itT ∗
AeitT � 0 and

1
tm−1

(
A+(−it)ΔA

1(T )+
(−it)2

2!
ΔA

2 (T )+ · · ·+ (−it)m−2

(m−2)!
ΔA

m−2(T )
)

−→ 0 (t → ∞),

we have (−i)m−1ΔA
m−1(T ) � 0. �

For T ∈ L (H ) and A � 0, we define BA
m(T ) by

BA
m(T ) := ∑

0�k�m

(−1)k
(

m
k

)
T ∗m−k ATm−k.

Recall that T is said to be (A,m)-isometric if BA
m(T ) = 0

(
[16]

)
.
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THEOREM 2.4. ([16]) The following properties hold.

(i) If T ∈ L (H ) is (A,m)-isometric and A � 0, then BA
m−1(T ) � 0.

(ii) If T ∈L (H ) is (A,m)-isometric and T is invertible, then T−1 is (A,m)-isometric.

THEOREM 2.5. If T ∈L (H ) is (A,m)-isometric, m is even and T is invertible,
then T is (A,m−1)-isometric.

Proof. By Theorem 2.4, it holds BA
m−1(T ) � 0 and BA

m−1(T
−1) � 0. Hence it

holds
0 � T ∗m−1BA

m−1(T
−1)Tm−1 = (−1)m−1BA

m−1(T ).

Since m−1 is an odd number, it holds BA
m−1(T ) � 0. Therefore we have BA

m−1(T ) =
0. �

For the next result, we need the following lemma.

LEMMA 2.1. ([9]) Let m ∈ N . For every j = 0,1, ...,m−1 , it holds

∑
0�k�m

(−1)k
(

m
k

)
k j = 0.

THEOREM 2.6. If T ∈L (H ) is (A,m)-symmetric and A � 0 , then eitT is (A,m)-
isometric for every t ∈ R .

Proof. By the previous lemma, we have

ΔA
m(eitT ) = ∑

0�k�m

(−1)k
(

m
k

)
(eitT )∗k A(eitT )k = ∑

0�k�m

(−1)k
(

m
k

)
(e−iktT ∗

)A(eiktT )

=
(

∑
0�k�m

(−1)k
(

m
k

))
A+(−it)

(
∑

0�k�m

(−1)k
(

m
k

)
k

)
ΔA

1 (T )+ · · ·

+ (−it)m−1
(

∑
0�k�m

(−1)k
(

m
k

)
km−1

)
ΔA

m−1(T )

=(1−1)mA+(−it) ·0 ·ΔA
1(T )+ · · ·+(−it)m−1 ·0 ·ΔA

m−1(T ) = 0.

So eitT is (A,m)-isometric for every t ∈ R . It completes the proof. �

REMARK 2.2. Let T ∈ L (H ) . If eitT is (A,m)-symmetric and m is even, then
eitT is invertible (A,m)-isometric and m is even. Hence eitT is (A,m− 1)-isometric.
Therefore, eitT is (A,m−1)-symmetric by Theorem 2.5.
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3. (A,m)-symmetric commuting tuple of operators

In this section, we give a basic result about (A,m)-symmetric tuple of commuting
operators.

Let T = (T1, · · · ,Td) ∈ L (H )d be a commuting tuple of operators.

Set

ΔA
m(T) := ∑

0�k�m

(−1)m−k
(

m
k

)(
T ∗
1 + · · ·+T ∗

d

)m−k
A
(
T1 + · · ·+Td

)k
. (3.1)

DEFINITION 3.1. Let T= (T1, · · · ,Td)∈L (H )d be a commuting tuple of bounded
linear operators. T is said to be an (A,m)-symmetric tuple if

∑
0�k�m

(−1)m−k
(

m
k

)(
T ∗
1 + · · ·+T ∗

d

)m−k
A
(
T1 + · · ·+Td

)k = 0

or equivalently ΔA
m(T) = 0.

REMARK 3.1. When A = I , Definition 3.1 coincides with [6, Definition 4.2].

REMARK 3.2. The following are trivial examples of (A,m)-symmetric commut-
ing tuple of operators.

(i) If A := I , then T is an m-symmetric commuting tuple if and only if T is an
(A,m)-symmetric commuting tuple.

(ii) If A := 0, any commuting tuple of operators is an (A,m)-symmetric commuting
tuple.

EXAMPLE 1. Let S ∈ L (H ) be an (A,m)-symmetric operator and let T =
(S, · · · ,S) ∈ L (H )d . Then T is an (A,m)-symmetric tuple.

