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Abstract. Let Ω ⊂ R
2 be a smooth bounded domain, W 1,2

0 (Ω) be the standard Sobolev space.
Assuming certain conditions on a function g : R → R , we prove that the supremum

sup
u∈W1,2

0 (Ω),‖∇u‖2�1

∫
Ω
(1+g(u))e4πu2

dx,

can be attained by some function u0 ∈W 1,2
0 (Ω) with ‖∇u0‖2 = 1 . The proof is based on the

usual blow-up analysis. Also we consider the same problem for the supremum

sup
u∈W1,2

0 (Ω),‖∇u‖2�1

∫
Ω

h(1+g(u))e4πu2
dx,

where h is continuous in Ω , h � 0 and h �≡ 0 .

1. Introduction

Let Ω be a smooth bounded domain in R
2 , and W 1,2

0 (Ω) be the completion of
C∞

0 (Ω) under the norm ‖u‖
W1,2

0 (Ω) = (
∫

Ω |∇u|2dx)1/2 . For 1 � p < 2, the standard

Sobolev embedding theorem states that W 1,p
0 ↪→ Lq(Ω) for all 1 < q � 2p/(2− p);

while if p > 2, there holds W 1,p
0 (Ω) ↪→C0(Ω) . As a borderline of the Sobolev embed-

dings, the classical Trudinger-Moser inequality [31, 21, 20, 19, 24] says

sup
u∈W1,2

0 (Ω),‖∇u‖2�1

∫
Ω

eαu2dx < +∞, ∀α � 4π . (1)

Moreover, these integrals are still finite for any α > 4π , but the supremum is infinity.
Here in the sequel, for any real number q � 1, ‖ · ‖q denotes the Lq(Ω)-norm with
respect to the Lebesgue measure.

A function u0 is called an extremal function for the Trudinger-Moser inequality
(1) if u0 belongs to W 1,2

0 (Ω) , ‖∇u0‖2 � 1 and∫
Ω

eαu2
0dx = sup

u∈W 1,2
0 (Ω),‖∇u‖2�1

∫
Ω

eαu2
dx.
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Existence of extremal functions for (1) was solved by Carleson-Chang [3] and Lions
[15] when Ω is a unit ball, by Flucher [7] when Ω is a smooth bounded domain, and
by Lin [14] when Ω is an arbitrary dimensional domain.

Recently, by a method of energy estimates developed by Malchiodi-Martinazzi
[17], Mancini-Martinazzi [18] reproved Carleson-Chang’s result. Namely the supre-
mum

sup
u∈W1,2

0 (B),‖∇u‖2�1

∫
B

eαu2
dx,

can be attained, where B is a unit disc in R
2 . Then the result was extended by Yang

[28]. For applications of the energy estimate, they proved that the supremum

sup
u∈W 1,2

0 (B),‖∇u‖2�1

∫
B

(1+g(u))e4πu2
dx,

can also be attained for certain smooth function g : R → R . In our paper, we extend the
previous results and study the existence of the extremal functions for such inequalities
in (2) . Clearly, for any bounded function g , there holds

sup
u∈W 1,2

0 (Ω),‖∇u‖2�1

∫
Ω
(1+g(u))e4πu2

dx < ∞. (2)

In this paper, unlike the previous energy estimate procedure in [17, 18, 28], we
mainly employ method of blow-up analysis in [6, 16, 13, 11] to prove the supremum in
(2) can be achieved. In order to prove the critical Trudinger-Moser inequality, we firstly
discuss the existence of extremal functions for subcritical one, which is based on a direct
method in the calculus of variations. We derive a different Euler-Lagrange equation on
which the analysis is performed. However, the essential problem is the presence of
the function g . To meet the necessary of our proof, we assume g satisfies certain
conditions. And then we deduce a dedicate upper bound through blow-up analysis. For
works in this direction, we refer the reader to Y. Yang [26, 27], Y. Li [13], Lu and Yang
[16], Carleson-Chang [3], Struwe [22], Ding, Jost, Li and Wang [6].

Motivated by Mancini-Martinazzi [18] (see pages 3 and 4), we assume the function
g in (2) satisfies:

g ∈C1(R), inf
R

g > −1, g(−t) = g(t), lim
|t|→∞

t2g(t) = 0, g′(t) > 0(∀t > 0). (3)

In the proof, we derive

−Δuε =
1

λε
(1+g(u)+

g′(u)
2(4π − ε)u

)uεe
(4π−ε)u2

ε =
1
λε

(1+ ω(uε))uεe
(4π−ε)u2

ε ,

for some λε ∈ R , where we set

ω(t) := g(t)+
g′(t)

2(4π − ε)t
, t ∈ R\ {0}. (4)
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We further assume

inf
(0,+∞)

ω(t) > −1, sup
(0,+∞)

ω(t) < +∞, and lim
t→∞

t2ω(t) = 0. (5)

Comparing the conditions on function g in Mancini-Martinazzi [18], one can see some
differences. In this note, we assume g′(t) > 0(∀t > 0) , which will be used in the lemma
1. Moreover, the assumptions in (3) and (5) implies that lim|t|→∞ g(t) = 0 in [18]. The
main conclusions can be stated as the following two theorems respectively.

Our first result is the existence of extremal functions for the modified Trudinger-
Moser inequality (2), namely

THEOREM 1. Let Ω be a smooth bounded domain in R
2 and W 1,2

0 (Ω) be the
usual Sobolev space. Suppose g ∈C1(R) satisfies the hypotheses in (3) and (5). Then
the supremum in (2) can be attained.

For simplicity, we introduce the notations:

Λ4π−ε := sup
u∈W1,2

0 (Ω),‖∇u‖2�1

∫
Ω
(1+g(u))e(4π−ε)u2

dx,

and
Λ4π := sup

u∈W1,2
0 (Ω),‖∇u‖2�1

∫
Ω
(1+g(u))e4πu2

dx.

By means of blow-up analysis, we divide the argument into three steps:
Step 1. For any ε > 0, the supremum Λ4π−ε in subcritical circumstance can be

attained by some nonnegative function uε . The Euler-Lagrange equation of uε is an
elliptic one.

