NORMS OF SUMMABILITY AND HAUSDORFF MEAN MATRICES ON DIFFERENCE SEQUENCE SPACES

Hadi Roopaei

Dedicated to Prof. Maryam Mirzakhani who in spite of a short lifetime, left a long-standing impact on mathematics

(Communicated by M. Praljak)

Abstract. In this paper, we compute the norms of summability and Hausdorff mean matrices on difference sequence space $b v_{p}$. Moreover, as an application, we derive the main result of [5].

1. Introduction

The idea of difference sequence spaces was introduced by Kizmaz [4]. The backward difference matrix $\Delta=\left(\delta_{j, k}\right)$ and its inverse $\Delta^{-1}=\left(\delta_{j, k}^{-1}\right)$ are

$$
\delta_{j, k}=\left\{\begin{array}{c}
1 \quad k=j, \\
-1 \\
-k=j-1, \\
0 \\
\text { otherwise },
\end{array} \quad \text { and } \quad \delta_{j, k}^{-1}=\left\{\begin{array}{l}
10 \leqslant k \leqslant j, \\
0 \text { otherwise. }
\end{array}\right.\right.
$$

The difference sequence space $b v_{p}$ associated with matrix Δ is

$$
b v_{p}=\left\{x=\left(x_{n}\right): \sum_{n=1}^{\infty}\left|x_{n}-x_{n-1}\right|^{p}<\infty\right\}, \quad(1 \leqslant p<\infty)
$$

with norm

$$
\|x\|_{b v_{p}}=\left(\sum_{n=1}^{\infty}\left|x_{n}-x_{n-1}\right|^{p}\right)^{\frac{1}{p}} .
$$

Recall the Hausdorff matrix $H^{\mu}=\left(h_{j, k}\right)$, that has entries of the form:

$$
h_{j, k}= \begin{cases}\binom{j}{k} \int_{0}^{1} \theta^{k}(1-\theta)^{j-k} d \mu(\theta) & 0 \leqslant k \leqslant j, \\ 0 & k>j,\end{cases}
$$

[^0]where μ is a probability measure on $[0,1]$. The Hausdorff matrix contains some famous classes of matrices. These classes are as follows:
(i) Choice $d \mu(\theta)=\alpha(1-\theta)^{\alpha-1} d \theta$ gives the Cesàro matrix of order α;
(ii) Choice $d \mu(\theta)=\alpha \theta^{\alpha-1} d \theta$ gives the Gamma matrix of order α;
(iii) Choice $d \mu(\theta)=\frac{|\log \theta|^{\alpha-1}}{\Gamma(\alpha)} d \theta$ gives the Hölder matrix of order α;
(iv) Choice $d \mu(\theta)=$ point evaluation at $\theta=\alpha$ gives the Euler matrix of order α.

By letting $d \mu(\theta)=\alpha(1-\theta)^{\alpha-1} d \theta, d \mu(\theta)=\alpha \theta^{\alpha-1} d \theta$ and $d \mu(\theta)=$ point evaluation at $\theta=\alpha$ in the definition of the Hausdorff matrix, the Cesàro matrix of order $\alpha, C^{\alpha}=\left(c_{j, k}^{\alpha}\right)$, the Gamma matrix of order $\alpha, \Gamma^{\alpha}=\left(\gamma_{j, k}^{\alpha}\right)$ and the Euler matrix of order $\alpha,(0<\alpha<1), E^{\alpha}=\left(e_{j, k}^{\alpha}\right)$ are

$$
\begin{gathered}
c_{j, k}^{\alpha}= \begin{cases}\frac{\binom{\alpha+j-k-1}{j-k}}{\binom{\alpha+j}{j}} & 0 \leqslant k \leqslant j \\
0 & \text { otherwise }\end{cases} \\
\gamma_{j, k}^{\alpha}= \begin{cases}\left.\frac{\left(^{\alpha+k-1} k\right.}{k_{k}+\ldots}\right) & 0 \leqslant k \leqslant j \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

and

$$
e_{j, k}^{\alpha}= \begin{cases}\binom{j}{k} \alpha^{k}(1-\alpha)^{j-k} & 0 \leqslant k \leqslant j \\ 0 & \text { otherwise }\end{cases}
$$

respectively.
Let T be an operator. Throughout this paper, $\|T\|_{p}$ denotes the norm of T as an operator from l_{p} to itself, and $\|T\|_{b v_{p}}$ the norm as an operator from $b v_{p}$ to itself. In this study, we investigate $\|T\|_{b v_{p}}$ for summability and Hausdorff mean operators.

