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THE REVERSED HARDY–LITTLEWOOD–SOBOLEV

TYPE INTEGRAL SYSTEMS WITH WEIGHTS
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(Communicated by S. Varošanec)

Abstract. This paper is concerned with the existence of positive entire solutions of a weighted
integral system. Such a system comes from the conformal properties of the reversed Hardy-
Littlewood-Sobolev inequality. Several sufficient conditions of the existence/nonexistence are
presented.

1. Introduction

Let 1 < r,s < ∞ , 0 < λ < n , α + β � 0 and α + β + λ � n . Write the Lp(Rn)
norm of the function f by ‖ f‖p . The weighted Hardy-Littlewood-Sobolev (WHLS)
inequality states that (cf. [20])∣∣∣∣

∫
Rn

∫
Rn

f (x)g(y)
|x|α |x− y|λ |y|β dxdy

∣∣∣∣ � Cα ,β ,s,λ ,n‖ f‖r‖g‖s, (1)

where

1− 1
r
− λ

n
<

α
n

< 1− 1
r

and
1
r

+
1
s

+
λ + α + β

n
= 2. (2)

The extremal functions satisfy the following Euler-Lagrange system⎧⎪⎪⎨
⎪⎪⎩

u(x) =
1

|x|α
∫

Rn

v(y)q

|y|β |x− y|λ dy,

v(x) =
1

|x|β
∫

Rn

u(y)p

|y|α |x− y|λ dy,
(3)

where α + β + λ � n , and{
u,v � 0, 0 < p,q < ∞, 0 < λ < n, α + β � 0,
α
n < 1

p+1 < λ+α
n , 1

p+1 + 1
q+1 = λ+α+β

n .
(4)

Jin and Li [7] used an integral form of the method of moving planes (cf. [4]) to
prove the radial symmetry of the solutions. This result implies the best constant of the
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WHLS inequality (cf. [2]). It is also the generalization of another one related to the
extremal functions of the reversed weighted Hardy-Littlewood-Sobolev inequality(cf.
[3]). Their another paper [8] shows the regularity of the solutions to (3) and the optimal
integrability intervals in the case of p > 1 and q > 1. The optimal integrability (see
also [14]) and the radial symmetry are essential to estimate the asymptotic rates of the
solutions (cf. [1], [11], [13] and [15]), and to establish the better regularity results
(cf. [12], [22]). Afterwards, Onodera ([19]) generalized the results of radial symmetry,
integrability and asymptotic rates to the case of p > 0 and q > 0.

In 2015, Dou and Zhu [5] proved the following reversed Hardy-Littlewood-Sobolev
(RHLS) inequality (see also [18])

|
∫

Rn

∫
Rn

f (x)g(y)dxdy

|x− y|λ | � C‖ f‖Lr‖g‖Ls, ∀( f ,g) ∈ Lr(Rn)×Ls(Rn), (5)

and the existence of extremal functions, where n � 1, λ < 0, 0 < r,s < 1 and 1
r + 1

s +
λ
n = 2. The Euler-Lagrange integral system is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u(x) =

∫
Rn

|x− y|λdy
vq(y)

, u > 0 in Rn,

v(x) =
∫

Rn

|x− y|λdy
up(y)

, v > 0 in Rn.

(6)

When u ≡ v and p = q , (6) is reduced to

u(x) =
∫

Rn

|x− y|λdy
up(y)

, u > 0 in Rn. (7)

This equation is related to the study of the conformal geometry and the nonlinear elliptic
PDEs. Lieb ([17]), Chen, Li, Ou [4] and Li [16] classified the positive solutions and
pointed out that u must be of the form

u(x) = a(b2 + |x− x0|2)λ/2 (8)

with a,b > 0 and x0 ∈ Rn . Li ([16]) also studied (7) with exponent p ∈ (0, 2n+λ
λ ] ,

and proved that p = 2n+λ
λ . A problem posed by Li is whether or not does (7) admit

any positive (regular) solutions for all n � 1, λ > 0 and p > (2n+ λ )/λ . Xu gave a
positive answer and obtained the following results (cf. [21]).

(Ri) Let λ > 0 and p > 0. Eq. (7) has a positive solution if and only if 2n+ λ =
pλ . Now, u is given by (8).

(Rii) If −n < λ < 0 and p > 0, then (7) has no positive solution.
In 2015, Lei ([9]) studied the conformal properties of (6). In particular, under the

Kelvin transformation, (6) becomes⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x) =
∫

Rn

|x− y|λdy

|x|αvq(y)|y|β , u > 0 in Rn,

v(x) =
∫

Rn

|x− y|λdy

|x|β up(y)|y|α , v > 0 in Rn.