Step 2. Denote cε = uε(xε)= maxΩ uε . If cε is a bounded sequence, then applying
elliptic estimates to the equation of uε , we conclude that uε converges to a desired
extremal function. While if cε → ∞ , by a delicate analysis on uε , we derive

Λ4π = lim
ε→0

∫
Ω
(1+g(uε))e(4π−ε)u2

ε dx �| Ω | (1+g(0))+ πe1+4πAx0,

where

Ax0 = lim
x→x0

(G+
1
2π

log |x− x0|),

G is a Green function satisfying −ΔG = δx0 in R
2 and δx0 is a Dirac measure centered

at x0 .
Step 3. Construct a sequence of test functions φε ∈W 1,2

0 (Ω) satisfying ‖∇φε‖2 =
1 and if ε is sufficiently small, there holds∫

Ω
(1+g(φε))e4πφ2

ε dx > |Ω|(1+g(0))+ πe1+4πAx0 .

Comparing Steps 2 and 3, we are led to the conclusion that cε must be bounded
and thus the existence of the extremal function follows from elliptic estimates. It should
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be remarked that in Step 2, we shall use an estimate of Carleson-Chang [3]. This com-
pletes the proof of theorem 1.

Motivated by works of Yang-Zhu [29] and Hou [9], we have the following:

THEOREM 2. Let Ω be a smooth bounded domain in R
2 , g ∈C1(R) satisfies (3)

and (5), h ∈C0(Ω) satisfies h � 0 and h �≡ 0 in Ω . Then the supremum

sup
u∈W1,2

0 (Ω),‖∇u‖2�1

∫
Ω

h(1+g(u))e4πu2
dx,

can be attained by some u0 ∈W 1,2
0 (Ω)∩C0(Ω) satisfying ‖∇u0‖2 = 1 .

The proof of theorem 2 is different from that of theorem 1 in that we must exclude
the following possibility: x0 is the blow-up point and h(x0) = 0. Hence we use the
different scaling when define the maximizing sequences of functions.

Similar problems may also be raised concerning the singular Trudinger-Moser in-
equalities [2, 5, 10, 23, 30]: Let h and g be given as in theorem 2, and 0 � γ < 1. One
may ask whether the supremum

sup
u∈W1,2

0 (Ω),‖∇u‖2�1

∫
Ω

h(1+g(u))
e4π(1−γ)u2

|x|2γ dx,

can be attained or not.
The remaining part of the paper is arranged as follows: In section 2, we com-

plete the proof of the theorem 1, mainly by adopting the blow-up analysis; In section
3, we prove theorem 2. Throughout this paper, we do not distinguish sequence and
subsequence, the reader can recognize it easily from the context.

2. Proof of theorem 1

We divide the proof into several subsections.

2.1. Maximizers for subcritical functionals

We first show that maximizers for the subcritical functions exist. Namely, for any
0 < ε < 4π , there exists some uε ∈W 1,2

0 (Ω) such that

∫
Ω
(1+g(uε))e(4π−ε)u2

ε dx = sup
u∈W1,2

0 (Ω),‖∇u‖2�1

∫
Ω
(1+g(u))e(4π−ε)u2

dx. (6)

Take a function sequence u j ∈W 1,2
0 (Ω) , satisfying ‖∇u j‖2 � 1 and

lim
j→∞

∫
Ω
(1+g(u j))e

(4π−ε)u2
j dx = Λ4π−ε . (7)
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Since

∫
Ω
|∇uε |2dx = lim

j→∞

∫
Ω

∇uε ∇u jdx � lim
j→∞

sup

(∫
Ω
|∇uε |2dx

) 1
2
(∫

Ω
|∇u j|2dx

) 1
2

,

it yields ‖∇uε‖2 � 1, which implies that uε is bounded in W 1,2
0 (Ω) . Thus there exists

some uε ∈W 1,2
0 (Ω) such that up to a subsequence, assuming

u j ⇀ uε weakly in W 1,2
0 (Ω),

u j → uε strongly in Lp(Ω), ∀p � 1,

u j → uε a.e in Ω.

For any 1 < p � 1
s , δ > 0, s > 1 and s′ = s/(s−1) , we have by the Hölder’s inequality,∫

Ω
(1+g(u j))pe(4π−ε)pu2

j dx �
∫

Ω
(1+g(u j))pe(4π−ε)p(1+δ )(u j−uε)2+(4π−ε)p(1+ 1

4δ )u2
ε dx

�
(∫

Ω
(1+g(u j))pe(4π−ε)p(1+δ )s(u j−uε)2dx

) 1
s

×
(∫

Ω
(1+g(u j))pe(4π−ε)p(1+ 1

4δ )s′u2
ε dx

) 1
s′

.

(8)

Choose p, 1+ δ and s sufficiently close to 1, we have

p(1+ δ )s < 1. (9)

In view of ‖∇uε‖2 � 1, it follows that∫
Ω
|∇(uε −u j)|2dx =

∫
Ω
|∇uε |2dx−

∫
Ω
|∇u j|2 +o j(1) � 1−

∫
Ω
|∇uε |2 +o j(1). (10)

Inserting (9) and (10) into (8), we obtain (1+g(u j))e
(4π−ε)u2

j is bounded in Lp(Ω) for
some p > 1 by (1) and (3). Since

|(1+g(u j))e
(4π−ε)u2

j − (1+g(uε))e(4π−ε)u2
ε |

�C(e4π(1−γ−ε)u2
j + e4π(1−γ−ε)u2

ε )|u2
j −u2

ε |+max{g′(u j),g′(uε)}|u j −uε |e4π(1−γ−ε)u2
j ,

and u j → uε strongly in Lp(Ω) for all p > 1 as j → ∞ , there have

lim
j→∞

∫
Ω
(1+g(u j))e

(4π−ε)u2
j dx =

∫
Ω
(1+g(uε))e(4π−ε)u2

ε dx. (11)

Combing (7) and (11), we conclude that uε attains the supremum Λ4π−ε so that (6)
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holds. Suppose ‖∇uε‖2 < 1. Denote ũε = uε
‖∇uε‖2

. Obviously, there have ‖∇ũε‖2 = 1.
Since 0 � uε < ũε and uε �≡ 0, it follows from (3) that

Λ4π−ε =
∫

Ω
(1+g(uε))e(4π−ε)u2

ε dx <
∫

Ω
(1+g(ũε))e(4π−ε)ũ2

ε dx � Λ4π−ε ,

which leads to a contradiction. Consequently, ‖∇uε‖2 = 1 holds. Furthermore, one
can also check that |uε | attains the supremum Λ4π−ε . Thus, uε can be chosen so that
uε � 0. A careful calculation shows that uε satisfies the following Euler-Lagrange
equation: ⎧⎪⎪⎨

⎪⎪⎩
−Δuε = 1

λε
(1+ ω(uε))uεe(4π−ε)u2

ε in Ω ⊂ R
2,

uε � 0, ‖∇uε‖2 = 1 in Ω ⊂ R
2,

λε =
∫

Ω(1+ ω(uε))u2
εe

(4π−ε)u2
ε dx,

(12)

where ω is defined as in (4).

