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TWO TRACE INEQUALITIES FOR OPERATOR FUNCTIONS

TRUNG HOA DINH, MINH TOAN HO, CONG TRINH LE ∗ AND BICH KHUE VO

(Communicated by J.-C. Bourin)

Abstract. In this paper we show that for a non-negative operator monotone function f on [0,∞)
such that f (0) = 0 and for any positive semidefinite matrices A and B ,

Tr((A−B)( f (A)− f (B))) � Tr(|A−B| f (|A−B|)).
When the function f is operator convex on [0,∞) , the inequality is reversed.

1. Introduction

For arbitrary nonnegative numbers a � b and p � 2,

ap−1−bp−1 � (a−b)p−1.

Multiplying both sides of this inequality by (a−b) we get

(a−b)(ap−1−bp−1) � (a−b)p. (1.1)

For p ∈ [1,2] , the inequality (1.1) is reversed. Namely, we have

(a−b)(ap−1−bp−1) � (a−b)p. (1.2)

From (1.1) it implies that for f ,g ∈ Lp(Ω,μ) (where (Ω,μ) is some measure space),
∫

Ω
( f (x)−g(x))( f (x)p−1 −g(x)p−1)dμ �

∫
Ω
( f (x)−g(x))pdμ . (1.3)

In [4], Mustapha Mokhtar-Kharroubi pointed out that this inequality may be used to
get contractivity on the positive cone of Lp(Ω,μ) . Recently, Ricard [5] proved a non-
commutative version of (1.3) for von Neumann algebras. His result if translated into
the language of matrices states that for p � 2 and for any A,B � 0,

Tr((A−B)(Ap−1−Bp−1)) � Tr(|A−B|p). (1.4)
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Although the last inequality holds true, it is not obvious that the left hand side part is
non-negative for any positive semidefinite matrices A and B . That fact can be proved
by using the Klein inequality [3] which states that for a differentiable convex function
f on (0,∞) ,

Tr( f (A)− f (B)) � Tr((A−B) f ′(B)).

Applying the Klein inequality for t p with p � 1 we obtain

Tr(Ap−Bp) � pTr((A−B)Bp−1) and Tr(Bp−Ap) � pTr((B−A)Ap−1).

From the last two inequalities, we get

Tr(((A−B)(Ap−1−Bp−1)) � 0.

Recall a famous inequality for unitarily invariant norm due to Ando [1]: For p � 1
and for any unitarily invariant norm ||| · ||| ,

|||Ap−Bp||| � ||||A−B|p|||.
Applying the above inequality for the trace norm ||A||1 = Tr(|A|), we obtain

Tr(|Ap−Bp|) � Tr(|A−B|p). (1.5)

The inequality (1.4) attracts our attention because of the following reason: it pro-
vides an interpolation of the mentioned above Ando inequality.

PROPOSITION 1.1. Let p � 2 . Then for any positive semidefinite matrices A and
B,

Tr(|Ap−Bp|) � Tr((A−B)(Ap−1−Bp−1)) � Tr(|A−B|p). (1.6)

Proof. We prove the first inequality in (1.6) for any p � 1. In order to do that, let
us recall the famous Powers-Størmer inequality in quantum hypothesis testing theory
[2]: For any A,B � 0 and for any s ∈ [0,1] ,

Tr(A+B−|A−B|)� 2Tr(AsB1−s). (1.7)

Applying (1.7) for Ap and Bp and for s = 1/p , we have

Tr(Ap +Bp−|Ap−Bp|) � 2Tr(ABp−1). (1.8)

Since A and B play the same role in the Powers-Størmer inequality, we also have

Tr(Ap +Bp−|Ap−Bp|) � 2Tr(BAp−1). (1.9)

From (1.8) and (1.9) we have

Tr(Ap +Bp−|Ap−Bp|) � Tr(ABp−1)+Tr(BAp−1),

or,
Tr(|Ap−Bp|) � Tr((A−B)(Ap−1−Bp−1)). �
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REMARK 1.1. During the preparation of this paper, we received a comment from
Dr. Ricard via a private communication. He provided a nice proof for the inequality
(1.6) as follows. Recall that the Schatten p -norm is defined as ||A||p = (Tr(|A|p))1/p .
For p � 1, using Ando’s inequality with θ = 1/p and θ = (p−1)/p , we get

||A−B||p � ||Ap−Bp||1/p
1 , ||Ap−1−Bp−1||p/(p−1) � ||Ap−Bp||p/(p−1)

1 ,

where A and B are assumed to be positive semidefinite. Consequently,

Tr((A−B)(Ap−1−Bp−1)) � ||A−B||p · ||Ap−1−Bp−1||p/(p−1) � ||Ap−Bp||1.

