THE REVERSED HARDY-LITTLEWOOD-SOBOLEV TYPE INTEGRAL SYSTEMS WITH WEIGHTS

Xiaoqian Liu

(Communicated by S. Varošanec)

Abstract

This paper is concerned with the existence of positive entire solutions of a weighted integral system. Such a system comes from the conformal properties of the reversed Hardy-Littlewood-Sobolev inequality. Several sufficient conditions of the existence/nonexistence are presented.

1. Introduction

Let $1<r, s<\infty, 0<\lambda<n, \alpha+\beta \geqslant 0$ and $\alpha+\beta+\lambda \leqslant n$. Write the $L^{p}\left(R^{n}\right)$ norm of the function f by $\|f\|_{p}$. The weighted Hardy-Littlewood-Sobolev (WHLS) inequality states that (cf. [20])

$$
\begin{equation*}
\left|\int_{R^{n}} \int_{R^{n}} \frac{f(x) g(y)}{|x|^{\alpha}|x-y|^{\lambda}|y|^{\beta}} d x d y\right| \leqslant C_{\alpha, \beta, s, \lambda, n}\|f\|_{r}\|g\|_{s}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
1-\frac{1}{r}-\frac{\lambda}{n}<\frac{\alpha}{n}<1-\frac{1}{r} \text { and } \frac{1}{r}+\frac{1}{s}+\frac{\lambda+\alpha+\beta}{n}=2 . \tag{2}
\end{equation*}
$$

The extremal functions satisfy the following Euler-Lagrange system

$$
\left\{\begin{array}{l}
u(x)=\frac{1}{|x|^{\alpha}} \int_{R^{n}} \frac{v(y)^{q}}{|y|^{\beta}|x-y|^{\lambda}} d y \tag{3}\\
v(x)=\frac{1}{|x|^{\beta}} \int_{R^{n}} \frac{u(y)^{p}}{|y|^{\alpha}|x-y|^{\lambda}} d y
\end{array}\right.
$$

where $\alpha+\beta+\lambda \leqslant n$, and

$$
\left\{\begin{array}{l}
u, v \geqslant 0,0<p, q<\infty, 0<\lambda<n, \alpha+\beta \geqslant 0 \tag{4}\\
\frac{\alpha}{n}<\frac{1}{p+1}<\frac{\lambda+\alpha}{n}, \frac{1}{p+1}+\frac{1}{q+1}=\frac{\lambda+\alpha+\beta}{n} .
\end{array}\right.
$$

Jin and Li [7] used an integral form of the method of moving planes (cf. [4]) to prove the radial symmetry of the solutions. This result implies the best constant of the

Mathematics subject classification (2010): 26D15, 45E10, 45G05, 45M20.
Keywords and phrases: Reversed Hardy-Littlewood-Sobolev inequality, weighted Hardy-LittlewoodSobolev inequality, integral system, existence of positive solution.

WHLS inequality (cf. [2]). It is also the generalization of another one related to the extremal functions of the reversed weighted Hardy-Littlewood-Sobolev inequality(cf. [3]). Their another paper [8] shows the regularity of the solutions to (3) and the optimal integrability intervals in the case of $p>1$ and $q>1$. The optimal integrability (see also [14]) and the radial symmetry are essential to estimate the asymptotic rates of the solutions (cf. [1], [11], [13] and [15]), and to establish the better regularity results (cf. [12], [22]). Afterwards, Onodera ([19]) generalized the results of radial symmetry, integrability and asymptotic rates to the case of $p>0$ and $q>0$.

In 2015, Dou and Zhu [5] proved the following reversed Hardy-Littlewood-Sobolev (RHLS) inequality (see also [18])

$$
\begin{equation*}
\left|\int_{R^{n}} \int_{R^{n}} \frac{f(x) g(y) d x d y}{|x-y|^{\lambda}}\right| \geqslant C\|f\|_{L^{r}}\|g\|_{L^{s}}, \quad \forall(f, g) \in L^{r}\left(R^{n}\right) \times L^{s}\left(R^{n}\right) \tag{5}
\end{equation*}
$$

and the existence of extremal functions, where $n \geqslant 1, \lambda<0,0<r, s<1$ and $\frac{1}{r}+\frac{1}{s}+$ $\frac{\lambda}{n}=2$. The Euler-Lagrange integral system is

$$
\begin{cases}u(x)=\int_{R^{n}} \frac{|x-y|^{\lambda} d y}{v^{q}(y)}, & u>0 \text { in } R^{n} \tag{6}\\ v(x)=\int_{R^{n}} \frac{|x-y|^{\lambda} d y}{u^{p}(y)}, & v>0 \text { in } R^{n}\end{cases}
$$