2.2. Elementary properties of uε

Note that Λ4π is finite. To prove theorem 1, it suffices to find some u0 ∈W 1,2
0 (Ω)

satisfying ‖∇u0‖2 = 1 and∫
Ω
(1+g(u0))e4πu2

0dx = sup
u∈W 1,2

0 (Ω),‖∇u‖2�1

∫
Ω
(1+g(u))e4πu2

dx. (13)

We first show Λ4π−ε → Λ4π as ε → 0. In fact, for any u ∈W 1,2
0 (Ω) with ‖∇u‖2 � 1,

there holds∫
Ω
(1+g(u))e4πu2

dx � lim
ε→0

∫
Ω
(1+g(uε))e(4π−ε)u2

ε dx � lim
ε→0

Λ4π−ε .

This leads to

Λ4π = sup
u∈W 1,2

0 (Ω),‖∇u‖2�1

∫
Ω
(1+g(u))e4πu2

dx � lim
ε→0

Λ4π−ε . (14)

On the other hand, it is evident that

Λ4π−ε =
∫

Ω
(1+g(uε))e(4π−ε)u2

ε dx � Λ4π . (15)

Together with (14) and (15), we get the desired result. Since uε is bounded in W 1,2
0 (Ω) ,

we can assume without loss of generality,

uε ⇀ u0 weakly in W 1,2
0 (Ω),

uε → u0 strongly in Lp(Ω), ∀p � 1,

uε → u0 a.e in Ω.

(16)
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Denote cε = maxΩ uε . Assuming cε is bounded, then for any u ∈W 1,2
0 (Ω) with u �

0, ‖∇u‖2 = 1, we have by the Lebesgue dominated convergence theorem∫
Ω
(1+g(u))e4πu2

dx � lim
ε→0

∫
Ω
(1+g(uε))e(4π−ε)u2

ε dx =
∫

Ω
(1+g(u0))e4πu2

0dx.

By the arbitrariness of u ∈W 1,2
0 (Ω) , it follows that

sup
u∈W1,2

0 (Ω),‖∇u‖2�1

∫
Ω
(1+g(u))e4πu2

dx �
∫

Ω
(1+g(u0))e4πu2

0dx. (17)

Thus, (17) makes it clear that u0 is the desired extremal function, or equivalently (13)
holds. Define cε = uε(xε) = maxΩ uε → ∞ and we distinguish two cases to proceed.

Case 1. If u0 �≡ 0, the supremum in (2) can be attained by u0 without difficulty.
And the proof will just be divided into several simple steps.

Step 1. According to the classical Trudinger-Moser inequality (1), we know e(4π−ε)u2
ε

is bounded in Lp(Ω) (p > 1) .
Step 2. By mean value theorem and Hölder inequality (1), it can be easily verified

that
e(4π−ε)u2

ε → e4πu2
0 in L1(Ω) as ε → 0.

Step 3. On the basis of the above steps, there have∫
Ω
|(1+g(uε))e(4π−ε)u2

ε − (1+g(u0))e4πu2
0 |dx

�
∫

Ω
|g(uε)−g(u0)|e(4π−ε)u2

ε dx+ |g(u0)+1|
∫

Ω
|e(4π−ε)u2

ε − e4πu2
0|dx = oε(1).

Hence ∫
Ω
(1+g(uε))e(4π−ε)u2

ε →
∫

Ω
(1+g(u0))e4πu2

0 in Ω,

as ε → 0. This together with (13), we proof the existence of the extremal function.

Case 2. If u0 ≡ 0, in view of the equation (12), the following discussion is crucial
to our analysis:

LEMMA 1. Let λε be as in (12). Then there holds liminfε→0 λε > 0 .

Proof. By an inequality et � 1+ tet for t � 0 and g′(t) > 0 in (3), we get

λε � 1
4π − ε

∫
Ω
(1+ ω(uε))(e(4π−ε)u2

ε −1)dx

� 1
4π − ε

(
Λ4π−ε +

∫
Ω

g′(uε)
2uε(4π − ε)

(e(4π−ε)u2
ε −1)dx−

∫
Ω
(1+g(uε))dx

)

� 1
4π − ε

(
Λ4π−ε −

∫
Ω
(1+g(uε))dx

)
.
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Passing to the limit ε → 0, since uε �≡ 0, together with (14) and (15) leads to

liminf
ε→0

λε � 1
4π

(Λ4π − (1+g(0))|Ω|) > 0.

Hence, it gives
1
λε

� C. (18)

Namely, 1
λε

is uniformly bounded. This ends the proof of the lemma. �

2.3. Blow-up analysis

In the following discussion, we will use blow-up analysis to understand the asymp-
totic behavior of the maximizers uε , when uε is not uniformly bounded in Ω . We first
claim that x0 can not lie on the boundary ∂Ω .

Using the equation (12), we have

−Δuε =
1
λε

(1+ ω(uε))uεe
(4π−ε)u2

ε , uε > 0 in Ω, uε = 0 on ∂Ω,

where λε ,1+ ω(uε) are both positive constants depending on ε as defined in (3) and
(5). Thus, uε satisfies

−Δuε = fε (u),

where

fε (u) =
1

λε
(1+ ω(uε))uεe

(4π−ε)u2
ε > 0 in Ω.

Then the proof x0 �∈ ∂Ω follows from Lu-Yang [14] (page 970) and Gidas-Ni-
Nireberg [8] (page 223). Thus, we exclude the boundary to blow-up.

From now on, we assume x0 ∈ Ω .

2.3.1. Energy concentration phenomenon

Followed by [27], we study the concentration phenomenon, which is crucial in our
blow-up analysis:

LEMMA 2. For the sequence {uε} , we have that uε ⇀ 0 weakly in W 1,2
0 (Ω) and

uε → 0 strongly in Lq(Ω) for any q > 1 . Moreover, |∇uε |2dx ⇀ δx0 in a sense of
measure, where δx0 is the usual Dirac measure centered at the point x0 .

