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ESTIMATIONS OF THE WEIGHTED POWER

MEAN BY THE HERON MEAN AND RELATED

INEQUALITIES FOR DETERMINANTS AND TRACES
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(Communicated by J.-C. Bourin)

Abstract. For positive real numbers a and b , the weighted power mean Pt,q(a,b) and the
weighted Heron mean Kt,q(a,b) are defined as follows: For t ∈ [0,1] and q ∈ R , Pt,q(a,b) =

{(1− t)aq + tbq} 1
q and Kt,q(a,b) = (1− q)a1−tbt + q{(1− t)a+ tb} . These means generalize

the arithmetic and geometric ones.
In this paper, as a generalization of Wu and Debnath’s result on non-weighted means (the

case t = 1
2 ), we get estimations of the weighted power mean by the weighted Heron mean. In

other words, we obtain the greatest value α1 = α1(t,r) and the least value α2 = α2(t,r) such
that the double inequality Kt,α1 (a,b) < Pt,r(a,b) < Kt,α2 (a,b) holds for t ∈ (0,1) and r ∈ R .
We can also obtain the results for bounded linear operators on a Hilbert space. Moreover, our
main results lead some determinant and trace inequalities of matrices.

1. Introduction

For two positive real numbers a and b , the arithmetic, geometric and harmonic
means are defined by a+b

2 ,
√

ab and 2ab
a+b , respectively. It is well known that these

means have their weighted version as follows: For t ∈ [0,1] ,

At(a,b) = (1− t)a+ tb (arithmetic mean),

Gt(a,b) = a1−tbt (geometric mean),

Ht(a,b) = {(1− t)a−1 + tb−1}−1 (harmonic mean).

If the weight t is equal to 1
2 , then the weighted means coincide with the original

(non-weighted) ones, and then we abbreviate the weight t as A(a,b) = A 1
2
(a,b) .

These means are used in various branches, and also their generalizations are known
as follows: For t ∈ [0,1] and q ∈ R ,

Pt,q(a,b) =

{
{(1− t)aq + tbq} 1

q if q �= 0,

a1−tbt if q = 0,
(power mean),
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Kt,q(a,b) = (1−q)a1−tbt +q{(1− t)a+ tb} (Heron mean).

We remark that we use the notations for non-weighted means that Pq(a,b) =
P1

2 ,q(a,b) and Kq(a,b) = K 1
2 ,q(a,b) .

The weighted means have the properties that At(a,b) = A1−t(b,a) , Gt(a,b) =
G1−t(b,a) and so on. In particular, non-weightedmeans are symmetric, that is, A(a,b)=
A(b,a) , G(a,b) = G(b,a) and so on. We remark that

Ht(a,b) � Gt(a,b) � At(a,b),
At(a,b) = Pt,1(a,b) = Kt,1(a,b),
Gt(a,b) = Pt,0(a,b) = Kt,0(a,b),
Ht(a,b) = Pt,−1(a,b),

and also Pt,q(a,b) and Kt,q(a,b) are monotone increasing on q ∈ R . The inequality
Gt(a,b) � At(a,b) is sometimes called Young’s inequality.

It is also known that the non-weighted arithmetic, geometric and harmonic means
have many kinds of generalizations besides the power mean and the Heron mean. For
example, for q ∈ R ,

Jq(a,b) =
q

q+1
aq+1−bq+1

aq−bq (q �= 0,−1) (power difference mean),

Lq(a,b) =
aq+1 +bq+1

aq +bq (Lehmer mean).

We note that J0(a,b) and J−1(a,b) can be defined as the limit, and also A(a,b) =
J1(a,b)= L0(a,b) , G(a,b)= J−1

2
(a,b)= L−1

2
(a,b) and H(a,b)= J−2(a,b)= L−1(a,b)

hold.
Many researchers investigate estimations of these means. For example, recently,

we have obtained the results on estimations of several means by the Heron mean. The
results for the power difference mean are in [13, 4], and the results for the Lehmer mean
are in [5]. For the power mean, Janous [6], Wu and Debnath [12] obtained the following
Theorem 1.A.

THEOREM 1.A ([6, 12]) Let a,b > 0 with a �= b.

(i) If 0 < r < 1
2 or 1 < r , then

K
( 1

2 )
1
r −1(a,b) < Pr(a,b) < Kr(a,b).

(ii) If 1
2 < r < 1 . Then

Kr(a,b) < Pr(a,b) < K
( 1

2)
1
r −1(a,b).

(iii) If r < 0 . Then
Kr(a,b) < Pr(a,b) < K0(a,b) = G(a,b).
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The given parameters of Kα(a,b) in each case are best possible.

We remark that Janous [6] has shown Theorem 1.A for 0 < r < 1 as the re-
sults on estimations of the generalized Heronian mean a+w

√
ab+b

w+2 for w � 0, and also
Wu and Debnath [12] got Theorem 1.A as the results on upper and lower bounds of
Pr(a,b)−G(a,b)
A(a,b)−G(a,b) .

On the other hand, Kittaneh and Manasrah researched improved and reversed
Young’s inequalities in [8, 9]. As a generalization of their results in [8, 9], for a,b > 0
with a �= b , Alzer, da Fonseca and Kovačec [1] obtained the inequality(

ν
μ

)λ
� Aν(a,b)λ −Gν(a,b)λ

Aμ(a,b)λ −Gμ(a,b)λ �
(

1−ν
1− μ

)λ
, (1.1)

where λ � 1 and 0 < ν � μ < 1. Moreover, Khosravi [7] obtained a generalization of
(1.1) of the case λ = 1, that is,

ν
μ

� Aν(a,b)−Pν,r(a,b)
Aμ(a,b)−Pμ,r(a,b)

� 1−ν
1− μ

, (1.2)

where 0 < ν � μ < 1 and r ∈ R with r �= 1. By using (1.1) and (1.2), they obtained
some matrix (operator) inequalities, determinant inequalities and trace inequalities in
[1, 7].

