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THE REVERSED HARDY-LITTLEWOOD-SOBOLEV
TYPE INTEGRAL SYSTEMS WITH WEIGHTS
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Abstract. This paper is concerned with the existence of positive entire solutions of a weighted
integral system. Such a system comes from the conformal properties of the reversed Hardy-
Littlewood-Sobolev inequality. Several sufficient conditions of the existence/nonexistence are
presented.

1. Introduction

Let 1<rs<e,0<A<n,a+f>0and oo+ +A <n. Write the L”(R")
norm of the function f by ||f]|,. The weighted Hardy-Littlewood-Sobolev (WHLS)
inequality states that (cf. [20])

f(x)g(y) ‘
—— =2 —dxdy| < Cq.psanllfII-gllss (1)
// x| |x — y|*|y|B P dnlJ IS
where 1A o114
L N L S Ll Y )
r n n r r S n

The extremal functions satisfy the following Euler-Lagrange system
1 v(y)?
ux) = — / 74y
x| Jre [y]Px—y|*
(3)
1 )
v(x)

u(y)? J
=— [ —=—dy,
x|B SR [y||x —y|*

where o+ + A <n, and

u,v=>0, 0< p,g<e, 0<A<n, a+f >0, @
1 A+ 1 1 _ Atatp
%<m< na,m—Fm——n .
Jin and Li [7] used an integral form of the method of moving planes (cf. [4]) to
prove the radial symmetry of the solutions. This result implies the best constant of the
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WHLS inequality (cf. [2]). It is also the generalization of another one related to the
extremal functions of the reversed weighted Hardy-Littlewood-Sobolev inequality(cf.
[3]). Their another paper [8] shows the regularity of the solutions to (3) and the optimal
integrability intervals in the case of p > 1 and ¢ > 1. The optimal integrability (see
also [14]) and the radial symmetry are essential to estimate the asymptotic rates of the
solutions (cf. [1], [11], [13] and [15]), and to establish the better regularity results
(cf. [12], [22]). Afterwards, Onodera ([19]) generalized the results of radial symmetry,
integrability and asymptotic rates to the case of p >0 and g > 0.

In 2015, Dou and Zhu [5] proved the following reversed Hardy-Littlewood-Sobolev
(RHLS) inequality (see also [18])

f dxdy
R |x —

R

| = Clfllcrllgllzs,  V(fr8) € L'(R") x L*(R"),  (5)

and the existence of extremal functions, where n>1, A <0, 0<rs<1 and 1 <+ % +
; = 2. The Euler-Lagrange integral system is

A
—y|*d
u(x)z/ w, u>0inR",

—vl*d
v(x)z/ w7 v>0inR"
o uP(y)
When u =v and p = ¢, (6) is reduced to
—vl*d
u(x)z/ w, u>0 in R @)
o uP(y)

This equation is related to the study of the conformal geometry and the nonlinear elliptic
PDEs. Lieb ([17]), Chen, Li, Ou [4] and Li [16] classified the positive solutions and
pointed out that # must be of the form

u(x) = a(b? + [x — xo|*)*/2 (8)

with a,b > 0 and xp € R". Li ([16]) also studied (7) with exponent p € (0, %],
and proved that p = % A problem posed by Li is whether or not does (7) admit
any positive (regular) solutions forall n > 1, A >0 and p > (2n+A)/A. Xu gave a
positive answer and obtained the following results (cf. [21]).

(Ri) Let A > 0 and p > 0. Eq. (7) has a positive solution if and only if 2n+A =
pA . Now, u is given by (8).

(Rii) If —n < A <0 and p > 0, then (7) has no positive solution.

In 2015, Lei ([9]) studied the conformal properties of (6). In particular, under the
Kelvin transformation, (6) becomes

—vl*a
u(x) = / 7|x yI"dy , u>0inR",
R [x[@va (y)[y[P

v(x):/ M, v>0inR"
r' [xlPur(y)[y|®

9)
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Huang ([6]) obtained a critical condition from the rescaling invariant property of (9) as
in [9].
A more general integral system with variational coefficients in [9] is

—v|Ag
u()c):cl()c)/nW7 u>0inR",

[ —y|*dy
o uP(y)

(10)
, v>0inR",

v(x) = c2(x) /

where p,q,A >0, and c¢;(x),c2(x) are double bounded functions. A function k(x) is
called double bounded, if there is C > 1 such that C~! < k(x) < C forall x € R".

In this paper, we are concerned with the nonexistence of the positive entire super-
solution of (9) and the existence of the positive entire solutions of the following weighted
system

x—vy|*
=) [

—————dy, u>0inR",
R |x|%va(y)]y|P

(11)
e —y*

v(x) :CQ()C)/RH Wdy, v>0inR"

THEOREM 1. Assume that either
A< —n,

or
—n< A <0,min{p,q} >0,af =0,

then (9) has no positive super-solution in L7 (R"\ {0}).

loc
THEOREM 2. Let A >0 and min{p,q} > 0. If
min{n+ (p—Do,n+(g—1)B} >0,

and
min{(qg—1)(A = B),(p—1)(A —a)} >n,

then (11) has positive solutions for some double bounded functions c1(x) and c;(x).
Theorems 2 and 1 are the corresponding results on system (6) to (Ri) and (Rii) on
single equation (7) respectively.
2. Proof of theorems

In this section, we prove theorems 1 and 2.