Proof. Since ‖∇uε‖2 = 1 and uε ∈ W 1,2
0 (Ω) , there have the same assumptions

as in (16). Assume u0 �≡ 0. Since (1+ g(u))e(4π−ε)u2
is bounded in Lp(Ω) for some

p > 1 provided that ε is sufficiently small, together with (18) and (16) implies that Δuε
is bounded in Lq(Ω) for some q > 1. Applying elliptic estimate to (12), one gets uε is
uniformly bounded in Ω , which contradicts to cε → ∞ . Therefore u0 ≡ 0.
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We next prove |∇uε |2dx ⇀ δx0 . If the statements were false, suppose |∇uε |2dx ⇀
η in a sense of measure. In view of η �= δx0 , there exists r0 > 0 such that

lim
ε→0

∫
Br0 (x0)

| ∇uε |2 dx � η +1
2

< 1.

Choose a cut-off function φ ∈C1
0(Ω) , which is supported in Br0(x0) ∈ Ω .{

φ(x) = 1 in Br0/2(x0),
φ(x) = 0 on ∂Br0(x0).

For some η > 0, we can find proper r0 > 0 and sufficient small ε such that∫
Br0 (x0)

|∇(φuε )|2dx � 1−η .

By the classical Trudinger-Moser inequality (1), e(4π−ε)(φuε)2 is bounded in Lr(Ω) for
some r > 1. Then the elliptic estimate on the Euler-Lagrange equation (12) indicates
that uε is uniformly bounded in Br0/2(x0) , contradicting to cε → ∞ again. Conse-
quently, |∇uε |2dx ⇀ δx0 . �

2.3.2. Asymptotic behavior of uε near the concentration point x0

Let
rε =

√
λεc

−1
ε e−(2π−ε/2)c2

ε . (19)

For any 0 < δ < 4π , together with (1) and (5), we have by using the Hölder inequality,

λε =
∫

Ω
(1+ ω(uε))u2

εe
(4π−ε)u2

ε dx � Ceδc2
ε

∫
Ω

u2
εe

(4π−ε−δ )u2
ε dx � Ceδc2

ε ,

for some constant C depending only on δ . This leads to

r2
ε � Cc−2

ε e−(4π−ε−δ )c2
ε → 0, for ∀0 < δ < 4π , (20)

as ε → 0. Define on Ωε = {x ∈ R
2 : xε + rεx ∈ Ω} ,

αε (x) = c−1
ε uε(xε + rεx), (21)

βε(x) = cε(uε(xε + rεx)− cε). (22)

A straightforward calculation gives

−Δαε(x) = c−2
ε αε(x)(1+ ω(uε))e(4π−ε)(uε2(xε+rε )−c2

ε ) in Ωε , (23)

−Δβε(x) = αε (x)(1+ ω(uε))e(4π−ε)(1+αε(x))βε (x) in Ωε . (24)

We now investigate the convergence behavior of αε(x) and βε(x) . In view of (20),
rε → 0 and thus Ωε → R

2 as ε → 0. Since 0 < |αε (x)| � 1 and αε(x) is Lp bounded
in BR (∀R > 0) , one has αε (x) → α in C1

loc(R
2) by applying elliptic estimates to (23),
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where α is a bounded harmonic function on R
2 . Thus it gives αε → α in C1

loc(R
2)

uniformly as ε → 0. If we set −Δαε(x) = gε(x) , then for any α ∈C1
0(R

2) , there holds

∫
BR(0)

∇α∇αεdx =
∫

BR(0)
gε αdx.

Letting ε → 0, by the arbitrary of α , we obtain

Δα = 0.

Since |α| � 1, the Liouville theorem implies that

α = α(0) = lim
ε→0

uε(xε + rε ·0)
cε

= 1.

Therefore αε → 1 in C1
loc(R

2) . Similarly, we have βε → β in C1
loc(R

2) by elliptic
estimates, where β satisfies {

β (0) = 0 = sup
R2 β ,

Δβ = −e8πβ in Ω.
(25)

For ∀R > 1, we know when ε → 0,

αε(x) =
uε(xε + rεx)

cε
→ 1 in C1

loc(R
2),

which together with (5) and Fatou’s lemma lead to

∫
BR(0)

e8πβ dx � limsup
ε→0

∫
BR(0)

e(4π−ε)(1+αε(x))βε (x)dx

� limsup
ε→0

λ−1
ε

∫
BRrε (xε )

(1+ ω(uε))u2
εe

(4π−ε)u2
ε(y)dy � 1.

Let R → ∞ , and this leads to ∫
R2

e8πβdx � 1.

More precisely, the uniqueness theorem obtained in [4] implies that

β (x) = − 1
4π

log(1+ π |x|2),

and ∫
R2

e8πβ dx = 1. (26)

Until this, we have gave the convergence behavior of uε near the point x0 . To reveal
the convergence behavior of uε away from x0 , we define uε,σ = min{σcε ,uε} as in
[1, 13]. Then we have the following:
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2.3.3. Convergence away from the concentration point

LEMMA 3. For any 0 < σ < 1 , there holds

lim
ε→0

∫
Ω
|∇uε,σ |2dx = σ .

Proof. In view of the equation (12), we deduce the following through using a
suitable change of variable y = xε + rεx ,∫

Ω
|∇uε,σ |2dx = −

∫
Ω

uε,σ Δuεdx =
∫

Ω

uε,σ

λε
(1+ ω(uε))uεe

(4π−ε)u2
ε dx

�
∫

BRrε (xε )

σcε

λε
uε(1+ ω(uε))e(4π−ε)u2

ε dx

=
∫

BR(0)
σαε (y)(1+ ω(uε(y)))e(4π−ε)(1+αε)βε dy.

Obviously, there have

liminf
ε→0

∫
Ω
|∇uε,σ |2dx � σ

∫
BR(0)

e8πβ dx, ∀R > 0.

Passing to the limit R → +∞ in the above inequality, we have from (26)

liminf
ε→0

∫
Ω
|∇uε,σ |2dx � σ . (27)

Note that
|∇(uε −σcε)+|2 = ∇(uε −σcε)+ ·∇uε on Ω,

and
(uε −σcε)+ = (1+oε(1))(1−σ)cε in BRrε (x0).

Similarly as above, we calculate∫
Ω
|∇(uε −σcε)+|2dx =

∫
Ω
(uε −σcε)+

uε
λε

(1+ ωε(uε))e(4π−ε)u2
ε dx

�
∫

BRrε (xε )
(uε −σcε)+

uε
λε

(1+ ωε(uε))e(4π−ε)u2
ε dx

=
∫

BR(x0)
(1+oε(1))(1−σ)αε(1+ ωε(uε))e(4π−ε)u2

ε dx.