(9)
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Huang ([6]) obtained a critical condition from the rescaling invariant property of (9) as
in [9].

A more general integral system with variational coefficients in [9] is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x) = c1(x)
∫

Rn

|x− y|λdy
vq(y)

, u > 0 in Rn,

v(x) = c2(x)
∫

Rn

|x− y|λdy
up(y)

, v > 0 in Rn,

(10)

where p,q,λ > 0, and c1(x),c2(x) are double bounded functions. A function k(x) is
called double bounded, if there is C > 1 such that C−1 � k(x) � C for all x ∈ Rn .

In this paper, we are concerned with the nonexistence of the positive entire super-
solution of (9) and the existence of the positive entire solutions of the following weighted
system ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u(x) = c1(x)

∫
Rn

|x− y|λ
|x|αvq(y)|y|β dy, u > 0 in Rn,

v(x) = c2(x)
∫

Rn

|x− y|λ
|x|β up(y)|y|α dy, v > 0 in Rn.

(11)

THEOREM 1. Assume that either

λ � −n,

or
−n < λ < 0,min{p,q} > 0,αβ = 0,

then (9) has no positive super-solution in L∞
loc(R

n \ {0}) .

THEOREM 2. Let λ > 0 and min{p,q} > 0 . If

min{n+(p−1)α,n+(q−1)β}> 0,

and
min{(q−1)(λ −β ),(p−1)(λ −α)} > n,

then (11) has positive solutions for some double bounded functions c1(x) and c2(x) .

Theorems 2 and 1 are the corresponding results on system (6) to (Ri) and (Rii) on
single equation (7) respectively.

2. Proof of theorems

In this section, we prove theorems 1 and 2.

Proof of theorem 1.
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(i) Let λ � −n . Suppose (u,v) is a pair of super-solution. For 0 < |x| < 1/2, there
holds

|x|αu(x) � c(β ) min
B1(0)

(v−q)
∫

B|x|/2(x)
|x− y|λdy = ∞.

Thus, u �∈ L∞
loc(R

n \ {0}) .
(ii) Let −n < λ < 0,min{p,q} > 0 and αβ = 0. Without loss of generality, we

assume α = 0.

By lemma 3.11.3 in [23], we can find C > 0 such that for any δ > 0,

1
|Bδ (x0)|

∫
Bδ (x0)

u(x)dx =
∫

Rn

{
1

|Bδ (x0)|
∫

Bδ (x0)
|x− y|λdx

}
1

vq(y)|y|β dy

� C
∫

Rn

|x0− y|λ
vq(y)|y|β dy = Cu(x0).

Here x0 �= 0.

Now it follows from Hölder inequality that

1 =
1

|Bδ (x0)|
∫

Bδ (x0)
u−

p
p+1 (x)u

p
p+1 (x)dx

�
(

1
|Bδ (x0)|

∫
Bδ (x0)

u−p(x)dx

) 1
p+1

·
(

1
|Bδ (x0)|

∫
Bδ (x0)

u(x)dx

) p
p+1

.

Combining these results yields

Cu−p(x0) �
[

1
|Bδ (x0)|

∫
Bδ (x0)

u(x)dx

]−p

� 1
|Bδ (x0)|

∫
Bδ (x0)

u−p(x)dx.

Here C is a positive constant independent of δ .

In view of λ < 0, if |x−x0|< δ , then δ λ < |x−x0|λ . Therefore multiplying the

result above by δ n+λ

|x0|β , we get

Cδ n+λ u−p(x0)
|x0|β

�
∫

Bδ (x0)

|x0 − x|λdx

|x0|β up(x)
� v(x0).

Noticing n+ λ > 0, and letting δ → ∞, we see a contradiction. �

Proof of theorem 2.
The ideas come from [9] and [10].
Set {

u(x) = |x|γ1(1+ |x|2)θ1 ,

v(x) = |x|γ2(1+ |x|2)θ2 .
(12)
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Here γi,θi (i = 1,2) are constants determined later. We will prove that (11) has the
radial solution as (12) for some double bounded functions ci(x) ( i = 1,2).

When |x| >> 1, we have

∫
Rn

|x− y|λ
|x|αvq(y)|y|β dy =

∫
B1(0)

|x− y|λ
|x|α |y|β+qγ2(1+ |y|2)qθ2

dy

+
∫

B2|x|(0)\B1(0)

|x− y|λ
|x|α |y|β+qγ2(1+ |y|2)qθ2

dy

+
∫

Rn\B2|x|(0)

|x− y|λ
|x|α |y|β+qγ2(1+ |y|2)qθ2

dy

:=I1 + I2 + I3.