The problem of finding the norm of matrix operators on the sequence space l_{p} have been studied extensively by many mathematicians and abundant literature exists on the topic. Although topological properties and inclusion relations of $b v_{p}$ have largely been explored [1], computing the norm of matrix operators on this space has not been investigated to date, except Lashkaripour and Fathi [5]. They only obtained the norm of weighted mean matrix in special case. More recently, the authors investigated this problem for the sequence space $l_{p}(w, \Delta)$ and $l_{p}\left(\Delta^{n}\right),[2,6]$.

2. Norms of summability and Hausdorff mean matrices on $b v_{p}$

In this section, we investigate the norm of well-known operators, Cesàro, Gamma and Euler, from $b v_{p}$ into $b v_{p}$. In so doing, the following lemma and the Schur's theorem are needed.

LEMMA 2.1. Let T be a matrix and $U=\Delta T \Delta^{-1}$. If U is a bounded operator on l_{p}, then T is a bounded operator on $b v_{p}$ and

$$
\|T\|_{b v_{p}}=\|U\|_{p}
$$

Proof. The map $x \rightarrow \Delta x$ is an isomorphism between $b v_{p}$ and l_{p} spaces. Now since

$$
\|T\|_{b v_{p}}=\sup _{x \in b v_{p}} \frac{\|T x\|_{b v_{p}}}{\|x\|_{b v_{p}}}=\sup _{x \in b v_{p}} \frac{\|\Delta T x\|_{p}}{\|\Delta x\|_{p}}=\sup _{x \in b v_{p}} \frac{\left\|\Delta T \Delta^{-1} \Delta x\right\|_{p}}{\|\Delta x\|_{p}}=\sup _{y \in l_{p}} \frac{\|U y\|_{p}}{\|y\|_{p}}=\|U\|_{p}
$$

hence we have the desired result.
The following theorem is known as Schur's theorem.
THEOREM 2.2. [3, theorem 275] Let $p \geqslant 1$ and $T=\left(t_{m, k}\right)$ be a matrix operator with $t_{m, k} \geqslant 0$ for all m, k. Suppose that K, R are two strictly positive numbers such that

$$
\sum_{m=0}^{\infty} t_{m, k} \leqslant K \quad \text { for all } k, \quad \sum_{k=0}^{\infty} t_{m, k} \leqslant R \quad \text { for all } m
$$

(bounds for column and row sums respectively). Then

$$
\|T\|_{p} \leqslant R^{(p-1) / p} K^{1 / p}
$$

We say that $T=\left(t_{n, k}\right)$ is a lower triangular, if $t_{n, k}=0$ for $k>n$. A non-negative lower triangular matrix is called a summability matrix if $\sum_{k=0}^{n} t_{n, k}=1$ for all n.

THEOREM 2.3. Suppose that $T=\left(t_{n, k}\right)$ is a summability matrix with decreasing $r_{n, k}(T)=\sum_{j=0}^{k} t_{n, j}$ respect to n for each k. Let $R_{n}=\sum_{k=0}^{n}(k+1) t_{n, k}$. If $R_{n}-R_{n-1} \leqslant M$ for all n, then T is a bounded operator on $b v_{p}$ and

$$
\|T\|_{b v_{p}} \leqslant M^{1-\frac{1}{p}}
$$

In particular, for $M=1$, we have $\|T\|_{b v_{p}}=1$.
Proof. By applying lemma 2.1, we have $\|T\|_{b v_{p}}=\|U\|_{p}$, where $U=\Delta T \Delta^{-1}$. If $S=T \Delta^{-1}$, by assuming $S=\left(s_{i, j}\right)$ and $U=\left(u_{i, j}\right)$, we have $s_{i, j}=\sum_{k=j}^{i} t_{i, k}$. Since $\sum_{k=0}^{i} t_{i, k}=1$, we have $s_{i, j}=1-r_{i, j-1}$ and $u_{i, j}=(\Delta S)_{i, j}=s_{i, j}-s_{i-1, j}$, which is nonnegative by the hypothesis. Thus