In this paper, as an extension of Theorem1.A, we obtain estimations of the weighted
power mean by the weighed Heron mean. Our main results immediately lead the re-
sults for bounded linear operators on a Hilbert space. Moreover, related to the results
in [1, 7], we get some determinant and trace inequalities of matrices.

2. Lemmas

We prepare two lemmas in order to prove our main results. In what follows, we
define that

β (t,r) =
tr

1− t

{
t(1−2r)

t− r

} 1
r −2

and β̂ (t,r) = min{β (t,r),1} (2.1)

for t ∈ (0,1) and r ∈ R with r �= 0, 1
2 ,t .

LEMMA 2.1 Let t ∈ (0,1) and r ∈ R with r �= 0, 1
2 . Let β (t,r) as in (2.1).

(i) If 0 < r < t < 1
2 , then r < β (t,r) holds.

(ii) If r < 0 < t < 1
2 , then β (t,r) < r holds.

(iii) If 1
2 < t < r < 1 , then β (t,r) < r holds.

(iv) If 1
2 < t < 1 < r , then r < β (t,r) holds.
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Proof. We give a proof of (i) and (ii). (iii) and (iv) are shown by the same way.
Let

f (r) = r log t− r log(1− t)+ (1−2r) log(1−2r)− (1−2r) log(t− r)+ (1−2r) logt.

for r < t < 1
2 . Then r < β (t,r) holds if and only if f (r) > 0 holds. By the derivative

calculation, we have

f ′(r) = 2log(t − r)−2log(1−2r)− 2t−1
t− r

− logt(1− t) and

f ′′(r) =
(2t−1)2

(1−2r)(t− r)2 > 0 for r < t < 1
2 .

Since f ′(r) is increasing for r < t and lim
r→−∞

f ′(r) =− log4t(1− t)> 0, f ′(r) > 0

holds for r < t , that is, f (r) is increasing for r < t . Therefore we get that f (r) > 0
holds for 0 < r < t and f (r) < 0 holds for r < 0 since f (0) = 0 holds, so that we have
the desired results. �

LEMMA 2.2 Let t,r ∈ (0,1) with r �= 1
2 .

(i) If t � r � 1− t , then t
1
r −1 < r < (1− t)

1
r −1 holds.

(ii) If 1− t � r � t , then (1− t)
1
r −1 < r < t

1
r −1 holds.

Proof. Firstly, we show that

r < (1− r)
1
r −1 for r ∈ (0, 1

2 ) and r > (1− r)
1
r −1 for r ∈ ( 1

2 ,1) . (2.2)

Put f (r) = (1−r) log(1−r)−r logr . Then f ′(r) =− logr(1− r)−2, so that f ′(r) = 0
if and only if r = 1

2 (1±√
1−4e−2) . Since lim

r→+0
f (r) = f ( 1

2 ) = lim
r→1−0

f (r) = 0, we get

that f (r) > 0 holds for r ∈ (0, 1
2 ) and f (r) < 0 holds for r ∈ ( 1

2 ,1) , that is, we have
(2.2).

Now we can prove (i) by (2.2) as follows: If r ∈ (0, 1
2 ) , then 1

r −1 > 1 holds and
we have

t
1
r −1 < t � r < (1− r)

1
r −1 � (1− t)

1
r −1.

If r ∈ ( 1
2 ,1) , then 0 < 1

r −1 < 1 holds and we have

t
1
r −1 � (1− r)

1
r −1 < r � 1− t < (1− t)

1
r −1.

Therefore we obtain the desired result. (ii) is easily shown by putting t1 = 1− t in
(i). �
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3. Main results

In this section, we obtain estimations of the weighted power mean of two positive
real numbers by the weighted Heron mean.

THEOREM 3.1 Let t,r ∈ (0,1) . Let β (t,r) and β̂ (t,r) as in (2.1). For all a,b > 0
with a �= b, we have the following.

(i) If t � r � 1− t , then

K
t,t

1
r −1(a,b) < Pt,r(a,b) < K

t,(1−t)
1
r −1(a,b).

(ii) If 1− t � r � t , then

K
t,(1−t)

1
r −1(a,b) < Pt,r(a,b) < K

t,t
1
r −1(a,b).

(iii) If r < t � 1− t , then

K
t,t

1
r −1(a,b) < Pt,r(a,b) < K

t,β̂ (t,r)(a,b).

(iv) If r < 1− t � t , then

K
t,(1−t)

1
r −1(a,b) < Pt,r(a,b) < K

t,β̂ (1−t,r)(a,b).

(v) If t � 1− t < r , then

Kt,β (1−t,r)(a,b) < Pt,r(a,b) < K
t,(1−t)

1
r −1(a,b).

(vi) If 1− t � t < r , then

Kt,β (t,r)(a,b) < Pt,r(a,b) < K
t,t

1
r −1(a,b).

The given parameters of Kt,α (a,b) in each case are best possible on α except the parts

α = β ( · ,r) and α = β̂ ( · ,r) .

THEOREM 3.2 Let β (t,r) as in (2.1). For all a,b > 0 with a �= b, we have the follow-
ing.

(i) If t ∈ (0, 1
2 ] and r > 1 , then

K
t,(1−t)

1
r −1(a,b) < Pt,r(a,b) < Kt,β (1−t,r)(a,b).