When $u \equiv v$ and $p=q,(6)$ is reduced to

$$
\begin{equation*}
u(x)=\int_{R^{n}} \frac{|x-y|^{\lambda} d y}{u^{p}(y)}, \quad u>0 \quad \text { in } \quad R^{n} \tag{7}
\end{equation*}
$$

This equation is related to the study of the conformal geometry and the nonlinear elliptic PDEs. Lieb ([17]), Chen, Li, Ou [4] and Li [16] classified the positive solutions and pointed out that u must be of the form

$$
\begin{equation*}
u(x)=a\left(b^{2}+\left|x-x_{0}\right|^{2}\right)^{\lambda / 2} \tag{8}
\end{equation*}
$$

with $a, b>0$ and $x_{0} \in R^{n} . \operatorname{Li}([16])$ also studied (7) with exponent $p \in\left(0, \frac{2 n+\lambda}{\lambda}\right]$, and proved that $p=\frac{2 n+\lambda}{\lambda}$. A problem posed by Li is whether or not does (7) admit any positive (regular) solutions for all $n \geqslant 1, \lambda>0$ and $p>(2 n+\lambda) / \lambda$. Xu gave a positive answer and obtained the following results (cf. [21]).
(Ri) Let $\lambda>0$ and $p>0$. Eq. (7) has a positive solution if and only if $2 n+\lambda=$ $p \lambda$. Now, u is given by (8).
(Rii) If $-n<\lambda<0$ and $p>0$, then (7) has no positive solution.
In 2015, Lei ([9]) studied the conformal properties of (6). In particular, under the Kelvin transformation, (6) becomes

$$
\begin{cases}u(x)=\int_{R^{n}} \frac{|x-y|^{\lambda} d y}{|x|^{\alpha} v^{q}(y)|y|^{\beta}}, & u>0 \text { in } R^{n} \tag{9}\\ v(x)=\int_{R^{n}} \frac{|x-y|^{\lambda} d y}{|x|^{\beta} u^{p}(y)|y|^{\alpha}}, & v>0 \text { in } R^{n}\end{cases}
$$

Huang ([6]) obtained a critical condition from the rescaling invariant property of (9) as in [9].

A more general integral system with variational coefficients in [9] is

$$
\begin{cases}u(x)=c_{1}(x) \int_{R^{n}} \frac{|x-y|^{\lambda} d y}{v^{q}(y)}, & u>0 \text { in } R^{n} \tag{10}\\ v(x)=c_{2}(x) \int_{R^{n}} \frac{|x-y|^{\lambda} d y}{u^{p}(y)}, & v>0 \text { in } R^{n}\end{cases}
$$

where $p, q, \lambda>0$, and $c_{1}(x), c_{2}(x)$ are double bounded functions. A function $k(x)$ is called double bounded, if there is $C>1$ such that $C^{-1} \leqslant k(x) \leqslant C$ for all $x \in R^{n}$.

In this paper, we are concerned with the nonexistence of the positive entire supersolution of (9) and the existence of the positive entire solutions of the following weighted system

$$
\left\{\begin{array}{ll}
u(x)=c_{1}(x) \int_{R^{n}} \frac{|x-y|^{\lambda}}{|x|^{\alpha} v^{q}(y)|y|^{\beta}} d y, & \tag{11}\\
u>0 \text { in } R^{n}, \\
v(x) & =c_{2}(x) \int_{R^{n}} \frac{|x-y|^{\lambda}}{|x|^{\beta} u^{p}(y)|y|^{\alpha}} d y,
\end{array} \quad v>0 \text { in } R^{n} .\right.
$$