Now we should mention that the inequality (1.1) is reversed when p ∈ [1,2].
Therefore, it is natural to ask whether the corresponding inequality holds for matrices.

At the same time, Ricard also gave us a short proof of the following inequality:
For p ∈ [1,2] and for any positive semidefinite matrices A and B ,

Tr(|A−B|p) � Tr((A−B)(Ap−1−Bp−1)). (1.10)

Indeed,

Tr((A−B)(Ap−1−Bp−1)) � ||A−B||p · ||Ap−1−Bp−1||p/(p−1)

� ||A−B||p · ||A−B||p−1
p = Tr(|A−B|p),

where we used the Hölder inequality in the first inequality, and the Ando inequality for
0 < θ = p−1 < 1 and q � θ as ||Aθ −Bθ ||q/θ � ||A−B||θq .

In this paper we establish a generalization of (1.10) for operator monotone func-
tions. Also the inequality (1.6) holds for operator convex functions instead of power
functions t p .

2. Main inequalities

We should mention that for p ∈ [1,2] the function t p−1 is operator monotone
on [0,∞) . Therefore, from the inequality (1.10) it is interesting to know whether the
following inequality is true

Tr((A−B)( f (A)− f (B))) � Tr(|A−B| f (|A−B|))

for some operator monotone function f under some conditions.
Based on the integral representation of operator monotone functions and operator

convex functions we can establish a direct generalization of (1.10) for operator mono-
tone functions on [0,∞) .

THEOREM 2.1. Let f be a non-negative operator monotone function on [0,∞)
such that f (0) = 0 . Then for any positive semidefinite matrices A and B,

Tr((A−B)( f (A)− f (B))) � Tr(|A−B| f (|A−B|)). (2.1)
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Proof. It is well-known ([6]) that for any operator monotone function f on [0,∞)
there exists a positive measure μ on [0,∞) such that f (t) = α + β t +

∫ ∞
0

st
s+t dμ(s) ,

where α = f (0) and β � 0. By the assumption of the theorem, α = 0. Now, suppose
that A � B and put C = A−B . First we mention that

(B+ s)−1− (B+C+ s)−1 = (B+ s)−1C(B+C+ s)−1. (2.2)

Therefore, we have

Tr(A−B)( f (A)− f (B)) = Tr(βC2)+
∫ ∞

0
Tr(s2C((B+ s)−1− (B+C+ s)−1))dμ(s)

= Tr(βC2)+
∫ ∞

0
Tr(s2C((B+ s)−1C(B+C+ s)−1))dμ(s)

� Tr(βC2)+
∫ ∞

0
Tr(sC2(C+ s)−1)dμ(s) = Tr(C f (C)),

where the inequality follows from the fact that for any s > 0, (B + s)−1 � s−1 and
(B+C+ s)−1 � (C + s)−1 , and the positivity of Tr(XY ) � 0 for positive semidefinite
matrices X and Y .

In general, denote by C− and C+ the negative and positive parts of C , respectively.
Then we have |A−B| = C− +C+, and A−B = C+ −C− . Put Z = A+C− = B+C+.
Then we have

Tr((A−B)( f (A)− f (B))) = Tr((A−Z)( f (A)− f (Z)))+Tr((A−Z)( f (Z)− f (B)))
+Tr((Z−B)( f (Z)− f (B)))+Tr((Z−B)( f (A)− f (Z))).