In fact, a simple computation shows that

∑
0�k�m

(−1)m−k
(

m
k

)(
T ∗
1 + · · ·+T ∗

d

)m−k
A
(
T1 + · · ·+Td

)k

= dm ∑
0�k�m

(−1)m−k
(

m
k

)
S∗m−kASk = 0.

REMARK 3.3. Let T = (T1, · · · ,Td) ∈ L (H )d . Then

(i) T is an (A,1)-symmetric tuple if

A
(
T1 + · · ·+Td

)− (
T ∗
1 + · · ·+T ∗

d

)
A = 0. (3.2)
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(ii) T is an (A,2)-symmetric tuple if

(
T ∗
1 + · · ·+T ∗

d

)2
A−2

(
T ∗
1 + · · ·+T ∗

d

)
A
(
T1 + · · ·+Td

)
+A

(
T1 + · · ·+Td

)2 = 0.
(3.3)

In the following proposition, we give a recursive formula for ΔA
m(T).

PROPOSITION 3.1. Let T = (T1, · · · ,Td) ∈ L (H )d be a commuting tuple of op-
erators. Then the following identity holds

ΔA
m+1(T) = ΔA

m(T)
(
T1 + · · ·+Td

)− (
T ∗
1 + · · ·+T∗

d

)
ΔA

m(T). (3.4)

In particular, if T is an (A,m)-symmetric commuting tuple of operators, then T is an
(A,n)-symmetric commuting tuple of operators of all n � m.

Proof. By applying (3.1) we observe that

ΔA
m+1(T)

= ∑
0�k�m+1

(−1)m+1−k
(

m+1
k

)(
T ∗
1 + · · ·+T ∗

d

)m+1−k
A
(
T1 + · · ·+Td

)k

= (−1)m+1(T ∗
1 + · · ·+T ∗

d

)m+1
A+A

(
T1 + · · ·+Td

)m+1

+ ∑
1�k�m

(−1)m+1−k
((

m
k

)
+

(
m

k−1

))(
T ∗
1 + · · ·+T ∗

d

)m+1−k
A
(
T1 + · · ·+Td

)k

= (−1)m+1(T ∗
1 + · · ·+T ∗

d

)m+1
A+A

(
T1 + · · ·+Td

)m+1

+ ∑
1�k�m

(−1)m+1−k
(

m
k

)(
T ∗
1 + · · ·+T ∗

d

)m+1−k
A
(
T1 + · · ·+Td

)k

+ ∑
1�k�m

(−1)m+1−k
(

m
k−1

)(
T ∗
1 + · · ·+T ∗

d

)m+1−k
A
(
T1 + · · ·+Td

)k

= ΔA
m(T)

(
T1 + · · ·+Td

)− (
T ∗
1 + · · ·+T ∗

d

)
ΔA

m(T),

which completes the derivation of (3.4) . Applying the preceding result to an (A,m)-
symmetric commuting tuple of operators T , we immediately obtain that T is an (A,m+
1)-symmetric commuting tuple of operators. �

REMARK 3.4. If T = (T1, · · · ,Td)∈L (H )d is an (A,m)-symmetric tuple of op-

erators, then for every integer k � 0, ΔA
m−1(T)

(
T1+ · · ·+Td

)k =
(
T ∗
1 + · · ·+T ∗

d

)kΔA
m−1(T).
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PROPOSITION 3.2. Let T= (T1, · · · ,Td)∈L (H )d be an (A,m)-symmetric com-
muting tuple of operators. Then the operator S := (X−1T1X , · · · ,X−1TdX) is an
(X∗AX ,m)-symmetric commuting tuple of operators, where X ∈ L (H ) is an invert-
ible operator.

Proof. It is easy to see from (3.1) that

ΔX∗AX
m (S)

= ∑
0�k�m

(−1)m−k
(

m
k

)(
S1 + · · ·+Sd

)∗m−k

X∗AX

(
S1 + · · ·+Sd

)k

= ∑
0�k�m

(−1)m−k
(

m
k

)((
X−1T1X + · · ·+X−1TdX

)m−k
)∗

X∗AX

(
X−1T1X + · · ·+X−1TdX

)k

= ∑
0�k�m

(−1)m−k
(

m
k

)(
X−1(T1 + · · ·+Td

)m−k
X

)∗
X∗AXX−1

(
T1 + · · ·+Td

)k

X

= X∗
(

∑
0�k�m

(−1)m−k
(

m
k

)(
T ∗
1 + · · ·+T ∗

d

)m−k
A
(
T1 + · · ·+Td

)k
)

X

= X∗ΔA
m(T)X = 0.