ThEOREM 1. Assume that either

$$
\lambda \leqslant-n
$$

or

$$
-n<\lambda<0, \min \{p, q\}>0, \alpha \beta=0
$$

then (9) has no positive super-solution in $L_{l o c}^{\infty}\left(R^{n} \backslash\{0\}\right)$.
THEOREM 2. Let $\lambda>0$ and $\min \{p, q\}>0$. If

$$
\min \{n+(p-1) \alpha, n+(q-1) \beta\}>0
$$

and

$$
\min \{(q-1)(\lambda-\beta),(p-1)(\lambda-\alpha)\}>n
$$

then (11) has positive solutions for some double bounded functions $c_{1}(x)$ and $c_{2}(x)$.
Theorems 2 and 1 are the corresponding results on system (6) to (Ri) and (Rii) on single equation (7) respectively.

2. Proof of theorems

In this section, we prove theorems 1 and 2.
Proof of theorem 1.
(i) Let $\lambda \leqslant-n$. Suppose (u, v) is a pair of super-solution. For $0<|x|<1 / 2$, there holds

$$
|x|^{\alpha} u(x) \geqslant c(\beta) \min _{B_{1}(0)}\left(v^{-q}\right) \int_{B_{|x| / 2}(x)}|x-y|^{\lambda} d y=\infty
$$

Thus, $u \notin L_{l o c}^{\infty}\left(R^{n} \backslash\{0\}\right)$.
(ii) Let $-n<\lambda<0, \min \{p, q\}>0$ and $\alpha \beta=0$. Without loss of generality, we assume $\alpha=0$.
By lemma 3.11.3 in [23], we can find $C>0$ such that for any $\delta>0$,

$$
\begin{aligned}
\frac{1}{\left|B_{\delta}\left(x_{0}\right)\right|} \int_{B_{\delta}\left(x_{0}\right)} u(x) d x & =\int_{R^{n}}\left\{\frac{1}{\left|B_{\delta}\left(x_{0}\right)\right|} \int_{B_{\delta}\left(x_{0}\right)}|x-y|^{\lambda} d x\right\} \frac{1}{v^{q}(y)|y|^{\beta}} d y \\
& \leqslant C \int_{R^{n}} \frac{\left|x_{0}-y\right|^{\lambda}}{v^{q}(y)|y|^{\beta}} d y=C u\left(x_{0}\right)
\end{aligned}
$$

Here $x_{0} \neq 0$.
Now it follows from Hölder inequality that

$$
\begin{aligned}
1 & =\frac{1}{\left|B_{\delta}\left(x_{0}\right)\right|} \int_{B_{\delta}\left(x_{0}\right)} u^{-\frac{p}{p+1}}(x) u^{\frac{p}{p+1}}(x) d x \\
& \leqslant\left(\frac{1}{\left|B_{\delta}\left(x_{0}\right)\right|} \int_{B_{\delta}\left(x_{0}\right)} u^{-p}(x) d x\right)^{\frac{1}{p+1}} \cdot\left(\frac{1}{\left|B_{\delta}\left(x_{0}\right)\right|} \int_{B_{\delta}\left(x_{0}\right)} u(x) d x\right)^{\frac{p}{p+1}} .
\end{aligned}
$$

Combining these results yields

$$
C u^{-p}\left(x_{0}\right) \leqslant\left[\frac{1}{\left|B_{\delta}\left(x_{0}\right)\right|} \int_{B_{\delta}\left(x_{0}\right)} u(x) d x\right]^{-p} \leqslant \frac{1}{\left|B_{\delta}\left(x_{0}\right)\right|} \int_{B_{\delta}\left(x_{0}\right)} u^{-p}(x) d x
$$

Here C is a positive constant independent of δ.
In view of $\lambda<0$, if $\left|x-x_{0}\right|<\delta$, then $\delta^{\lambda}<\left|x-x_{0}\right|^{\lambda}$. Therefore multiplying the result above by $\frac{\delta^{n+\lambda}}{\left|x_{0}\right|^{\beta}}$, we get

$$
\frac{C \delta^{n+\lambda} u^{-p}\left(x_{0}\right)}{\left|x_{0}\right|^{\beta}} \leqslant \int_{B_{\delta}\left(x_{0}\right)} \frac{\left|x_{0}-x\right|^{\lambda} d x}{\left|x_{0}\right|^{\beta} u^{p}(x)} \leqslant v\left(x_{0}\right)
$$

Noticing $n+\lambda>0$, and letting $\delta \rightarrow \infty$, we see a contradiction.