(ii) If t ∈ [ 1
2 ,1) and r > 1 , then

K
t,t

1
r −1(a,b) < Pt,r(a,b) < Kt,β (t,r)(a,b).
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(iii) If t ∈ (0, 1
2 ] and r < 0 , then

Kt,β (t,r)(a,b) < Pt,r(a,b) < Kt,0(a,b) = Gt(a,b).

(iv) If t ∈ [ 1
2 ,1) and r < 0 , then

Kt,β (1−t,r)(a,b) < Pt,r(a,b) < Kt,0(a,b) = Gt(a,b).

The given parameters of Kt,α (a,b) in each case are best possible on α except the parts
α = β ( · ,r) .

Theorems 3.1 and 3.2 imply Theorem 1.A by putting t = 1
2 . We remark that the

best possibility of the parts α = β ( 1
2 ,r) = r is also shown by scrutinizing the proofs of

Theorems 3.1 and 3.2.

Proof of Theorem 3.1. We have only to consider the case (a,b)= (1,x) with x �= 1
by easy replacement. Let

ft(x) = Pt,r(1,x)−Kt,α(1,x)

= {(1− t)+ txr} 1
r − (1−α)xt −α{(1− t)+ tx}.

(3.1)

Now we discuss upper and lower bounds of α to hold the inequalities Kt,α (1,x) <
Pt,r(1,x) and Pt,r(1,x) < Kt,α (1,x) , that is, ft (x) > 0 and ft (x) < 0 for all x > 0. Let

gt(x) ={(1− t)+ txr} 1
r −1xr−t − (1−α)−αx1−t,

ht(x) =t(1− r){(1− t)+ txr} 1
r −2x2r−1

+(r− t){(1− t)+ txr} 1
r −1xr−1−α(1− t) and

kt(x) =t(r−1+ t)xr− (1− t)(r− t).

(3.2)

Then we have

f ′t (x) = txt−1gt(x),

g′t(x) = x−t ht(x) and

h′t(x) = (1− t)(1− r){(1− t)+ txr} 1
r −3xr−2kt(x)

(3.3)

since

f ′t (x) = txr−1{(1− t)+ txr} 1
r −1− (1−α)txt−1−αt

= txt−1
[
{(1− t)+ txr} 1

r −1xr−t − (1−α)−αx1−t
]
,

g′t(x) =t(1− r){(1− t)+ txr} 1
r −2x2r−1−t

+(r− t){(1− t)+ txr} 1
r −1xr−t−1 −α(1− t)x−t
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=x−t
[
t(1− r){(1− t)+ txr} 1

r −2x2r−1

+(r− t){(1− t)+ txr} 1
r −1xr−1−α(1− t)

]
and

h′t(x) = t2(1− r)(1−2r){(1− t)+ txr} 1
r −3x3r−2

+ t(1− r)(2r−1){(1− t)+ txr} 1
r −2x2r−2

+ t(r− t)(1− r){(1− t)+ txr} 1
r −2x2r−2

+(r− t)(r−1){(1− t)+ txr} 1
r −1xr−2

=(1− r){(1− t)+ txr} 1
r −3xr−2

× [(1−2r)t2x2r +(3r−1− t){(1− t)+ txr}txr − (r− t){(1− t)+ txr}2]
=(1− r){(1− t)+ txr} 1

r −3xr−2

× [txr −{(1− t)+ txr}][(1−2r)txr +(r− t){(1− t)+ txr}]
=(1− t)(1− r){(1− t)+ txr} 1

r −3xr−2[t(r−1+ t)xr− (1− t)(r− t)
]
.

Proof of (i). We may except the case r = t = 1
2 since P1

2 , 1
2
(1,x) = K 1

2 , 1
2
(1,x)

holds. Firstly, we consider the case α � r .
(i-a) The case α � r and 0 < x < 1. If t � r � 1− t holds, then h′t(x) < 0 holds

for 0 < x � 1, that is,

ht(x) is decreasing for 0 < x � 1 (3.4)

by (3.2) and (3.3). Since ht(1)= (r−α)(1−t)� 0, (3.4) implies that g′t(x)= x−tht(x)>
0 holds for 0 < x < 1, that is,

gt(x) is increasing for 0 < x � 1.

Since gt(1) = 0, f ′t (x) = txt−1gt(x) < 0 holds for 0 < x < 1, that is,

ft (x) is decreasing for 0 < x � 1.

Therefore, since ft (1) = 0, we have

ft (x) > 0, that is, Kt,α (1,x) < Pt,r(1,x) for 0 < x < 1. (3.5)

(i-b) The case α � r and x > 1. Noting that Kt,α (1,x) = xK1−t,α (1,x−1) and
Pt,r(1,x) = xP1−t,r(1,x−1) , we consider ft1(y) for y = x−1 ∈ (0,1) and t1 = 1− t .

If 1− t1 � r � t1 holds, then h′t1(y) > 0 holds for 0 < y � 1, that is,

ht1(y) is increasing for 0 < y � 1

by (3.2) and (3.3). If α < r , then there exists a δ1 ∈ (0,1) such that ht1(δ1) = 0 since

ht1(y) = {(1− t1)y−r + t1} 1−r
r
[
t1(1− r){(1− t1)y−r + t1}−1 +(r− t1)

]−α(1− t1)
→−∞ (y → +0)
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and ht1(1) = (r−α)(1− t1) > 0. This ensures that g′t1(y) < 0 for 0 < y < δ1 and
g′t1(y) > 0 for δ1 < y < 1 hold, that is,

gt1(y) is decreasing for 0 < y < δ1 and increasing for δ1 < y < 1.