$$
\sum_{i=j}^{k} u_{i, j}=\sum_{i=j}^{k}\left(s_{i, j}-s_{i-1, j}\right)=s_{k, j}=\sum_{i=j}^{k} t_{k, i}=t_{k, j}+\cdots+t_{k, k} \leqslant 1 \quad(k=0,1, \cdots)
$$

hence $\sum_{i=0}^{\infty} u_{i, j} \leqslant 1$. Also

$$
\sum_{j=0}^{n} s_{n, j}=\sum_{j=0}^{n} \sum_{k=j}^{n} t_{n, k}=\sum_{k=0}^{n}(k+1) t_{n, k}=R_{n}
$$

and

$$
\sum_{j=0}^{\infty} u_{n, j}=\sum_{j=0}^{n} u_{n, j}=\sum_{j=0}^{n}\left(s_{n, j}-s_{n-1, j}\right)=R_{n}-R_{n-1}
$$

Since $R_{n}-R_{n-1} \leqslant M$, Schur's theorem implies that $\|T\|_{b v_{p}} \leqslant M^{1-\frac{1}{p}}$. For the case $M=1$, letting $x=(1,1, \cdots)$ we have $T x=x$, and therefore $\|T\|_{b v_{p}}=1$.

THEOREM 2.4. The Hausdorff operator H^{μ} is a bounded operator on $b v_{p}$ and

$$
\left\|H^{\mu}\right\|_{b v_{p}}=1
$$

Proof. Consider the Euler matrix E^{θ}. Let $r_{n, k}(\theta)=r_{n, k}\left(E^{\theta}\right)=\sum_{j=0}^{k} e_{n, j}(\theta)$. Using Pascal's identity, one finds easily that $e_{n+1, k}(\theta)=(1-\theta) e_{n, k}(\theta)+\theta e_{n, k-1}(\theta)$, and hence $r_{n+1, k}(\theta)=r_{n, k}(\theta)-\theta e_{n, k}(\theta)$, which shows that $r_{n, k}(\theta)$ is decreasing. Now, consider a general Hausdorff matrix H^{μ}, with $h_{n, k}=\int_{0}^{1} e_{n, k}(\theta) d \mu(\theta)$. Then

$$
r_{n, k}\left(H^{\mu}\right)=\sum_{j=0}^{k} h_{n, j}=\int_{0}^{1} r_{n, k}(\theta) d \mu(\theta) .
$$

Since $r_{n, k}(\theta)$ decreases with n, so does $r_{n, k}\left(H^{\mu}\right)$. Also, according to theorem 2.3

$$
\begin{aligned}
R_{n}=\sum_{k=0}^{n}(k+1) h_{n, k}= & \sum_{k=0}^{n}(k+1) \int_{0}^{1}\binom{n}{k}(1-\theta)^{n-k} \theta^{k} d \mu(\theta) \\
= & \int_{0}^{1} \sum_{k=0}^{n} k\binom{n}{k}(1-\theta)^{n-k} \theta^{k} d \mu(\theta) \\
& +\int_{0}^{1} \sum_{k=0}^{n}\binom{n}{k}(1-\theta)^{n-k} \theta^{k} d \mu(\theta) \\
= & n \int_{0}^{1} \theta \sum_{k=1}^{n}\binom{n-1}{k-1}(1-\theta)^{n-k} \theta^{k-1} d \mu(\theta)+1 \\
= & n \int_{0}^{1} \theta d \mu(\theta)+1
\end{aligned}
$$

hence

$$
R_{n}-R_{n-1}=\int_{0}^{1} \theta d \mu(\theta) \leqslant \int_{0}^{1} d \mu(\theta)=1
$$