Proof of theorem 2.

The ideas come from [9] and [10].
Set

$$
\left\{\begin{array}{l}
u(x)=|x|^{\gamma_{1}}\left(1+|x|^{2}\right)^{\theta_{1}} \tag{12}\\
v(x)=|x|^{\gamma_{2}}\left(1+|x|^{2}\right)^{\theta_{2}}
\end{array}\right.
$$

Here $\gamma_{i}, \theta_{i}(i=1,2)$ are constants determined later. We will prove that (11) has the radial solution as (12) for some double bounded functions $c_{i}(x)(i=1,2)$.

When $|x| \gg 1$, we have

$$
\begin{aligned}
\int_{R^{n}} \frac{|x-y|^{\lambda}}{|x|^{\alpha} v^{q}(y)|y|^{\beta}} d y= & \int_{B_{1}(0)} \frac{|x-y|^{\lambda}}{|x|^{\alpha}|y|^{\beta+q \gamma_{2}}\left(1+|y|^{2}\right)^{q \theta_{2}}} d y \\
& +\int_{B_{2|x|}(0) \backslash B_{1}(0)} \frac{|x-y|^{\lambda}}{|x|^{\alpha}|y|^{\beta+q \gamma_{2}}\left(1+|y|^{2}\right)^{q \theta_{2}}} d y \\
& +\int_{R^{n} \backslash B_{2|x|}(0)} \frac{|x-y|^{\lambda}}{|x|^{\alpha}|y|^{\beta+q \gamma_{2}\left(1+|y|^{2}\right)^{q \theta_{2}}}} d y \\
:= & I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

Then, there exists $C>0$ such that when $|x| \gg 1$,

$$
\frac{1}{C}|x|^{\lambda-\alpha} \int_{0}^{1} r^{n-\beta-q \gamma_{2}} \frac{d r}{r} \leqslant I_{1} \leqslant C|x|^{\lambda-\alpha} \int_{0}^{1} r^{n-\beta-q \gamma_{2}} \frac{d r}{r} .
$$

In order to ensure $I_{1}<\infty$, we need

$$
\begin{equation*}
n-\beta-q \gamma_{2}>0 \tag{13}
\end{equation*}
$$

and hence

$$
\frac{1}{C}|x|^{\lambda-\alpha} \leqslant I_{1} \leqslant C|x|^{\lambda-\alpha}
$$

Next, we claim $\theta_{2}>0$. Otherwise, there exists $C>0$ such that when $|x| \gg 1$,

$$
I_{3} \geqslant C|x|^{-\alpha} \int_{2|x|}^{\infty} r^{n+\lambda-\beta-q \gamma_{2}} \frac{d r}{r}
$$

By (13), we can see $I_{3}=\infty$. It is impossible. Thus, by $|y| / 2 \leqslant|x-y| \leqslant 3|y| / 2$ (implied by $|y| \geqslant 2|x|$), there exists $C>0$ such that when $|x| \gg 1$,

$$
C^{-1}|x|^{-\alpha} \int_{2|x|}^{\infty} r^{n+\lambda-\beta-q \gamma_{2}-2 q \theta_{2}} \frac{d r}{r} \leqslant I_{3} \leqslant C|x|^{-\alpha} \int_{2|x|}^{\infty} r^{n+\lambda-\beta-q \gamma_{2}-2 q \theta_{2}} \frac{d r}{r} .
$$

In order to ensure $I_{3}<\infty$, we need

$$
\begin{equation*}
n+\lambda-\beta-q \gamma_{2}-2 q \theta_{2}<0 \tag{14}
\end{equation*}
$$

and hence

$$
0 \leqslant I_{3} \leqslant C|x|^{\lambda-\alpha+\left(n-\beta-q \gamma_{2}-2 q \theta_{2}\right)} .
$$

From (14) it follows $n-\beta-q \gamma_{2}-2 q \theta_{2}<0$. Therefore, when $|x| \gg 1$, we also get

$$
0 \leqslant I_{2} \leqslant C|x|^{\lambda-\alpha} \int_{1}^{2|x|} r^{n-\beta-q \gamma_{2}-2 q \theta_{2}} \frac{d r}{r} \leqslant C|x|^{\lambda-\alpha}
$$