Then there exists a δ2 ∈ (0,δ1) such that gt1(δ2) = 0 since lim
y→+0

gt1(y) = ∞ holds and

gt1(1) = 0 assures that gt1(δ1) < 0. So f ′t1(y) > 0 holds for 0 < y < δ2 and f ′t1(y) < 0
holds for δ2 < y < 1 hold, that is,

ft1 (y) is increasing for 0 < y < δ2 and decreasing for δ2 < y < 1.

If α � (1− t1)
1
r −1 , then ft1(0) � 0, so that ft1 (y) > 0 holds for 0 < y < 1 since

ft1(1) = 0.
If α = r , then ft1 (y) < 0 for 0 < y < 1 by the similar argument. We remark that

(1− t1)
1
r −1 < r = α for 1− t1 � r � t1 by (ii) in Lemma 2.2.

Therefore we have Kt1,α(1,y) < Pt1,r(1,y) for 0 < y < 1 if α � (1− t1)
1
r −1 , that

is,
Kt,α (1,x) < Pt,r(1,x) for x > 1 holds if α � t

1
r −1 . (3.6)

Hence, by (3.5) and (3.6), we get Kt,α (1,x) < Pt,r(1,x) for all x > 0 with x �= 1

if α � t
1
r −1 . This argument also proves the best possibility of α since Kt,α (1,x) <

Pt,r(1,x) or Pt,r(1,x) < Kt,α (1,x) does not always hold for x > 0 with x �= 1 if t
1
r −1 <

α � r .
Next we consider the case r � α . By the similar way to (i-b), we obtain that

ft(x) < 0, that is, Pt,r(1,x) < Kt,α (1,x) holds for all 0 < x < 1 if α � (1− t)
1
r −1 .

By applying the similar way to (i-a) for ft1(y) as in (i-b), we obtain that ft1(y) < 0
holds for 0 < y < 1, that is, Pt,r(1,x) < Kt,α (1,x) holds for all x > 1. Hence we get

Pt,r(1,x) < Kt,α (1,x) holds for all x > 0 with x �= 1 if α � (1− t)
1
r −1 . We also get the

best possibility of α , that is, Pt,r(1,x) < Kt,α (1,x) or Pt,r(1,x) < Kt,α (1,x) does not

always hold for x > 0 if r � α < (1− t)
1
r −1 .

Proof of (iii). Firstly, we consider the case α < r . Let δ0 =
(

(1−t)(t−r)
t(1−t−r)

) 1
r
. We

remark that 0 < δ0 � 1 (resp. δ0 � 1) holds for t,r ∈ (0,1) and r < t � 1− t (resp.
r < 1− t � t ).

(iii-a) The case α < r and 0 < x < 1. If r < t � 1− t holds, then h′t(x) > 0 holds
for 0 < x < δ0 and h′t(x) < 0 holds for δ0 < x < 1, that is,

ht(x) is increasing for 0 < x < δ0 and decreasing for δ0 < x < 1

by (3.2) and (3.3). Then there exists a δ1 ∈ (0,δ0) such that ht(δ1)= 0 since lim
x→+0

ht(x)=

−∞ and ht(1) = (r−α)(1− t) � 0. This ensures that g′t(x) < 0 for 0 < x < δ1 and
g′t(x) > 0 for δ1 < x < 1, that is,

gt(x) is decreasing for 0 < x < δ1 and increasing for δ1 < x < 1.
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Then there exists a δ2 ∈ (0,δ1) such that gt(δ2) = 0 since lim
x→+0

gt(x) = ∞ and gt(1) =

0. So f ′t (x) > 0 holds for 0 < x < δ2 and f ′t (x) < 0 holds for δ2 < x < 1 hold, that is,

ft(x) is increasing for 0 < x < δ2 and decreasing for δ2 < x < 1.

If α � (1−t)
1
r −1 , then ft (0) > 0, so that ft(x) > 0 holds for 0 < x < 1 since ft (1)= 0.

Therefore we have

Kt,α (1,x) < Pt,r(1,x) for 0 < x < 1 if α � (1− t)
1
r −1 .

(iii-b) The case α < r and x > 1. Similarly to (i-b), we consider ft1 (y) for y =
x−1 ∈ (0,1) and t1 = 1− t . Noting that r < t � 1− t if and only if r < 1− t1 � t1 ,
by the similar way to (i-b), we have that Kt1,α(1,y) < Pt1,r(1,y) for 0 < y < 1 if α �
(1− t1)

1
r −1 , that is,

Kt,α (1,x) < Pt,r(1,x) for x > 1 if α � t
1
r −1 .

Hence, by (iii-a) and (iii-b), we get Kt,α (1,x) � Pt,r(1,x) for all x > 0 with x �= 1

if α � t
1
r −1 since t

1
r −1 � (1− t)

1
r −1 holds. We remark that t

1
r −1 <

(
1
2

) 1
r −1

< r holds
for r, t ∈ (0, 1

2 ) . This argument also proves the best possibility of α since Kt,α (1,x) <

Pt,r(1,x) or Pt,r(1,x) < Kt,α (1,x) does not always hold for x > 0 with x �= 1 if t
1
r −1 <

α < r .
Next, we consider the case r � α . If α � 1, then we obviously get that Pt,r(1,x) <

Kt,α (1,x) holds for all x > 0 with x �= 1 since Kt,1(1,x) = At(1,x) . We remark that
r < β (t,r) holds for 0 < r < t < 1

2 by (i) in Lemma 2.1.
(iii-c) The case r � β (t,r) � α and 0 < x < 1. If r < t � 1− t holds, then

h′t(x) > 0 holds for 0 < x < δ0 and h′t(x) < 0 holds for δ0 < x < 1, that is,

ht(x) is increasing for 0 < x < δ0 and decreasing for δ0 < x < 1.

by (3.2) and (3.3). Noting that h(δ0)� 0 if and only if α � β (t,r) , we get that g′t(x)� 0
for 0 < x < 1, that is,

gt(x) is decreasing for 0 < x < 1.