This completes the proof of the proposition. �
Recall that the symbol

{
(x− y)m

}
a , i.e.,

{
(x− y)m}

a =
{ m

∑
k=0

(−1)m−k
(

m
k

)
ym−kxk

}
a
:=

m

∑
k=0

(−1)m−k
(

m
k

)
ym−k axk.

Let T = (T1, · · · ,Td) ∈ L (H )d and A � 0. We define

({
(x− y)m

}
a

)
(T, A) by

({
(x− y)m}

a

)
(T, A) :=

m

∑
k=0

(−1)m−k
(

m
k

)
ym−k axk

∣∣∣∣
y=T ∗

1 +···+T ∗
d ,x=T1+···+Td ,a=A

=
m

∑
k=0

(−1)m−k
(

m
k

)
(T ∗

1 + · · ·+T ∗
d )m−k A(T1 + · · ·+Td)k.

Then we have

({
(x− y)m

}
a

)
(T, A) = ΔA

m(T) . Since, for some constants ξk (k =

0, ...,m(n−1)) , it holds

(
xn− yn)m =

(
(x− y)

(n−1

∑
j=0

yn−1− jx j))m

=
m(n−1)

∑
k=0

ξk ym(n−1)−k (x− y)mxk,
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we have {(
xn− yn)m

}
a
=

m(n−1)

∑
k=0

ξk ym(n−1)−k
(
{(x− y)m}a

)
xk

and

({
(xn − yn)m}

a

)
(T, A) =

m(n−1)

∑
k=0

ξk(T ∗
1 + · · ·+T ∗

d )m(n−1)−k ΔA
m(T)(T1 + · · ·+Td)k.

(3.5)
By (3.5), we have

ΔA
m((T1 + · · ·+Td)n) =

m(n−1)

∑
k=0

ξk(T ∗
1 + · · ·+T ∗

d )m(n−1)−k ΔA
m(T)(T1 + · · ·+Td)k, (3.6)

where ξk (k = 0, ...,m(n− 1)) are constants. Hence, by (3.6) we have the following
proposition.

PROPOSITION 3.3. If T = (T1, · · · ,Td) ∈ L (H )d be an (A,m)-symmetric com-
muting tuple of operators, then the operator (T1 + · · ·+Td)n is (A,m)-symmetric for
any n ∈ N .

PROPOSITION 3.4. Let T= (T1, · · · ,Td)∈L (H )d and S = (S1, · · · ,Sd)∈L (H )d

be commuting d -tuples of operators such that TjSk = SkTj for all j,k = 1, · · · ,d. If T is
an (A,m)-symmetric commuting tuple and S is an (A,n)-symmetric commuting tuple,
then eitR is an (A,m+n−1)-isometric operator, where R = ∑

1� j�d

(Tj +S j) .

Proof. Since T is an (A,m)-symmetric commuting tuple and S is an (A,n)-
symmetric commuting tuple , it follows that ΔA

m(T) = 0 and ΔA
n (S) = 0. From which

we deduce that (T1 + · · ·+Td) is an (A,m)-symmetric single operator and (S1 + · · ·+
Sd) is an (A,n)-symmetric single operator. By Theorem 2.6 we have for all t ∈ R,

eit
(
T1+···+Td

)
is an (A,m)-isometric operator and eit

(
S1+···+Sd

)
is an (A,n)-isometric

operator.

Applying [3, Theorem 3], we obtain that eit
(
T1+S1+···+Td+Sd

)
is an (A,m + n− 1)-

isometric operator. �

THEOREM 3.1. Let
(
Tn = (T1n, · · · ,Tdn)

)
n be a sequence of an (A,m)-symmetric

tuple of operators with A � 0 such that Tjn → Tj for each j = 1, · · · ,d as n→ ∞ in the
strong topology of L (H ) . Then T := (T1, · · · ,Td) is an (A,m)-symmetric commuting
tuple.

Proof. Assume that
(
Tn = (T1n, · · · ,Tdn)

)
n is a sequence of an (A,m)-symmetric

commuting tuple of operators such that ‖Tjn−Tj‖→ 0 as n→ ∞ for each j = 1, · · · ,d.