Let ε → 0 and then R → ∞ , we have by (26)

liminf
ε→0

∫
Ω
| ∇(uε −σcε)+ |2 dx � 1−σ . (28)

Since |∇uε |2 = |∇uε,σ |2 + |∇(uε −σcε)+|2 almost everywhere, there have∫
Ω
|∇(uε −σcε)+|2dx+

∫
Ω
|∇uε,σ |2dx =

∫
Ω
|∇uε |2dx = 1+oε(1). (29)

Combining (27), (28) and (29), we end the proof of the lemma. �
Though the following estimate is not used in this step, it is a byproduct of lemma

3 and will be employed in the next section.
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LEMMA 4. There holds

lim
ε→0

∫
Ω
(1+g(uε))e(4π−ε)u2

ε dx =| Ω | (1+g(0))+ lim
ε→0

λε
c2

ε
. (30)

Proof. Note that 0 � uε,σ � uε . As ε → 0, we have uε,σ converges to 0 in
C1

loc(Ω\ {x0}) . According to the Hölder inequality and Lagrange theorem, it follows

∫
{x∈Ω|uε�σcε}

(1+g(uε))e(4π−ε)u2
ε dx−|Ω|(1+g(0))

�
∫

Ω
(1+g(uε,σ))e(4π−ε)u2

ε,σ dx−|Ω|(1+g(0))

�
∫

Ω
|g(uε,σ )−g(0)|e(4π−ε)u2

ε,σ dx+ |1+g(0)|
∫

Ω
(e(4π−ε)u2

ε,σ −1)dx

=oε(1).

(31)

Moreover, we estimate∫
{x∈Ω|uε>σcε}

((1+g(uε))e(4π−ε)u2
ε − (1+g(0))dx

=
∫
{x∈Ω|uε>σcε}

((1+g(uε))e(4π−ε)u2
ε dx− (1+g(0)) | {x ∈ Ω | uε > σcε} |

<
1

σ2

∫
{x∈Ω|uε>σcε}

u2
ε

c2
ε
((1+g(uε))e(4π−ε)u2

ε dx+oε(1) � λε
σ2c2

ε
+oε(1),

(32)

where oε(1) → 0 as ε → 0. Combining (31) and (32), it follows by letting σ → 1,

limsup
ε→0

(∫
Ω
(1+g(uε))e(4π−ε)u2

ε dx− | Ω | (1+g(0))
)

� lim
ε→0

λε
c2

ε
. (33)

On the other hand,∫
Ω
(1+g(uε))e(4π−ε)u2

ε dx− | Ω | (1+g(0))

�
∫

Ω

u2
ε

c2
ε

(
(1+g(uε))e(4π−ε)u2

ε − (1+g(0))
)

dx

=
λε
c2

ε
− 1

c2
ε

∫
Ω

u2
ε(1+g(0))dx− 1

c2
ε

∫
Ω

g′(uε)
2(4π − ε)

uεe
(4π−ε)u2

ε dx.

In view of lemma 2 and (5), there holds

lim
ε→0

λε
c2

ε
� liminf

ε→0

(∫
Ω
(1+g(uε))e(4π−ε)u2

ε dx−|Ω|(1+g(0))
)

. (34)

Combing (33) and (34), we conclude the lemma 4. �
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Letting R → ∞ , one can further check that

lim
ε→0

λε
c2

ε
= lim

R→∞
lim
ε→0

∫
BRrε (xε )

(1+g(uε))e(4π−ε)u2
ε dx. (35)

This can be proved by adopting variables substitution, namely

lim
R→∞

lim
ε→0

∫
BRrε (xε )

(1+g(uε))e(4π−ε)u2
ε dx

= lim
R→∞

lim
ε→0

∫
BR(0)

(1+g(uε(xε + rεx)))e(4π−ε)c2
ε e(4π−ε)(1+αε)βε dx

= lim
ε→0

λε
c2

ε
lim
R→∞

∫
BR(0)

e8πβ dx.

Insert (26) into the above equation, and then (35) holds.

COROLLARY 1. If θ < 2 , then λε
cθ

ε
→ ∞ as ε → 0 .

Proof. This can be an obvious consequence of lemma 4. �

LEMMA 5. For any function φ ∈C1
0(Ω) , there holds

lim
ε→0

∫
Ω

φ(1+ ω(uε))λ−1
ε cεuεe

(4π−ε)u2
ε dx = φ(x0). (36)

Proof. To see this, let φ ∈C1
0(Ω) be fixed. Write tε = (1+ω(uε))λ−1

ε cεuεe(4π−ε)u2
ε

for simplicity. Clearly,∫
Ω

tε φdx =
∫
{uε<β cε}

tε φdx+
∫
{uε�β cε}\BRrε (xε )

tε φdx+
∫
{uε�β cε}∩BRrε (xε )

tε φdx.

(37)
We estimate the three integrals on the right hand of (37) respectively. By lemma 3 and
corollary 1, it follows that∫

{uε<β cε}
tε φdx � Cλ−1

ε cε

∫
Ω

uεe
(4π−ε)u2

ε,β φdx = oε(1). (38)

Since BRrε (xε ) ⊂ {x ∈ Ω | uε � βcε} for sufficiently small ε > 0, we have by (19),

∫
{uε�β cε}∩BRrε (xε )

tε φdx = (φ(x0)+oε(1))
∫

BRrε (xε )
(1+ ω(uε))λ−1

ε cεuεe
(4π−ε)u2

ε dx

= (φ(x0)+oε(1))
∫

BR(x0)
(1+ ω(uε))e8πβ dx

= φ(x0)+oε(1)+oR(1).
(39)
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Noting that

∫
{uε�β cε}\BRrε (xε )

tε φdx � C
∫
{uε�β cε}\BRrε (xε )

u2
ε

β λε
e(4π−ε)u2

ε φdx

� C
β

∫
Ω\BRrε (xε )

u2
ε

λε
e(4π−ε)u2

ε dx

=
C
β

(1−
∫
BR(x0)

e8πβdx+oε(1)),

we derive by (19),

lim
R→∞

lim
ε→0

∫
{uε�β cε}\BRrε (xε )

tε φdx = 0. (40)

Inserting (38)-(40) to (37), we conclude (36) finally. �
Let φ = 1, one can further infer that

(1+ ω(uε))
λε

(cεuε)e(4π−ε)u2
ε � C in L1(Ω), (41)

which will be used in the following proof.