Since gt(1) = 0, f ′t (x) > 0 holds for 0 < x < 1, that is,

ft (x) is increasing for 0 < x < 1.

Therefore, since ft (1) = 0, we have

ft(x) < 0, that is, Pt,r(1,x) < Kt,α (1,x) for 0 < x < 1 if α � β (t,r) .

(iii-d) The case r � α and x > 1. We consider ft1(y) for y = x−1 ∈ (0,1) and
t1 = 1− t . Noting that r � t � 1− t if and only if r � 1− t1 � t1 , by the similar way to
(i-a), we have that Pt1,r(1,y) < Kt1,α(1,y) for 0 < y < 1, that is,

Pt,r(1,x) < Kt,α (1,x) for x > 1.



958 M. ITO

Hence, by (iii-c) and (iii-d), we get Pt,r(1,x) < Kt,α (1,x) for all x > 0 with x �= 1

if α � β̂ (t,r) .
Proof of (v). Firstly, we consider the case α � r .
By the similar way to (i-a), we obtain that ft (x) > 0, that is, Kt,α (1,x) < Pt,r(1,x)

for 0 < x < 1. By applying the similar way to (iii-c) for ft1(y) as in (i-b), we obtain
that ft1 (y) > 0 holds for 0 < y < 1 if α � β (t1,r) , that is, Kt,α (1,x) < Pt,r(1,x) for
x > 1 if α � β (1− t,r) . Hence, we get Kt,α (1,x) < Pt,r(1,x) for all x > 0 with x �= 1
if α � β (1− t,r) .

Next, we consider the case r < α .
By the similar way to (i-b), we have that Pt,r(1,x) < Kt,α (1,x) for 0 < x < 1 if

α � (1− t)
1
r −1 . By applying the similar way to (iii-a) for ft1 (y) as in (i-b), we have

that Pt,r(1,x) < Kt,α (1,x) for x > 1 if α � t
1
r −1 . Hence, we get Pt,r(1,x) < Kt,α (1,x)

for all x > 0 with x �= 1 if α � (1− t)
1
r −1 since t

1
r −1 � (1− t)

1
r −1 holds. We also get

the best possibility of α , that is, Kt,α (1,x) < Pt,r(1,x) or Pt,r(1,x) < Kt,α (1,x) does

not always hold for x > 0 with x �= 1 if r < α < (1− t)
1
r −1 .

Since Kt,α (a,b) = K1−t,α (b,a) and Pt,r(a,b) = P1−t,r(b,a) hold for a,b > 0, (ii),
(iv) and (vi) are immediately obtained by (i), (iii) and (v), respectively. �

Proof of Theorem 3.2. We can prove Theorem 3.2 by the similar way to Theorem
3.1, so we give proofs of (i) and (iii). In this proof, (i-a), (i-b), (iii-a) and (iii-c) mean
the numbers in Theorem 3.1. We have only to consider the case (a,b) = (1,x) with
x �= 1 by easy replacement.

Proof of (i). The case α < r . By the similar way to (i-b), we have that Kt,α (1,x) <

Pt,r(1,x) for 0 < x < 1 if α � (1− t)
1
r −1 . By applying the similar way to (iii-a) for

ft1(y) as in (i-b), we have that Kt,α (1,x) < Pt,r(1,x) for x > 1 if α � t
1
r −1 . Hence,

we get Kt,α (1,x) � Pt,r(1,x) for all x > 0 with x �= 1 if α � (1− t)
1
r −1 since t

1
r −1 �

(1− t)
1
r −1 holds. We also get the best possibility of α .

The case r � α . By the similar way to (i-a), we have that Pt,r(1,x) < Kt,α (1,x)
for 0 < x < 1. By applying the similar way to (iii-c) for ft1(y) as in (i-b), we have that
Pt,r(1,x) < Kt,α (1,x) for x > 1 if α � β (1− t,r) . Hence, we get Pt,r(1,x) < Kt,α (1,x)
for all x > 0 with x �= 1 if α � β (1− t,r) .

Proof of (iii). Firstly, we consider the case α � r . By the similar way to (iii-c), we
have that Kt,α (1,x) < Pt,r(1,x) for 0 < x < 1 if α � β (t,r) . By applying the similar
way to (i-a) for ft1(y) as in (i-b), we have that Kt,α (1,x) < Pt,r(1,x) for x > 1. Hence,
we get Kt,α (1,x) < Pt,r(1,x) for all x > 0 with x �= 1 if α � β (t,r) .

Next, we consider the case r < α . Let δ0 =
(

(1−t)(t−r)
t(1−t−r)

) 1
r
. We remark that 0 <

δ0 � 1 holds for t ∈ (0, 1
2 ] and r < 0.

(a) The case r < α and 0 < x < 1. Since ft(x) < 0 for 0 < x < 1 if α = 0, we
have only to consider the case α < 0. If t ∈ (0, 1

2 ] and r < 0, then h′t(x) < 0 holds for
0 < x < δ0 and h′t(x) > 0 holds for δ0 < x < 1, that is,

ht(x) is decreasing for 0 < x < δ0 and increasing for δ0 < x < 1
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by (3.2) and (3.3). There exists a δ1 ∈ (0,δ0) such that ht(δ1) = 0 since lim
x→+0

ht(x) =

(1− t)(t
1
r −α) > 0 and ht(1) = (r−α)(1− t) � 0. This ensures that g′t(x) > 0 for

0 < x < δ1 and g′t(x) < 0 for δ1 < x < 1 hold, that is,

gt(x) is increasing for 0 < x < δ1 and decreasing for δ1 < x < 1.