Set Sn = T1n + · · ·+Tdn and S = T1 + · · ·+Td.
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It is obvious that Sn → S and adjoint operation is continuous, S∗n → S∗ in L (H ) .
Also, as multiplication is jointly continuous, Sk

n → Sk and S∗kn → S∗k in L (H ) .

Since
(
Tn = (T1n, · · · ,Tdn)

)
n is an (A,m)-symmetric tuple of operators, we get

‖ΔA
m(T)‖ = ‖ ∑

0� j�m

(−1)m− j
(

m
j

)(
T ∗
1 + · · ·+T ∗

d

)m− j
A
(
T1 + · · ·+Td) j‖

= ‖ΔA
m(T)−ΔA

m(Tn)‖
= ‖ ∑

0� j�m

(−1)m− j
(

m
j

)
S∗m− j

n AS j
n− ∑

0� j�m

(−1)m− j
(

m
j

)
S∗m− jAS j‖

� ‖ ∑
0� j�m

(−1)m− j
(

m
j

)
S∗m− j

n AS j
n− ∑

0� j�m

(−1)m− j
(

m
j

)
S∗m− j

n AS j‖

+‖ ∑
0� j�m

(−1)m− j
(

m
j

)
S∗m− j

n AS j − ∑
0� j�m

(−1)m− j
(

m
j

)
S∗n− jAS j‖

� ‖ ∑
0� j�m

(−1)m− j
(

m
j

)
S∗m− j

n A

(
S j

n−S j
)
‖

+‖ ∑
0� j�m

(−1)m− j
(

m
j

)(
S∗m− j

n −S∗m− j
)

AS j‖.

Hence we conclude that ΔA
m(T) = 0 by taking n → ∞ . �

4. Spectral properties of (A,m)-symmetric commuting tuple of operators

For a commuting tuple of operators T = (T1, · · · ,Td) ∈ L (H )d , σ ja(T) and
σ jp(T) denote the joint approximate point spectrum and the joint point spectrum of
T , that is,

μ = (μ1, ...,μd) ∈ σ ja(T) ⇐⇒ ∃ {xn} : unit vctors;(Tj − μ j)xn → 0 (n → ∞),

and
μ = (μ1, ...,μd) ∈ σ jp(T) ⇐⇒ ∃ x 
= 0; (Tj − μ j)x = 0,

for all j ( j = 1, · · · ,d) , respectively.

THEOREM 4.1. Let T = (T1, · · · ,Td) ∈ L (H )d be an (A,m)-symmetric com-
muting tuple of operators. If 0 /∈ σap(A) , then the following statements hold:

(i) σ ja(T) ⊂ {
(μ1, · · · ,μd) ∈ Cd : Im

(
∑

1�j�d

μj

)
= 0 .

(ii) σ jp(T) ⊂ {
(μ1, · · · ,μd) ∈ Cd : Im

(
∑

1�j�d

μj

)
= 0

}
.
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(iii) Eigenvectors u and v of T corresponding to two joint eigenvalues λ = (λ1, · · · ,λd)
and μ = (μ1, · · · ,μd) respectively such that ∑

1� j�d

(
λ j − μ j

) 
= 0 satisfies

〈Au | v〉 = 0.

(iv) If λ = (λ1, · · · ,λd) and μ = (μ1, · · · ,μd) are two joint eigenvalues of T such
that ∑

1� j�d

(
λ j−μ j

) 
= 0 . If {un}n , {vn}n are two sequences of unit vectors such

that

(Tj −λ j)un −→ 0 and (Tj − μ j)vn −→ 0 (as n −→ +∞) ( j = 1, · · · ,d),

then we have
〈Aun |vn〉 −→ 0 (as n −→ +∞).

Proof. (ii) and (iii) follow from (i) and (iv), respectively. So we show (i) and (iv).

(i) Let μ = (μ1, · · · ,μd) ∈ σ ja(T) . Then there exists a sequence {zn}n of unit vec-
tors in H such that

(Tj − μ j)zn −→ 0 (as n −→ ∞).

Since T is an (A,m)-symmetric tuple, it follows that

0 = 〈
(

∑
0�k�m

(−1)m−k
(

m
k

)(
T ∗
1 + · · ·+T ∗

d

)m−k
A
(
T1 + · · ·+Td

)k
)

zn | zn〉

= ∑
0�k�m

(−1)m−k
(

m
k

)(
〈A(

T1 + · · ·+Td
)k

zn |
(
T1 + · · ·+Td

)m−k
zn〉

)
.