LEMMA 6. (Struwe [22]) If f ∈ L1(Ω), u ∈ W 1,2
0 (Ω)∩C1(Ω) is a positive so-

lution of −Δu = f . Then for any 1 < q < 2 , there have ‖∇u‖q � C‖ f‖1 , for some
constant C depending on q and Ω .

By equation (12), cεuε is a distributional solution to

−Δ(cεuε) = tε in Ω. (42)

It follows from (41) that tε is bounded in L1(Ω) . Using lemma 6 and elliptic estimates
to (42), one concludes that cεuε is bounded in W 1,q

0 (Ω) for all 1 < q < 2.
We now prove that cεuε converges to a Green function in distributional sense

when ε → 0, where δx0 stands for the Dirac measure centered at x0 . More precisely,
we have

LEMMA 7. cεuε →G in C1
loc(Ω\{x0}) and weakly in W 1,q

0 (Ω) for all 1 < q < 2 ,
where G ∈C1(Ω\ {x0}) is a distributional solution satisfying the following{−ΔG = δx0 in Ω,

G = 0 on ∂Ω.
(43)

Moreover, G takes the form

G(x) = − 1
2π

log |x− x0|+Ax0 + ν(x), (44)

where Ax0 is a constant depending on x0 and ν(x) ∈C1(Ω) .
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Proof. By lemma 6, we can assume for any 1 < q < 2, r > 1 that

cεuε ⇀ G weakly in W 1,q
0 (Ω),

cεuε → G strongly in Lr(Ω).

Test (42) by φ ∈C1
0(Ω) and there holds

∫
Ω

∇(cεuε)∇φdx =
∫

Ω
φ(1+ ω(uε))λ−1

ε cεuεe
(4π−ε)u2

ε dx.

Letting ε → 0, we obtain by (43)∫
Ω

∇G∇φdx = φ(x0).

Consequently, −ΔG = δx0 in a distributional sense. Since Δ(G + 1
2π log |x− x0|) ∈

Lp(Ω) for any p > 2, (44) follows from elliptic solution immediately. Applying elliptic
estimates to the equation (42), we arrive at the conclusion

cεuε → G in C1
loc(Ω\ {x0}). (45)

Thus, the two assertions holds. �

2.4. Upper bound estimates

Similar to [12, 25], we demand the following result belongs to [3], namely

LEMMA 8. (Carleson-Chang) Let B be the unit disc in R
2 . Assume vε ∈W 1,2

0 (B)
satisfying

∫
B |∇vε |2dx � 1 , and |∇vε |2dx ⇀ δx0 weakly in a sense of measure as ε → 0 .

Then we have

limsup
ε→0

∫
B
(e4πv2

ε −1)dx � πe.

Multiplying both sides of (43) by G and integrating by parts on the domain Ω \
Bδ (x0) for some fixed δ > 0, we get

∫
Ω\Bδ (x0)

|∇G|2dx = −
∫

∂Bδ (x0)
G

∂G
∂−→n ds−

∫
Ω\Bδ (x0)

G ·ΔGdx

= − 1
2π

logδ +Ax0 +oε(1)+oδ(1).
(46)

In view of (45), there holds

∫
Ω\Bδ (x0)

|∇uε |2dx =
1
c2

ε

∫
Ω\Bδ (x0)

(|∇G|2 +oε(1))dx

=
1
c2

ε
(Ax0 −

logδ
2π

+oε(1)+oδ(1)).
(47)
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Define sε = sup∂Bδ (x0) uε , uε = (uε − sε)+ , the positive part of uε − sε . It can easily be

verified that uε ∈W 1,2
0 (Bδ (x0)) . Together with (47) and the fact that

∫
Bδ (x0) |∇uε |2dx =

1− ∫
Ω\Bδ (x0) |∇uε |2dx gives

∫
Bδ (x0)

|∇uε |2dx � ηε = 1−
∫

Ω\Bδ (x0)
|∇uε |2dx = 1− 1

c2
ε
(Ax0 −

logδ
2π

+oε(1)+oδ (1)).

And then by lemma 8, there have

limsup
ε→0

∫
Bδ (x0)

(e4π uε
ηε

2

−1)dx � πδ 2e. (48)

In BRrε (xε) ⊂ Bδ (x0) , note that

sε = sup
∂Bδ (x0)

1
cε

(G+oε(1)) =
1
cε

(Ax0 −
1
2π

logδ +oε(1)+oδ(1)),

and
u2

ε � (sε +uε)2.

Thus, we derive

(4π − ε)u2
ε � 4π

u2
ε

ηε
+2log

1
δ

+4πAx0 +o(1).

In BRrε (xε) ⊂ Bδ (x0) , together with (3), we estimate

∫
BRrε (xε )

(1+g(uε))e(4π−ε)u2
ε dx � δ−2e4πAx0+o(1)

∫
BRrε (xε )

(1+g(uε))e
4π uε

ηε dx

� δ−2e4πAx0+o(1)
∫

Bδ (x0)
(e4π uε

ηε −1)dx,
(49)

where o(1) → 0 as ε → 0. In view of (48) and (49), one gets

limsup
ε→0

∫
BRrε (xε )

(1+g(uε))e(4π−ε)u2
ε dx � πe1+4πAx0 . (50)

Passing to the limit R → ∞ , adapted from (30) and (35), there holds on

lim
ε→0

∫
Ω
(1+g(uε))e(4π−ε)u2

ε dx= (1+g(0))|Ω|+ lim
R→∞

lim
ε→0

∫
BRrε (xε )

(1+g(uε))e(4π−ε)u2
ε dx.

(51)
Combining (50) and (51), in view of (3), we arrive at

sup
u∈W1,2

0 (Ω),‖∇u‖2=1

∫
Ω
(1+g(u))e4πu2

dx � (1+g(0))|Ω|+ πe1+4πAx0. (52)



EXTREMAL FUNCTIONS FOR TRUDINGER-MOSER INEQUALITIES 1013

2.5. Existence of extremal function

In this subsection, we will construct a blow-up sequence φε ∈ W 1,2
0 (Ω) with

‖∇φε‖2 = 1. While for sufficiently small ε > 0, there exists

∫
Ω
(1+g(φε))e4πφ2

ε dx > (1+g(0))|Ω|+ πe1+4πAx0. (53)

Then, we will find (52) is a contradiction to (53), so that cε has to be bounded, which
means the blow-up cannot take place. Furthermore, the theorem follows immediately
from what we have proved according to elliptic estimates.