Then there exists a δ2 ∈ (0,δ1) such that gt(δ2) = 0 since lim
x→+0

gt(x) = −(1−α) < 0

and gt(1) = 0. So f ′t (x) < 0 holds for 0 < x < δ2 and f ′t (x) > 0 holds for δ2 < x < 1
hold, that is,

ft(x) is decreasing for 0 < x < δ2 and increasing for δ2 < x < 1.

Since lim
x→+0

ft(x) = −α(1− t) > 0 and ft(1) = 0, ft (x) < 0 does not always hold for

0 < x < 1 if α < 0.
Therefore we have

Pt,r(1,x) < Kt,α (1,x) for 0 < x < 1 if α � 0.

(b) The case r < α and x > 1. We consider ft1(y) for y = x−1 ∈ (0,1) and
t1 = 1− t . Noting that t ∈ (0, 1

2 ] if and only if t1 ∈ [ 1
2 ,1) , by the similar way to (i-b)

and (a), we have that Pt1,r(1,y) < Kt1,α(1,y) for 0 < y < 1 if α � 0, that is,

Pt,r(1,x) < Kt,α (1,x) for x > 1 if α � 0.

Hence, by (a) and (b), we get Pt,r(1,x) � Kt,α (1,x) for all x > 0 with x �= 1 if
α � 0. This argument also proves the best possibility of α . �

4. Operator inequalities

In this section, we get operator inequalities by the results in the previous section.
Here, an operator means a bounded linear operator on a Hilbert space H . An

operator T is said to be positive (denoted by T � 0) if (Tx,x) � 0 for all x ∈ H , and
also an operator T is said to be strictly positive (denoted by T > 0) if T is positive and
invertible. A real-valued function f defined on J ⊂ R is said to be operator monotone
if

A � B implies f (A) � f (B)

for selfadjoint operators A and B whose spectra σ(A),σ(B) ⊂ J , where A � B means
B−A � 0.

Kubo and Ando [10] obtained the general theory on operator means. In [10], they
obtained that there exists a one-to-one correspondence between an operator mean M
and an operator monotone function f � 0 on [0,∞) with f (1) = 1 as follows:

M(A,B) = A
1
2 f (A

−1
2 BA

−1
2 )A

1
2 (4.1)
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if A > 0 and B � 0. We remark that f is called the representing function of M , and
also it is permitted to consider binary operations given by (4.1) even if f is a general
real-valued function.

By (4.1), we can introduce the following weighted operator means for two strictly
positive operators A and B . For t ∈ [0,1] and q ∈ R ,

At(A,B) = (1− t)A+ tB (arithmetic mean),

Gt(A,B) = A
1
2 (A

−1
2 BA

−1
2 )tA

1
2 (geometric mean),

Ht(A,B) = {(1− t)A−1 + tB−1}−1 (harmonic mean),

Pt,q(A,B) =

{
A

1
2 {(1− t)I+ t(A

−1
2 BA

−1
2 )q} 1

q A
1
2 if q �= 0,

A
1
2 (A

−1
2 BA

−1
2 )tA

1
2 if q = 0,

(power mean),

Kt,q(A,B) = (1−q)A
1
2 (A

−1
2 BA

−1
2 )tA

1
2 +q{(1− t)A+ tB} (Heron mean),

and then Pt,q(A,B) is an operator mean if −1 � q � 1, and also Kt,q(A,B) is an
operator mean if 0 � q � 1. We remark that their representing functions are At(1,x) ,
Gt(1,x) and so on, and also notations A ∇t B , A �t B , A !t B and A �t,q B are often used
instead of At(A,B) , Gt(A,B) , Ht(A,B) and Pt,q(A,B) , respectively. Refer to [11] for
more details.

By Theorem 3.1, we have estimations of the weighted operator power mean by the
Heron mean. Theorem 3.2 ensures the similar result, but we omit it.

THEOREM 4.1 Let t,r ∈ (0,1) . Let β (t,r) and β̂ (t,r) as in (2.1). For all A,B > 0 ,
we have the following.

(i) If t � r � 1− t , then

K
t,t

1
r −1(A,B) � Pt,r(A,B) � K

t,(1−t)
1
r −1(A,B).

(ii) If 1− t � r � t , then

K
t,(1−t)

1
r −1(A,B) � Pt,r(A,B) � K

t,t
1
r −1(A,B).

(iii) If r < t � 1− t , then

K
t,t

1
r −1(A,B) � Pt,r(A,B) � K

t,β̂ (t,r)(A,B).

(iv) If r < 1− t � t , then

K
t,(1−t)

1
r −1(A,B) � Pt,r(A,B) � K

t,β̂ (1−t,r)(A,B).

(v) If t � 1− t < r , then

Kt,β (1−t,r)(A,B) � Pt,r(A,B) � K
t,(1−t)

1
r −1(A,B).
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(vi) If 1− t � t < r , then

Kt,β (t,r)(A,B) � Pt,r(A,B) � K
t,t

1
r −1(A,B).

The given parameters of Kt,α (A,B) in each case are best possible on α except the parts

α = β ( · ,r) and α = β̂ ( · ,r) .

Proof. Put a = 1 and replace b by A
−1
2 BA

−1
2 . Then we have Theorem 4.1 by

applying the standard operational calculus in Theorem 3.1. �

5. Determinant and trace inequalities

In this section, we get some determinant and trace inequalities of matrices. Let
Pn(C) be the set of n×n positive definite matrices on C .