By taking n −→ ∞ we get

∑
0�k�m

(−1)m−k
(

m
k

)(
μ1 + · · ·+ μd

)k(μ1 + · · ·+ μd
)m−k〈Azn | zn〉 −→ 0,

or equivalently

((
μ1 + · · ·+ μd

)− (
μ1 + · · ·+ μd

))m

〈Azn | zn〉 −→ 0.

Since 0 /∈ σap(A) , it follows that
(
μ1 + · · ·+ μd

)− (
μ1 + · · ·+ μd

)
= 0 and so

that

Im

(
∑

1�j�d

μj

)
= 0.
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(iv) Let λ = (λ1, · · · ,λd) and μ = (μ1, · · · ,μd) be in σ ja(T ) and satisfy

∑
1� j�d

(
λ j − μ j

) 
= 0.

Let {un}n,{vn}n ⊂ H be sequences of unit vectors such that

(Tk −λk)un −→ 0 and (Tk − μk)vn −→ 0 (n → ∞).

By repeating the process as in the statement (iii) it holds that

0 = lim
n−→∞

〈 ∑
0�k�m

(−1)m−k
(

m
k

)
〈A(

T1 + · · ·+Td
)k

un |
(
T1 + · · ·+Td

)m−k
vn〉

=
(

∑
1� j�d

(λ j − μ j)
)m

lim
n−→∞

〈Aun | vn〉,

which allows to conclude. �

PROPOSITION 4.1. Let T= (T1, · · · ,Td)∈L (H )d be an (A,m)-symmetric com-
muting tuple of operators. If 0 /∈ σap(A) , then the following statements hold.

(i) If μ = (μ1, · · · ,μd) ∈ σ ja(T) , then μ1 + · · ·+ μd ∈ σap
(
T ∗
1 + · · ·+T ∗

d

)
.

(ii) If μ = (μ1, · · · ,μd) ∈ σ jp(T) , then μ1 + · · ·+ μd ∈ σp
(
T ∗
1 + · · ·+T ∗

d

)
.

Proof.

(i) Let μ = (μ1, · · · ,μd) ∈ σ ja(T) . Then there exists a sequence {zn}n of unit vec-
tors in H such that

(Tj − μ j)zn −→ 0 (as n −→ ∞).

Since T is an (A,m)-symmetric tuple it follows that

0 = ∑
0�k�m

(−1)m−k
(

m
k

)(
T ∗
1 + · · ·+T ∗

d

)m−k
A
(
T1 + · · ·+Td

)k
zn.

Hence we obtain

0 = lim
n−→∞

(
(μ1 + · · ·+ μd)−

(
T ∗
1 + · · ·+T∗

d

))m

Azn.

As 0 /∈ σap(A) we obtain also that

0 = lim
n−→∞

(
(μ1 + · · ·+ μd)−

(
T ∗
1 + · · ·+T ∗

d

))m Azn

‖Azn‖ .

This shows that

(
(μ1 + · · ·+μd)−

(
T ∗
1 + · · ·+T ∗

d

))
is not bounded below. Con-

sequently, (μ1 + · · ·+ μd) ∈ σap
(
T ∗
1 + · · ·+T ∗

d ) . This proves the statement in (i).
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(ii) The remaining statement in (ii) also holds by a similar method. �

THEOREM 4.2. Let T = (T1, ...,Td) ∈ L (H )d be (A,m)-symmetric commuting
tuple and let A � 0 be invertible. If (z1, ...,zd) ∈ σT (T), then z1 + · · ·+ zd ∈ R , where
σT (T) is the Taylor spectrum of T .

Proof. Let S = T1 + · · ·+Td . Then by the Definition 3.1, S is (A,m)-symmetric.
Hence by Theorem 2.1 we have σ(S)⊂R. Let f (x1, ...,xd) = x1+ · · ·+xd . Then by the
spectral mapping theorem of the Taylor spectrum, we have f (σT(T)) = σT( f (T)) =
σ(S) ⊂ R . It completes the proof. �

5. (A,m)-expansive symmetric tuple

According to the paper of Jung, Kim, Ko and Lee [14], we introduce (A,m)-
expansive symmetric tuples.

Recall that an operator T ∈ L (H ) is said to be (A,m)-expansive if BA
m(T ) � 0 for

some positive integer m . We refer the interested reader to [14] for more details.