Thus combining the estimates of I_{1}, I_{2}, I_{3}, we have

$$
\begin{equation*}
\frac{1}{C}|x|^{\lambda-\alpha} \leqslant \int_{R^{n}} \frac{|x-y|^{\lambda}}{|x|^{\alpha} v^{q}(y)|y|^{\beta}} d y \leqslant C|x|^{\lambda-\alpha} . \tag{15}
\end{equation*}
$$

When $|x| \ll 1$, we have

$$
\begin{aligned}
\int_{R^{n}} \frac{|x-y|^{\lambda}}{|x|^{\alpha} v^{q}(y)|y|^{\beta}} d y= & \int_{B_{2|x|}(0)} \frac{|x-y|^{\lambda}}{|x|^{\alpha}|y|^{\beta+q \gamma_{2}}\left(1+|y|^{2}\right)^{q \theta_{2}}} d y \\
& +\int_{B_{1}(0) \backslash B_{2|x|}(0)} \frac{|x-y|^{\lambda}}{|x|^{\alpha}|y|^{\beta+q \gamma_{2}}\left(1+|y|^{2}\right)^{q \theta_{2}}} d y \\
& +\int_{R^{n} \backslash B_{1}(0)} \frac{|x-y|^{\lambda}}{|x|^{\alpha}|y|^{\beta+q \gamma_{2}}\left(1+|y|^{2}\right)^{q \theta_{2}}} d y \\
:= & J_{1}+J_{2}+J_{3} .
\end{aligned}
$$

In view of (13), there exists $C>0$ such that

$$
0 \leqslant J_{1} \leqslant C|x|^{\lambda-\alpha} \int_{0}^{2|x|} r^{n-\beta-q \gamma_{2}} \frac{d r}{r} \leqslant C|x|^{n+\lambda-\alpha-\beta-q \gamma_{2}} .
$$

When $y \in B_{1}(0) \backslash B_{2|x|}(0),|y| / 2 \leqslant|x-y| \leqslant 3|y| / 2$. Therefore,

$$
C^{-1}|x|^{-\alpha} \int_{2|x|}^{1} r^{n+\lambda-\beta-q \gamma_{2}} \frac{d r}{r} \leqslant J_{2} \leqslant C|x|^{-\alpha} \int_{2|x|}^{1} r^{n+\lambda-\beta-q \gamma_{2}} \frac{d r}{r} .
$$

Noting (13), we have

$$
\frac{1}{C}|x|^{-\alpha} \leqslant J_{2} \leqslant C|x|^{-\alpha}
$$

By (14), we also get

$$
0 \leqslant J_{3} \leqslant C|x|^{-\alpha} \int_{1}^{\infty} r^{n+\lambda-\beta-q \gamma_{2}-2 q \theta_{2}} \frac{d r}{r} \leqslant C|x|^{-\alpha}
$$

Thus, combining the estimates of J_{1}, J_{2}, J_{3}, and noting $n+\lambda-\beta-q \gamma_{2}>0$ (implied by (13)), we have

$$
\begin{equation*}
\frac{1}{C}|x|^{-\alpha} \leqslant \int_{R^{n}} \frac{|x-y|^{\lambda}}{|x|^{\alpha} v^{q}(y)|y|^{\beta}} d y \leqslant C|x|^{-\alpha} \tag{16}
\end{equation*}
$$

Let $\gamma_{1}=-\alpha, \gamma_{2}=-\beta, 2 \theta_{1}=2 \theta_{2}=\lambda$, then from the conditions of theorem 2, we know that γ_{2}, θ_{2} satisfies the (13) and (14). By (15) and (16) we obtain that

$$
\frac{1}{C} \int_{R^{n}} \frac{|x-y|^{\lambda}}{|x|^{\alpha} v^{q}(y)|y|^{\beta}} d y \leqslant u(x) \leqslant C \int_{R^{n}} \frac{|x-y|^{\lambda}}{|x|^{\alpha} v^{q}(y)|y|^{\beta}} d y
$$