By using (1.2), Khosravi [7] obtained a generalization of the determinant inequal-
ity in [1] as follows: Let A,B ∈ Pn(C) . Then(

ν
μ

)p [
det{Aμ(A,B)−Pμ,r(A,B)}] p

n �
[
detAν(A,B)

] p
n − [detPν,r(A,B)

] p
n (5.1)

holds for 0 < ν � μ < 1, −1 � r < 1 and p � 1. We get determinant inequalities
related to (5.1) by using Theorem 3.1.

THEOREM 5.1 Let A,B ∈ Pn(C) , r ∈ (0,1) and p � 1 . Let β̂ (t,r) as in (2.1).

(i) If t ∈ (0, 1
2 ] and t � r , then(

1− (1− t)
1
r −1)p[

det{At(A,B)−Gt(A,B)}] p
n �
[
detAt(A,B)

] p
n

− [detPt,r(A,B)
] p

n .

(ii) If t ∈ (0, 1
2 ] and r < t , then(

1− β̂(t,r)
)p[det{At(A,B)−Gt(A,B)}] p

n �
[
detAt(A,B)

] p
n −[detPt,r(A,B)

] p
n .

(iii) If t ∈ ( 1
2 ,1) and 1− t � r , then(

1− t
1
r −1)p[

det{At(A,B)−Gt(A,B)}] p
n �

[
detAt(A,B)

] p
n − [detPt,r(A,B)

] p
n .

(iv) If t ∈ ( 1
2 ,1) and r < 1− t , then(
1− β̂(1− t,r)

)p[
det{At(A,B)−Gt(A,B)}] p

n �
[
detAt(A,B)

] p
n

− [detPt,r(A,B)
] p

n .
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THEOREM 5.2 Let A,B ∈ Pn(C) , r ∈ (0,1) and p � 1 . Let β (t,r) as in (2.1).

(i) If t ∈ (0, 1
2 ] and 1− t � r , then

β (1− t,r)p[det{At(A,B)−Gt(A,B)}] p
n �

[
detPt,r(A,B)

] p
n − [detGt(A,B)

] p
n .

(ii) If t ∈ (0, 1
2 ] and r < 1− t , then

t(
1
r −1)p[det{At(A,B)−Gt(A,B)}] p

n �
[
detPt,r(A,B)

] p
n − [detGt(A,B)

] p
n .

(iii) If t ∈ ( 1
2 ,1) and t � r , then

β (t,r)p[det{At(A,B)−Gt(A,B)}] p
n �

[
detPt,r(A,B)

] p
n − [detGt (A,B)

] p
n .

(iv) If t ∈ ( 1
2 ,1) and r < t , then

(1−t)(
1
r −1)p[det{At(A,B)−Gt(A,B)}] p

n �
[
detPt,r(A,B)

] p
n −[detGt(A,B)

] p
n .

Let ai,bi > 0 for i = 1,2, . . . ,n . Then Minkowski’s product inequality(
n

∏
i=1

ai

) 1
n

+

(
n

∏
i=1

bi

) 1
n

�
(

n

∏
i=1

(ai +bi)

) 1
n

holds (see [3]). We have the following lemma by Minkowski’s product inequality and
the inequality ap +bp � (a+b)p for a,b > 0 and p � 1.

LEMMA 5.A ([7]) Let ai,bi > 0 for i = 1,2, . . . ,n. Then(
n

∏
i=1

ai

) p
n

+

(
n

∏
i=1

bi

) p
n

�
(

n

∏
i=1

(ai +bi)

) p
n

holds for p � 1 .

Proof of Theorem 5.1. Proof of (i). Let X = A
−1
2 BA

−1
2 and k = 1− (1− t)

1
r −1 .

Then

k{(1− t)+ tλi(X)−λi(X)t}+{(1− t)+ tλi(X)r} 1
r � (1− t)+ tλi(X) (5.2)

holds for all eigenvalues λi(X) ( i = 1, . . . ,n ) by (i) and (v) in Theorem 3.1. Therefore
we have

[det{(1− t)I+ tX}] p
n

=

[
n

∏
i=1

{(1− t)+ tλi(X)}
] p

n
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�
[

n

∏
i=1

(
k{(1− t)+ tλi(X)−λi(X)t}+{(1− t)+ tλi(X)r} 1

r

)] p
n

by (5.2)

� kp

[
n

∏
i=1

{(1− t)+ tλi(X)−λi(X)t}
] p

n

+

[
n

∏
i=1

{(1− t)+ tλi(X)r} 1
r

] p
n

= kp [det{(1− t)I+ tX −Xt}] p
n +
[
det{(1− t)I+ tXr} 1

r

] p
n
,

where the second inequality holds by Lemma 5.A. Multiplying (detA
1
2 )

p
n to both sides,

we get the desired inequality by multiplicativity of the determinant.
(ii) is obtained by (iii) in Theorem 3.1 similarly. (iii) and (iv) are immediately

shown by considering Pt,r(A,B) = P1−t,r(B,A) in (i) and (ii), respectively. �

Proof of Theorem 5.2. Proof of (i). Let X = A
−1
2 BA

−1
2 . Then

β (1− t,r){(1− t)+ tλi(X)−λi(X)t}+ λi(X)t � {(1− t)+ tλi(X)r} 1
r (5.3)

holds for all eigenvalues λi(X) ( i = 1, . . . ,n ) by (v) in Theorem 3.1. Therefore we have[
det{(1− t)I+ tXr} 1

r

] p
n

=

[
n

∏
i=1

{(1− t)+ tλi(X)r} 1
r

] p
n

�
[

n

∏
i=1

(
β (1− t,r){(1− t)+ tλi(X)−λi(X)t}+ λi(X)t

)] p
n

by (5.3)