To prove (53), as we did in [26], we set ν = G+ 1
2π logr−Ax0 , where x0 is the

concentration point as before, r(x) = |x− x0| , and ν = O(r) . Define

φε =

⎧⎪⎪⎨
⎪⎪⎩

c+ 1
c (− 1

4π log(1+ πr2

ε2 )+b), for r � Rε,

G−ξ ν
c , for Rε < r < 2Rε,

G
c , for R � 2Rε,

(54)

where ξ ∈C∞
0 (B2Rε(x0)) is a cut-off function satisfying ξ = 1 on BRε(x0) , and ‖∇ξ‖L∞

= O( 1
Rε ) .
Above all, b and c are constants which depending only on ε to be determined

later. Obviously, B2Rε(x0) ⊂ Ω provided that ε is sufficiently small. In order to assure
φε ∈W 1,2

0 (Ω) , we set

c+
1
c
(− 1

4π
log(1+

π(Rε)2

ε2 )+b) =
1
c
(− 1

2π
logRε +Ax0),

which gives

2πc2 = − logε −2πb+2πAx0 +
1
2

logπ +O(
1
R2 ). (55)

Noting that ν(x) = O(|x|) as x → 0, we have |∇(ξ ν)| = O(1) as ε → 0. Now we
calculate

∫
BRε (x0)

|∇φε |2dx =
∫ Rε

0

πr2

4c2(ε2 + πr2)2 dr2 =
1

4πc2 (logπ −1+O(
1
R2 )). (56)

Set δ = Rε . One can check from (46) that

∫
Ω\BRε (x0)

|∇φε |2 dx =
1
c2

∫
Ω\2BRε (x0)

|∇G |2 dx+
∫
2BRε (x0)\BRε (x0)

| ∇(G− ξ ν) |2
c2 dx

=
1
c2

∫
Ω\BRε (x0)

| ∇G |2 dx

=
1
c2 (

1
2π

log
1
Rε

+Ax0 +O(Rε log(Rε))).

(57)
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Combing (56) and (57), we can obtain

∫
Ω
|∇φε |2dx =

1
4πc2 (2log

1
ε

+ logπ −1+4πAx0 +O(
1
R2 )+O(Rε log(Rε))). (58)

Put ‖∇φε‖2 = 1. We know from (58) that

c2 = Ax0 −
1
2π

logε +
1
4π

logπ − 1
4π

+O(
1
R2 )+O(Rε log(Rε)). (59)

Together with (55) and (59) gives

b =
1
4π

+O(
1
R2 )+O(Rε log(Rε)). (60)

When R = − logε , in view of (59) and (60), there holds on BRε(x0) ,

4πφ2
ε � 4πc2−2log(1+

πr2

ε2 )+8πb

= 4πAx0 + logπ −2logε −2log(1+
πr2

ε2 )+1+O(Rε log(Rε)).
(61)

Besides, we derive ‖ φε (x)
c ‖L∞(BRε ) → 1 by passing to the limit ε → 0. When r � Rε ,

there exists

|φε (x)
c

| = |1+
− log(1+ π r2

ε2 )+b

c2 | → 1.

Since φε (x) ∼ c in BRε(xε) and g(c) = o( 1
c2 ) , we conclude g(φε) = o( 1

c2 ) as ε → 0,
which together with (61) leads to

∫
BRε (x0)

(1+g(φε))e4πφ2
ε dx � πe1+4πAx0 +O(Rε log(Rε))+o(

1
c2 ). (62)

On the other hand, in view of lemma 4 and (3), there exists g(φε ) � g(0) in Ω \
2BRε(x0) . Thus, by using the inequality et � t +1, ∀t � 0, we estimate

∫
Ω\BRε (x0)

(1+g(φε))e4πφ2
ε dx �

∫
Ω\2BRε (x0)

(1+g(φε))(1+4π
G2

c2 )

� (1+g(0))|Ω|+(1+g(0))
4π
c2 ‖G‖2

2 +O(
1
R2 ).

(63)

Since R = − logε , it is clear that 1
R = o( 1

c2 ) . In view of (62) and (63), we conclude

∫
Ω
(1+g(φε))e4πφ2

ε dx > (1+g(0))|Ω|+ πe1+4πAx0 ,

provided that ε > 0 is chosen sufficiently small.
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2.6. Completion of proof of theorem 1

Comparing (52) with (53), we arrive at the final conclusion that cε must be bounded.
Then applying elliptic estimates to (12), we can get the desired extremal function. This
ends the proof of theorem 1. �

In next section, we will confirm the results still remain correct if we add nonnega-
tive weights.

3. Proof of theorem 2

3.1. The subcritical functions

Using the same argument as in the proof of theorem 1, we can easily carry out the
proof of this theorem. In the beginning, we shall prove the existence of the maximizers
for the subcritical functionals. Here we also adopt the method of variations during
calculation.

LEMMA 9. For any 0 < ε < 4π , there exists uε ∈W 1,2
0 (Ω)∩C1(Ω) with ‖∇uε‖2 =

1 such that∫
Ω

h(1+g(uε))e(4π−ε)u2
ε dx = sup

u∈W1,2
0 (Ω),‖∇u‖2�1

∫
Ω

h(1+g(u))e(4π−ε)u2
dx. (64)

Proof. For 0 < ε < 4π , take a function sequence u j ∈W 1,2
0 (Ω) satisfying ‖∇u j‖2

� 1, and∫
Ω

h(1+g(u j))e
(4π−ε)u2

j dx → sup
u∈W1,2

0 (Ω),‖∇u‖2�1

∫
Ω

h(1+g(u))e(4π−ε)u2
dx, (65)

as j → ∞ . Note that there exists some uε ∈ W 1,2
0 (Ω) such that up to a subsequence,

which is similar to (16). And we can verify that h(1+ g(u))e(4π−ε)u2
ε is bounded in

Lp(Ω) (p > 1) . Then

h(1+g(u j))e
(4π−ε)u2

j dx → h(1+g(u))e(4π−ε)u2
strongly in L1(Ω). (66)

Together with (65) and (66), it yields (64). �
Moreover, the Euler-Lagrange equation of uε follows after a straightforward cal-

culation: ⎧⎪⎪⎨
⎪⎪⎩

−Δuε = h
λε

(1+ ω(uε))uεe(4π−ε)u2
ε , in Ω,

uε > 0, ‖∇uε‖2 = 1, in Ω,

λε =
∫

Ω h(1+ ω(uε))u2
εe

(4π−ε)u2
ε dx,

(67)

where ω is defined as in (5). Using elliptic estimates, we get uε ∈ C1(Ω) . Set cε =
uε(xε) = maxΩ uε . If cε is bounded, the existence of the extremal function is trivial
by the standard elliptic estimates. Hence we discuss the opposite circumstance cε → ∞
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and xε → x0 ∈ Ω . We get x0 /∈ ∂Ω by using the result of Gidas, Ni and Nirenberg in
[8].