In the following definition, we introduce de notion of (A,m)-expansive symmetric for
tuple of commuting operators.

DEFINITION 5.1. Let T= (T1, · · · ,Td)∈L (H )d be a commuting tuple of bounded
linear operators and A � 0. T is said to be an (A,m)-expansive symmetric tuple if

ΔA
m(T) = ∑

0�k�m

(−1)m−k
(

m
k

)(
T ∗
1 + · · ·+T ∗

d

)m−k
A
(
T1 + · · ·+Td

)k � 0.

By equation (3.4), it does not hold that if T is (A,m)-expansive symmetric tuple, then
T is (A,m+1)-expansive symmetric tuple. We have the following proposition.

PROPOSITION 5.1. Let T = (T1, · · · ,Td) ∈L (H )d be an (A,m)-expansive sym-
metric commuting tuple of operators and let X ∈ L (H ) be an invertible operator.
Then the operator S := (X−1T1X , · · · ,X−1TdX) is an (X∗AX ,m)-expansive symmetric
commuting tuple of operators.

Proof. By the proof of Proposition 3.2, since it holds

ΔX∗AX
m (S) = X∗ΔA

m(T)X

and ΔA
m(T) � 0, we have ΔX∗AX

m (S) � 0 and it completes the proof. �
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THEOREM 5.1. Let T = (T1, · · · ,Td) ∈L (H )d be an (A,m)-expansive symmet-
ric tuple and 0 /∈ σap(A) . The following statements hold:

(i) If m ∈ {2k+1, k = 0,1, · · ·} , then

σ ja(T) ⊂ {
(μ1, · · · ,μd) ∈ C

d : Im

(
∑

1�j�d

μj

)
= 0

}

={(μ1, · · · ,μd) ∈ C
d : ∑

1� j�d

μ j ∈ R
}
.

(ii) If m ∈ {4k, k = 1,2, · · ·} , then

σ ja(T) ⊂ {
(μ1, · · · ,μd) ∈ C

d : Im

(
∑

1�j�d

μj

)
= 0

}

={(μ1, · · · ,μd) ∈ C
d : ∑

1� j�d

μ j ∈ R
}
.

(iii) If m ∈ {4k+2, k = 0,1, · · ·} , then

σ ja(T) ⊂ {(μ1, · · · ,μd) ∈ C
d : ∑

1� j�d

μ j ∈ C
}
.

Proof. Let μ = (μ1, · · · ,μd) ∈ σ ja(T) . Then there exists a sequence {zn}n of unit
vectors in H such that

(Tj − μ j)zn −→ 0 (as n −→ ∞).

Since T is an (A,m)-expansive symmetric tuple, it follows that

0 � 〈
(

∑
0�k�m

(−1)m−k
(

m
k

)(
T ∗
1 + · · ·+T ∗

d

)m−k
A
(
T1 + · · ·+Td

)k
)

zn | zn〉

= ∑
0�k�m

(−1)m−k
(

m
k

)(
〈A(

T1 + · · ·+Td
)k

zn |
(
T1 + · · ·+Td

)m−k
zn〉

)
.

Therefore we get

lim
n→∞ ∑

0�k�m

(−1)m−k
(

m
k

)(
μ1 + · · ·+ μd

)k(
μ1 + · · ·+ μd

)m−k

〈Azn | zn〉 � 0,

or equivalently

lim
n→∞

((
μ1 + · · ·+ μd

)− (
μ1 + · · ·+ μd

))m

〈Azn | zn〉

=(2i)m
(

Im

(
∑

1� j�d

μ j

))m

lim
n→∞

〈Azn | zn〉 � 0.

Since A � 0, 0 /∈ σap(A) we have:
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(i) If m is odd, it follows that

(2)miIm

(
∑

1� j�d

μ j

)m

lim
n→∞

〈Azn | zn〉 � 0.

Hence we get

Im

(
∑

1� j�d

μ j

)
= 0.

(ii) Since m = 4k , by the similar calculation we have

(2)m
(

Im

(
∑

1� j�d

μ j

))m

lim
n→∞

〈Azn | zn〉 � 0.

Hence we obtain

σ ja(T) ⊂ {
(μ1, · · · ,μd) ∈ C

d : Im

(
∑

1� j�d

μ j

)
= 0

}
.

(iii) If m = 4k+2,we can obtain

−2m
(

Im

(
∑

1� j�d

μ j

))m

lim
n→∞

〈Azn | zn〉 � 0.

This completes the proof. �
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