Corollary 2.5. The Cesàro, Gamma, Hölder and Euler matrices of order α are bounded operators on $b v_{p}$ and

$$
\left\|C^{\alpha}\right\|_{b v_{p}}=\left\|\Gamma^{\alpha}\right\|_{b v_{p}}=\left\|H^{\alpha}\right\|_{b v_{p}}=\left\|E^{\alpha}\right\|_{b v_{p}}=1
$$

Corollary 2.6. Let H^{μ} and H^{v} be two Hausdorff operators. Then we have

$$
\left\|H^{\mu} H^{v}\right\|_{b v_{p}}=\left\|H^{\mu}\right\|_{b v_{p}}\left\|H^{v}\right\|_{b v_{p}}
$$

Proof. According to theorem 2.4

$$
\left\|H^{\mu} H^{v}\right\|_{b v_{p}} \leqslant\left\|H^{\mu}\right\|_{b v_{p}}\left\|H^{v}\right\|_{b v_{p}}=1
$$

Now, since the product of two summability matrices is a summability matrix, hence we have the desired result.

In the last part of this study, we derive the main result of [5] as an application of theorem 2.3. In so doing, we need the definition of weighted mean matrices.

Suppose that $a=\left(a_{j}\right)_{j=0}^{\infty}$ is a non-negative sequence with $a_{0}>0$ and $A_{j}=a_{0}+$ $a_{1}+\cdots+a_{j}$. The weighted mean matrix $M_{a}=\left(a_{j, k}\right)$ is a lower triangular matrix which is defined as

$$
a_{j, k}= \begin{cases}\frac{a_{k}}{A_{j}} & 0 \leqslant k \leqslant j \\ 0 & \text { otherwise } .\end{cases}
$$

THEOREM 2.7. ([5, theorem 2.1]) Suppose that $a_{n} \leqslant m a_{r}$ for all $r \leqslant n$. Then $\left\|M_{a}\right\|_{b v_{p}} \leqslant m^{1-1 / p}$. In particular, the norms equals 1 when $p=1$ (for any m) and when $\left(a_{n}\right)$ is decreasing (for any p).

Proof. Here $t_{j, k}=\frac{a_{k}}{A_{j}}$, which decreases with j, and $R_{n}=S_{n} / A_{n}$, where $S_{n}=$ $\sum_{k=1}^{n}(k+1) a_{k}$. Writing $S_{n}=S_{n-1}+(n+1) a_{n}$,

$$
S_{n} A_{n-1}-S_{n-1} A_{n}=\left[S_{n-1}+(n+1) a_{n}\right] A_{n-1}-S_{n-1}\left(A_{n-1}+a_{n}\right) \leqslant(n+1) a_{n} A_{n-1}
$$

hence $R_{n}-R_{n-1} \leqslant(n+1) a_{n} / A_{n}$. Under the hypothesis of [5], this is not greater than m which completes the proof.

Acknowledgement. The author would like to express his gratitude to the referee for several corrections and improvements to the results.

REFERENCES

[1] F. BAŞAR, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, İstanbul, 2012.
[2] D. Foroutannia and H. Roopaei, The norms and the lower bounds for matrix operators on weighted difference sequence spaces, U.P.B. Sci. Bull., Series A, 79(2)(2017), 151-160.
[3] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, 2nd edition, Cambridge University press, Cambridge, 2001.
[4] H. Kizmaz, On certain sequence spaces I, Canad. Math. Bull., 25(2)(1981), 169-176.
[5] R. LashKaripour and J. Fathi, Norms of matrix operators on $b v_{p}$, J. Math. Inequal., 6 (2012), No. 4, 589-592.
[6] H. Roopaei and D. Foroutannia, The norms of certain matrix operators from l_{p} spaces into $l_{p}\left(\Delta^{n}\right)$ spaces, Linear and Multilinear Algebra, 67(4)(2019), 767-776.

[^1]
[^0]: Mathematics subject classification (2010): 26D15, 40C05, 40G05, 47B37.
 Keywords and phrases: Matrix operator, norm, Hausdorff matrix, difference sequence space.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