We now proceed as the proof in theorem 1 so as to analysis the energy concen-
tration. And lemma 2 still holds as before. Furthermore, uε → 0 in C1

loc(Ω\ {x0}) by
using elliptic estimates to (67).

Then we prove that h is positive at the blow-up point x0 . This property plays an
important role in our next analysis.

LEMMA 10. There exists h(x0) > 0 .

Proof. For otherwise, if h(x0) = 0. Note that up to a sequence

lim
ε→0

∫
Ω

h(1+g(uε))(e(4π−ε)u2
ε −1)dx

= sup
u∈W1,2

0 (Ω),‖∇u‖2�1

∫
Ω

h(1+g(u))(e(4π−ε)u2 −1)dx � η ,

where η is a positive constant. Choose sufficiently small ε so that∫
Ω

h(1+g(uε))(e(4π−ε)u2
ε −1)dx >

η
2

. (68)

To divide the whole domain Ω into two parts, we select proper radius r > 0, satisfying
Br(x0) ⊂ Ω . Thus

∫
Ω

h(1+g(uε))(e(4π−ε)u2
ε −1)dx

=or(1)
∫

Br(x0)
(1+g(uε))(e(4π−ε)u2

ε −1)dx+
∫

Ω\Br(x0)
h(1+g(uε))(e(4π−ε)u2

ε −1)dx,

(69)

where or(1)→ 0 as r → 0. There have |g|< 1 from (3). Thus, we pick r small enough
to get

or(1)
∫

Br(x0)
(1+g(uε))(e(4π−ε)u2

ε −1)dx � η
4

. (70)

On the other hand, ∫
Ω\Br(x0)

h(1+g(uε))(e(4π−ε)u2
ε −1)dx = o(ε). (71)

Letting ε → 0, we deduce that by combing (69), (70) and (71),

∫
Ω

h(1+g(uε))(e(4π−ε)u2
ε −1)dx <

2
η

. (72)

There exists a contradiction between (68) and (72). Hence h(x0) > 0. �
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3.2. Blow-up analysis

Let
rε =

√
λε [h(x0)]−1/2c−1

ε e−(2π−ε/2)c2
ε .

Similar to (20), for ∀0 < μ < 4π , we have

r2
ε � C[h(x0)]−1c−2

ε e−(4π−ε−μ)c2
ε → 0,

as ε → 0. Define two sequences of functions on Ωε = {x ∈ R
2 : xε + rεx ∈ Ω} :

ψε(x) = c−1
ε uε(xε + ωε), ϕε(x) = cε(uε(xε + ωε)− cε).

Through a straightforward calculation, they satisfy the following:⎧⎨
⎩

−Δψε(x) = hψε
c2

ε h(x0)
(1+ ωε(uε))e(4π−ε)(u2

ε−c2
ε ) in Ωε ,

−Δϕε(x) = hψε
h(x0)

(1+ ωε(uε))e(4π−ε)(1+ψε(x))ϕε (x) in Ωε ,

where ω is defined as in (5). Then the research to the blow-up functions ψε(x) and
ϕε(x) can be completed by the method analogous to that used in section 2. And we
also use the results in Chen and Li [4].

3.3. Upper bound estimates

Choose δ small enough so that Bδ (x0) ⊂ Ω . Recall sε = sup∂Bδ (x0) uε and uε =
(uε − sε)+ . Let ηε = 1− 1

c2
ε
(Ax0 + 1

2π log 1
δ + oε(1)+ oδ (1)) . It follows from lemma

8, thus

limsup
ε→0

∫
Bδ (x0)

(e4π u2
ε

ηε −1)dx � πδ 2e. (73)

Since

(4π − ε)u2
ε � 4π

u2
ε

ηε
+2log

1
δ

+4πAx0 +o(1),

we estimate∫
BRrε (xε )

h(1+g(uε))e(4π−ε)u2
ε dx � δ−2e4πAx0+oε (1)

∫
BRrε (xε )

h(1+g(uε))e
4π u2

ε
ηε dx

� δ−2h(x0)e4πAx0+oε(1)
∫

Bδ (x0)
(e4π u2

ε
ηε −1)dx,

where oε(1) → 0 as ε → 0. In view of (73), there holds

limsup
ε→0

∫
BRrε (xε )

h(1+g(uε))e(4π−ε)u2
ε dx � πh(x0)e1+4πAx0 .

Passing to the limit R → ∞ , we obtain by the argument in the proof of lemma 3.3 in
[16],

lim
ε→0

∫
Ω

h(1+g(uε))e(4π−ε)u2
ε dx � (1+g(0))γ + πh(x0)e1+4πAx0 ,
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where γ =
∫

Ω hdx . This together with (64) implies that

sup
u∈W1,2

0 (Ω),‖∇u‖2�1

∫
Ω

h(1+g(u))e4πu2
dx � (1+g(0))γ + πh(x0)e1+4πAx0 . (74)

3.4. Completion of the proof of theorem 2

Let φε be defined as in (54). By a straightforward calculation, we conclude

∫
BRε (x0)

h(1+g(φε))e4πφ2
ε dx � πh(x0)e1+4πAx0 +O(

1
R2 ), (75)

and

∫
Ω\BRε (x0)

h(1+g(φε))e4πφ2
ε dx �

∫
Ω\B2Rε (x0)

h(1+4π
G2

C2 )(1+g(φε))dx

� (1+g(0))
∫

Ω
hdx+4π(1+g(0))

‖√hG‖2
2

c2 +o(
1
c2 ).

(76)

Combining (75) and (76), we obtain∫
Ω

h(1+g(φε))e4πφ2
ε dx > (1+g(0))γ + πh(x0)e1+4πAx0 ,

which contradicts (74), and implies that cε must be bounded. As a consequence, elliptic
estimates lead to (67). This completes the proof of the theorem 2. �
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