Proof of theorem 1.
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(i) Let A < —n. Suppose (u,v) is a pair of super-solution. For 0 < |x| < 1/2, there
holds
x|%u(x) > c(B) min v_q/ x—y|*dy = oo.
I “a(x) = ¢( )BI(O)( ) szﬂ‘ |
Thus, u ¢ L (R"\ {0}).

(ii) Let —n < A < 0,min{p,q} > 0 and of = 0. Without loss of generality, we
assume o = 0.

By lemma 3.11.3 in [23], we can find C > 0 such that for any § > 0,

1 1 1
uxdx=/ {7 x—yldx}idy
[B5(x0)[ J55(0) ) R [Bs(x0)] Ba(X0)| | v (y)ly[P

o — y[*
C/ ———dy = Cu(xp).
R v (y)]y[P

Here xo #0.

Now it follows from Holder inequality that

1 p p
w P () uPTT (x)dx
|Bé( 0)] /B5(x)

< (@ B )" (g st wga)

Combining these results yields

L
+1

_ 1 P 1 _
Cuf(w) < [35( o I xo>”(")dx] < o

Here C is a positive constant independent of §.

In view of A <0, if |x—xo| < &, then 6* < |x —xo|*. Therefore multiplying the
result above by %, we get

n+A,,—p —x*
Co" " uP(xp) </ |xo — x|*dx <v(x0).
B

[xolP s(x0) [xolPur(x)

Noticing n+ A > 0, and letting & — oo, we see a contradiction. [J

Proof of theorem 2.
The ideas come from [9] and [10].

Set
{M(X) = x| (14 %%,

(12)
v(x) =[x (1 + [x[2)%.
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Here 7,6, (i =1,2) are constants determined later. We will prove that (11) has the
radial solution as (12) for some double bounded functions ¢;(x) (i =1,2).
When |x| >> 1, we have

/ x—y* dy:/ e —y* i
R |x|%va (y)|y|P B, (0) |x|*|y[BFa% (14 [y[2)9%

=y
—|—/ dy
By, (0)\By (0) |X[* |y|Pran(1+ [y|?)a0:

e —y[*
+/ dy
5 0) PR (11 )72
=L +bL+1h.

Then, there exists C > 0 such that when |x| >> 1,

1
lm“‘/ PP m_<11 < Clt a/ B dr
C 0 r

In order to ensure /] < oo, we need

n—B—qn>0, 13)

and hence )
E|x|H <L <Clxre

Next, we claim 6, > 0. Otherwise, there exists C > 0 such that when |x| >> 1,

- d
L >Clx|~® /2 . prir—p-an

r

By (13), we can see I3 = oo. It is impossible. Thus, by |y|/2 < |x—y| < 3|y|/2 (implied
by |y| = 2|x|), there exists C > 0 such that when |x| >> 1,

C—1|x|—a/ rﬂ+)L B—qp— 2q92dr<13 C‘x‘—a/ rﬂ+)L B—qp— 2q92dr
2|x] 2

|| r
In order to ensure I3 < oo, we need
n+A—pB—qyp-—2q6, <0, (14)

and hence
0<h < C‘x‘l*Wr("*ﬁ*quﬂq@z).

From (14) it follows n— 8 — g5 — 2q0, < 0. Therefore, when |x| >> 1, we also get

2] d
0<h §C|x|lfa/ —B—an—2q6, %" r <C‘x‘l70‘,
1 r
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Thus combining the estimates of Ij, >, I3, we have

1 A—o / |X_y|}L A—o
= <[ X2 gy <o 15
M S o e pp P S EH (13

When |x| << 1, we have

/ x—y* dy:/ e —y* i
&e Jx[ % (y)[y[P Bog(0) x| [y[BTam (1 + |y]2) 70

N / x—y[* iy
B1(0)\Bayy(0) x| [y[P+a (14 [y[?)402

x—y[*
+ / d
ke (0) |y B (11 [y2)a0
=N+ + 5.

In view of (13), there exists C > 0 such that
2|x|
0<J; < C‘x‘lfa/ rn*ﬁ*fn’zﬂ < C|x|n+l7067ﬁfqy2.
0 r

When y € B1(0) \ By((0), [y|/2 < [x—y| < 3|y[/2. Therefore,

1 dr 1 dr
C x|~ [ AP < <% | AR
20 r 20| r

Noting (13), we have

1
E|x|_a < < Clx| 7%
By (14), we also get

0<J3< c\x\—“/ preh-Boan-200, 97 Clx|~“.
1 r

Thus, combining the estimates of Ji, J», J3, and noting n+A —f —gp >0
(implied by (13)), we have

1 lx — y|* _
S [ Iy < Ol (16)
C R x| v (y) [y [P

Let yy = —a, » = —f, 26, =26, = A, then from the conditions of theorem 2,
we know that 9, 0, satisfies the (13) and (14). By (15) and (16) we obtain that

x—y|*

1 e —y|* o
n |x|®va (y)|y|

— —— —dy < SC/
C Jon Wiy p P> S O <€,
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Take Ky (x) = u(x)[ [z bl g dy]~!'. Then K (x) is double bounded and

" T ()P Y

_ x—y[*
) =K [ e

Similarly, we can also deduce that

_ r—y*
) =) [

A
where Ky = v(x)[ [ =22 —dy] ! is double bounded. Therefore we complete the

WelBur (y)[y*

proof. [
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