Then, there exists C > 0 such that when |x| >> 1,

1
C
|x|λ−α

∫ 1

0
rn−β−qγ2

dr
r

� I1 � C|x|λ−α
∫ 1

0
rn−β−qγ2

dr
r

.

In order to ensure I1 < ∞, we need

n−β −qγ2 > 0, (13)

and hence
1
C
|x|λ−α � I1 � C|x|λ−α .

Next, we claim θ2 > 0. Otherwise, there exists C > 0 such that when |x| >> 1,

I3 � C|x|−α
∫ ∞

2|x|
rn+λ−β−qγ2

dr
r

.

By (13), we can see I3 = ∞ . It is impossible. Thus, by |y|/2 � |x−y|� 3|y|/2 (implied
by |y| � 2|x|), there exists C > 0 such that when |x| >> 1,

C−1|x|−α
∫ ∞

2|x|
rn+λ−β−qγ2−2qθ2

dr
r

� I3 � C|x|−α
∫ ∞

2|x|
rn+λ−β−qγ2−2qθ2

dr
r

.

In order to ensure I3 < ∞, we need

n+ λ −β −qγ2−2qθ2 < 0, (14)

and hence
0 � I3 � C|x|λ−α+(n−β−qγ2−2qθ2).

From (14) it follows n−β −qγ2−2qθ2 < 0. Therefore, when |x| >> 1, we also get

0 � I2 � C|x|λ−α
∫ 2|x|

1
rn−β−qγ2−2qθ2

dr
r

� C|x|λ−α .
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Thus combining the estimates of I1, I2, I3, we have

1
C
|x|λ−α �

∫
Rn

|x− y|λ
|x|αvq(y)|y|β dy � C|x|λ−α . (15)

When |x| << 1, we have

∫
Rn

|x− y|λ
|x|αvq(y)|y|β dy =

∫
B2|x|(0)

|x− y|λ
|x|α |y|β+qγ2(1+ |y|2)qθ2

dy

+
∫

B1(0)\B2|x|(0)

|x− y|λ
|x|α |y|β+qγ2(1+ |y|2)qθ2

dy

+
∫

Rn\B1(0)

|x− y|λ
|x|α |y|β+qγ2(1+ |y|2)qθ2

dy

:=J1 + J2 + J3.

In view of (13), there exists C > 0 such that

0 � J1 � C|x|λ−α
∫ 2|x|

0
rn−β−qγ2

dr
r

� C|x|n+λ−α−β−qγ2.

When y ∈ B1(0)\B2|x|(0) , |y|/2 � |x− y|� 3|y|/2. Therefore,

C−1|x|−α
∫ 1

2|x|
rn+λ−β−qγ2

dr
r

� J2 � C|x|−α
∫ 1

2|x|
rn+λ−β−qγ2

dr
r

.

Noting (13), we have
1
C
|x|−α � J2 � C|x|−α .

By (14), we also get

0 � J3 � C|x|−α
∫ ∞

1
rn+λ−β−qγ2−2qθ2

dr
r

� C|x|−α .

Thus, combining the estimates of J1, J2, J3, and noting n + λ − β − qγ2 > 0
(implied by (13)), we have

1
C
|x|−α �

∫
Rn

|x− y|λ
|x|αvq(y)|y|β dy � C|x|−α . (16)

Let γ1 = −α, γ2 = −β , 2θ1 = 2θ2 = λ , then from the conditions of theorem 2,
we know that γ2, θ2 satisfies the (13) and (14). By (15) and (16) we obtain that

1
C

∫
Rn

|x− y|λ
|x|αvq(y)|y|β dy � u(x) � C

∫
Rn

|x− y|λ
|x|αvq(y)|y|β dy.
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Take K1(x) = u(x)[
∫
Rn

|x−y|λ
|x|α vq(y)|y|β dy]−1. Then K1(x) is double bounded and

u(x) = K1(x)
∫

Rn

|x− y|λ
|x|αvq(y)|y|β dy.

Similarly, we can also deduce that

v(x) = K2(x)
∫

Rn

|x− y|λ
|x|β up(y)|y|α dy,

where K2 = v(x)[
∫
Rn

|x−y|λ
|x|β up(y)|y|α dy]−1 is double bounded. Therefore we complete the

proof. �
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