� β (1− t,r)p

[
n

∏
i=1

{(1− t)+ tλi(X)−λi(X)t}
] p

n

+

[
n

∏
i=1

λi(X)t
] p

n

= β (1− t,r)p [det{(1− t)I+ tX −Xt}] p
n +
[
detXt] p

n ,

where the second inequality holds by Lemma 5.A. Multiplying (detA
1
2 )

p
n to both sides,

we get the desired inequality by multiplicativity of the determinant.
(ii) is obtained by (i) and (iii) in Theorem 3.1 similarly. (iii) and (iv) are immedi-

ately shown by considering Pt,r(A,B) = P1−t,r(B,A) in (i) and (ii), respectively. �
On the other hand, by using (1.2) for λ = 1, Alzer, da Fonseca and Kovačec [1]

obtained the trace inequality as follows: Let A,B ∈ Pn(C) . Then

ν
μ
{
trAμ(A,B)− (trA)1−μ(trB)μ}� trAν(A,B)− trA1−νBν . (5.4)

holds for 0 < ν � μ < 1. We also get trace inequalities related to (5.4) by using
Theorem 3.1.
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THEOREM 5.3 Let A,B ∈ Pn(C) , r ∈ (0,1) and p � 1 . Let β (t,r) as in (2.1).

(i) If t ∈ (0, 1
2 ] and 1− t � r , then

β (1− t,r)
{
trAt(A,B)− (trA)1−t(trB)t

}
� {trAt(Ar,Br)} 1

r − trA1−tBt .

(ii) If t ∈ (0, 1
2 ] and r < 1− t , then

t
1
r −1{trAt(A,B)− (trA)1−t(trB)t

}
� {trAt(Ar,Br)} 1

r − trA1−tBt .

(iii) If t ∈ ( 1
2 ,1) and t � r , then

β (t,r)
{
trAt(A,B)− (trA)1−t(trB)t

}
� {trAt(Ar,Br)} 1

r − trA1−tBt .

(iv) If t ∈ ( 1
2 ,1) and r < t , then

(1− t)
1
r −1{trAt(A,B)− (trA)1−t(trB)t

}
� {trAt(Ar,Br)} 1

r − trA1−tBt .

We state two lemmas in order to prove Theorem 5.3. Here, let σi(X) for i =
1, . . . ,n be the singular values of an n×n matrix X .

LEMMA 5.B ([1, 2, 3]) The following properties hold.

(i) The product of two positive definite matrices is a matrix with only positive eigen-
values.

(ii) Let A > 0 be of order n. Then, the singular values of A are precisely the eigen-
values of A. In particular,

trA =
n

∑
i=1

λi(A) =
n

∑
i=1

σi(A),

where λi(A) for i = 1, . . . ,n are eigenvalues of A.

(iii) If A is an n×n matrix with only real eigenvalues, then

trA �
n

∑
i=1

σi(A).

(iv) If A and B are n×n matrices, then there holds the weak majorization property

k

∑
i=1

σi(AB) �
k

∑
i=1

σi(A)σi(B), for k = 1, . . . ,n.

LEMMA 5.C Let ai,bi > 0 for i = 1, . . . ,n.
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(i) The inequality
n

∑
i=1

ap
i �

(
n

∑
i=1

ai

)p

holds for p � 1 .

(ii) The inequality
n

∑
i=1

aibi �
(

n

∑
i=1

ap
i

) 1
p
(

n

∑
i=1

bq
i

) 1
q

holds for p,q > 1 such that

1
p + 1

q = 1 (Hölder’s inequality).

We remark that (i) in Lemma 5.C is easily obtained by using the inequality ap +
bp � (a+b)p for a,b > 0 and p � 1 repeatedly, or by Jensen’s inequality (see [3]).

Proof of Theorem 5.3. Proof of (i). Since the inequality

β (1− t,r)
{
(1− t)σi(A)+ tσi(B)−σi(A)1−tσi(B)t

}
+ σi(A)1−tσi(B)t

� {(1− t)σi(A)r + tσi(B)r} 1
r

(5.5)

holds by (v) in Theorem 3.1, we have

{(1− t) trAr + t trBr} 1
r

=

[
n

∑
i=1

{(1− t)σi(A)r + tσi(B)r}
] 1

r

�
n

∑
i=1

{(1− t)σi(A)r + tσi(B)r} 1
r by (i) in Lemma 5.C

�
n

∑
i=1

[
β (1− t,r)

{
(1− t)σi(A)+ tσi(B)−σi(A)1−tσi(B)t

}
+ σi(A)1−tσi(B)t

]
�β (1− t,r)

⎧⎨⎩(1− t)
n

∑
i=1

σi(A)+ t
n

∑
i=1

σi(B)−
(

n

∑
i=1

σi(A)

)1−t( n

∑
i=1

σi(B)

)t
⎫⎬⎭

+
n

∑
i=1

σi(A1−tBt)

�β (1− t,r)
{
(1− t) trA+ t trB− (trA)1−t(trB)t

}
+ trA1−tBt ,

where the second inequality holds by (5.5), and also the third and the last inequalities
hold by Lemma 5.B and (ii) in Lemma 5.C. Therefore we get the desired inequality.

(ii) is obtained by (i) and (iii) in Theorem 3.1 similarly. (iii) and (iv) are immedi-
ately shown by replacing A , B and t by B , A and 1− t in (i) and (ii), respectively. �
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