Using the fact that the function f is operator monotone and A,B � Z , one can see the
second and the fourth terms in the last identity are negative. According to the previous
case, we have

Tr((A−Z)( f (A)− f (Z)))+Tr ((Z−B)( f (A)− f (Z))) � Tr(C− f (C−))+Tr(C+ f (C+))
= Tr(|C| f (|C|)). �

REMARK 2.1. Combining inequality (1.10) with Ando’s inequality, we have

Tr(|Ap−Bp|) � Tr(|A−B|p) � Tr((A−B)(Ap−1−Bp−1)).

If we compare the last inequality with the inequality (1.7) it turns out that the last one
is an interpolation of the Powers-Størmer inequality for the power s in [1/2,1] .

Now let us give a generalization of Ricard’s result for operator convex functions.

THEOREM 2.2. Let f be a non-negative operator convex function on [0,∞) such
that f (0) = 0 . Then for any positive semidefinite matrices A and B,

Tr((A−B)( f (A)− f (B))) � Tr(|A−B| f (|A−B|)). (2.3)
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Proof. It is well-known ([6]) that for any operator convex function f on [0,∞)
there exists a positive measure μ on [0,∞) such that f (t)= α +β t+γt2+

∫ ∞
0

st2
s+t dμ(s) ,

where α and β are real and and γ � 0. By the assumption of the theorem, α = 0. Now,
suppose that A � B and put C = A−B . Therefore,

Tr((A−B)( f (A)− f (B)))

=Tr(βC2 + γC((B+C)2−B2))+
∫ ∞

0
sTr(C(C+ s2(B+C+ s)−1− s2(B+ s)−1))dμ(s)

=Tr(βC2 + γC(C2 +BC+CB))+
∫ ∞

0
sTr(C2 − s2C(B+C+ s)−1C(B+ s)−1))dμ(s)

�Tr(βC2 + γC3)+
∫ ∞

0
sTr(C2 − sC2(C+ s)−1))dμ(s)

=Tr

(
C

(
βC+ γC2 +

∫ ∞

0
s(C− s+ s2(C+ s)−1)dμ(s)

))
= Tr(C f (C)),

where the inequality follows from the fact that for any s > 0, (B + s)−1 � s−1 and
(B+C+ s)−1 � (C + s)−1 , and the positivity of Tr(XY ) � 0 for positive semidefinite
matrices X and Y .

In general, denote by C− and C+ the negative and positive parts of C , respectively.
Then we have |A−B| = C− +C+, and A−B = C+ −C− . Put Z = A+C− = B+C+.
Then we have

Tr((A−B)( f (A)− f (B))) = Tr((A−Z)( f (A)− f (Z)))+Tr((A−Z)( f (Z)− f (B)))
+Tr((Z−B)( f (Z)− f (B)))+Tr((Z−B)( f (A)− f (Z))).

According to the previous case, we have

Tr((A−Z)( f (A)− f (Z)))+Tr((Z−B)( f (A)− f (Z))) � Tr(C− f (C−))+Tr(C+ f (C+))
= Tr(|C| f (|C|)).

To finish the proof, we need to show that the second and the fourth terms are positive.
We again use the integral representation of operator convex functions and the fact that
C−C+ = 0. We have

Tr((A−Z)( f (Z)− f (A))) = −Tr(C−( f (B+C+)− f (B)))

= −Tr(βC−C+ + γC−((B+C+)2 −B2))

−
∫ ∞

0
sTr(C−(C+ + s2(B+C+ + s)−1− s2(B+ s)−1))dμ(s)

=
∫ ∞

0
s3Tr(C−((B+ s)−1− (B+C+ + s)−1))dμ(s) � 0.

Similarly, we also have that the fourth term is positive. Thus, we finish the proof. �
To finish the paper, we would like to mention that the Ando inequality [1] was

proved for general operator monotone functions and operator convex functions. There-
fore, the following conjecture is natural.
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CONJECTURE 2.1. Let ||| · ||| be an arbitrary unitarily invariant norm and f an
operator monotone function on [0,∞) such that f (0) = 0. Then for any positive matri-
ces A and B ,

|||(A−B)( f (A)− f (B))||| � ||||A−B| f (|A−B|)|||.

Also, the above inequality is reversed for an operator convex function f on [0,∞) such
that f (0) = 0.
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