Take $K_{1}(x)=u(x)\left[\int_{R^{n}} \frac{|x-y|^{\lambda}}{|x|^{\alpha} v^{q}(y)|y|^{\beta}} d y\right]^{-1}$. Then $K_{1}(x)$ is double bounded and

$$
u(x)=K_{1}(x) \int_{R^{n}} \frac{|x-y|^{\lambda}}{|x|^{\alpha} v^{q}(y)|y|^{\beta}} d y .
$$

Similarly, we can also deduce that

$$
v(x)=K_{2}(x) \int_{R^{n}} \frac{|x-y|^{\lambda}}{|x|^{\beta} u^{p}(y)|y|^{\alpha}} d y,
$$

where $K_{2}=v(x)\left[\int_{R^{n}} \frac{|x-y|^{\lambda}}{|x|^{\beta} u^{p}(y)|y|^{\alpha}} d y\right]^{-1}$ is double bounded. Therefore we complete the proof.

Acknowledgement. The author was supported by the National Natural Science Foundation of China (11871278).

REFERENCES

[1] J. Bebernes, Y. Lei, C. Li, A singularity analysis of positive solutions to an Euler-Lagrange integral system, Rocky Mountain J. Math., 41, (2011), 387-410.
[2] W. Chen, C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality, Proc. Amer. Math. Soc., 136, (2008), 955-962.
[3] L. Chen, Z. Liu, G. Lu, C. Tao, Reverse Stein-Weiss in-equalities and existence of their extremal functions, Trans. Amer.Math. Soc., 370, (2018), 8429-8450.
[4] W. Chen, C. Li, B. OU, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59, (2006), 330-343.
[5] J. Dou, M. Zhu, Reversed Hardy-Littlewood-Sobolev inequality, Internat. Math. Res. Notices, (2015), no. 19, 9696-9726.
[6] L. Huang, On critical condition for a weighted integral system with negative exponents, Math. Inequal. Appl., 18, (2015), 1511-1517.
[7] C. Jin, C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134, (2006), 1661-1670.
[8] C. Jin, C. Li, Qualitative analysis of some systems of integral equations, Calc. Var. Partial Differential Equations, 26, (2006), 447-457.
[9] Y. Lei, On the integral systems with negative exponents, Discrete Contin. Dyn. Syst., 35, (2015), 1039-1057.
[10] Y. Lei, C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36, (2016), 3277-3315.
[11] Y. Lei, C. Li, C. MA, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system, Calc. Var. Partial Differential Equations, 45, (2012), 4361.
[12] Y. LeI, Z. LÜ, Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality, Discrete Contin. Dyn. Syst., 33, (2013), 1987-2005.
[13] Y. Lei, C. MA, Asymptotic behavior for solutions of some integral equations, Commun. Pure Appl. Anal., 10, (2011), 193-207.
[14] Y. Lei, C. Ma, Optimal integrability of some system of integral equations, Front. Math. China, 9, (2014), 81-91.
[15] C. Li, J. Lim, The singularity analysis of solutions to some integral equations, Commun. Pure Appl. Anal., 6, (2007), 453-464.
[16] Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc., 6, (2004), 153-180.
[17] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118, (1983), 349-374.
[18] Q. Ngo, V. NGUYEN, Sharp reversed Hardy-Littlewood-Sobolev inequality on R^{n}, Israel J. Math., 220, (2017), 1-35.
[19] M. Onodera, On the shape of solutions to an integral system related to the weighted Hardy-Littlewood-Sobolev inequality, J. Math. Anal. Appl., 389, (2012), 498-510.
[20] E. Stein, G. Weiss, Fractional integrals in n-dimensional Euclidean space, J. Math. Mech., 7, (1958), 503-514.
[21] X. XU, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247, (2007), 95-109.
[22] Y. ZHAO, Regularity and symmetry for solutions to a system of weighted integral equations, J. Math. Anal. Appl., 391, (2012), 209-222.
[23] W. ZIEMER, Weakly Differentiable Functions, Graduate Texts in Math. Vol. 120, Springer-Verlag, New York, 1989.
(Received December 7, 2018)
Xiaoqian Liu
Institute of Mathematics, School of Mathematical Sciences
Nanjing Normal University
Nanjing, 210023, China
e-mail: liuxiaoqian.njnu@qq.com

