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Abstract. Let Ai, i = 1, ...,m, and X be n×n matrices such that each Ai is positive definite with
0 < ai � sn (Ai) and X is Hermitian. Then it is shown that∣∣∣∣∣
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)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣� m(1+ l2) |||X ||| ,

for every unitarily invariant norm, where l = min
1�i�m

ai.

1. Introduction

Let Mn(C) be the algebra of all n× n complex matrices. The identity matrix
In ∈ Mn(C) is a square matrix that has 1’s along the main diagonal and 0’s for all other
entries. For a matrix A ∈ Mn(C) , let λ1(A), ...,λn(A) be the eigenvalues of A repeated
according to multiplicity. The singular values of A, denoted by s1(A), ...,sn(A), are the
eigenvalues of the positive semidefinite matrix |A| = (A∗A)1/2 arranged in decreasing
order and repeated according to multiplicity. A Hermitian matrix A ∈ Mn(C) is said to
be positive semidefinite if x∗Ax � 0 for all x ∈ Cn and it is called positive definite if
x∗Ax > 0 for all x ∈ C

n with x �= 0.
The spectral norm ||·|| is the norms defined on Mn(C) by ||A||= max{||Ax|| : x ∈

Cn, ||x|| = 1}. It is known that (see, e.g., [3, p. 76]) for every A ∈ Mn(C), we have

||A|| = s1(A) (1.1)

and for each k = 1, ...,n, we have

||A||(k) = max

∣∣∣∣∣
k

∑
j=1

y∗jAx j

∣∣∣∣∣ , (1.2)

where the maximum is taken over all choices of orthonormal k− tuples x1, ...,xk and
y1, ...,yk. In fact, replacing each y j by z jy j for some suitable complex number z j of
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modulus 1 for which z jy∗jAx j =
∣∣∣y∗jAx j

∣∣∣ , implies that the k− tuple z1y1, ...,zkyk is still

orthonormal, and so an identity equivalent to identity (1.2) can be seen as follows:

||A||(k) = max
k

∑
j=1

∣∣y∗jAx j
∣∣ , (1.3)

where the maximum is taken over all choices of orthonormal k− tuples x1, ...,xk and
y1, ...,yk.

A unitarily invariant norm |||·||| is a norm defined on Mn(C) that satisfies the
invariance property |||UAV |||= |||A||| for every A∈ Mn(C) and every unitary matrices
U,V ∈ Mn(C).

An elementary inequality (see, e.g., [7, p. 281]) for positive real numbers a,b,
asserts that

ab +ba > 1. (1.4)

It can be easily seen that the inequality (1.4) implies that if a and b are real numbers
such that a is positive and b is nonnegative, then

ab +ba � 1 (1.5)

with equality if and only if b = 0.
It has been shown in [Lemma 2.12, 1] that if a and b are two positive real numbers,

then
aa +bb � 2e−e−1

. (1.6)

A generalization of the inequality (1.4) has been shown in [Lemma 3.1, 1],

m

∑
i=1

aam+1−i
i >

m
2

, (1.7)

where a1,a2, ...,am are positive real numbers. Also in [1], many inequalities and appli-
cations has been given depending on this inequality.

In this paper, we give further related inequalities for scalars and we extend them
into matrices. In Section 2, we give a refinement of the inequality (1.7). In Section 3,
we give matrix versions for our scalar inequalities. In Section 4, we apply our results
that we obtained to some known results for convex functions.

2. Preliminary results

In this section, we give a refinement of the inequality (1.7). First, we need the
following lemma (see, [Theorem 2.2, 2]).

LEMMA 2.1 Let a and b be positive real numbers. Then

ab +ba � 1+min(a2,b2), (2.1)
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with equality if and only if a = b = 1. In particular,

aa � 1+a2

2
, (2.2)

with equality if and only if a = 1.

The following theorem is our main result in this section.

THEOREM 2.2. Let a1,a2, ...,am be positive real numbers. Then

m

∑
i=1

aam+1−i
i � m

2
(1+ l2), (2.3)

where l = min
1�i�m

ai.

Proof. We have two cases for m .
Case 1. If m is even, then

m

∑
i=1

aam+1−i
i =

m/2

∑
i=1

(aam+1−i
i +ai

am+1−i
)

�
m/2

∑
i=1

(1+min(a2
i ,a

2
am+1−i

)) (by the inequality (2.1))

�
m/2

∑
i=1

(1+ l2) =
m
2

(1+ l2).

Case 2. If m is odd, then

m

∑
i=1

aam+1−i
i = a

m+1
2

m+1
2

+

m−1
2

∑
i=1

(aam+1−i
i +ai

am+1−i
)

� 1
2
(1+a2

m+1
2

)+

m−1
2

∑
i=1

(1+min(a2
i ,a

2
am+1−i

)) (by the inequality (2.1))

� 1
2
(1+ l2)+

m−1
2

(1+ l2),

this completes the proof. �
The following corollary can be considered as a generalization of our result in the

previous theorem.

COROLLARY 2.3 Let a1,a2, ...,an be positive real numbers and let σ be a permutation
of the set {1, ...,m} . Then

n

∑
i=1

a
aσi
i � m

2
(1+ l2), (2.4)
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in particular (
m−1

∑
i=1

aai+1
i

)
+aa1

m � m
2

(1+ l2),

where l = min
1�i�m

ai.

Proof. The proof follows from the fact that a
aj
i � min(aai

i ,a
aj
j ) where i, j = 1, ...,m,

and the inequality (2.2). �

3. Matrix versions of the inequality (2.3)

In this section, we derive inequalities for matrices that present generalizations of
the inequality (2.3). Our results in this section can be considered as refinements of some
results given in [1]. First, we need the following lemma (see, e.g., [3, p. 62]).

LEMMA 3.1 Let A,B ∈ Mn(C) such that A and B are positive semidefinite. Then

s j(A+B) � sk (A)+ s j−k+n (B) , (3.1)

for j,k = 1, ...,n with k � j .

The following lemma is a direct consequence of the Weyl’s Monotonicity Theorem
(see, e.g., [3, p. 63]).

LEMMA 3.2 Let A,X ∈ Mn(C) such that A is positive semidefinite. Then

s j(X∗AX) � s2
j (X)sn (A) , (3.2)

for j = 1, ...,n.

Based on Theorem 2.2, Lemma 3.1, and Lemma 3.2, we have the following result.
This result can be considered as a generalization of the inequality (2.3) in the setting of
the singular values of matrices.

THEOREM 3.3. Let Ai,Xi ∈ Mn(C), i = 1,2, ...,m, such that each Ai is positive
definite with 0 < ai � sn(Ai). Then

s j

(
m

∑
i=1

X∗
i Aam+1−i

i Xi

)
� c jm

2
(1+ l2), (3.3)

for j = 1, ...,n, where c j = min{s j(X1),sn(X2), ...,sn(Xm)} and l = min
1�i�m

ai.
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Proof. Since A1, ...,Am are positive definite, we have

s j

(
m

∑
i=1

X∗
i Aam+1−i

i Xi

)
= s j

(
X∗

1 Aam
1 X1 +

m

∑
i=2

X∗
i Aam+1−i

i Xi

)

(by Lemma 3.1)

� s j
(
X∗

1 Aam
1 X1

)
+ sn

(
m

∑
i=2

X∗
i Aam+1−i

i Xi

)

(by Lemma 3.2)

� s2
j(X1)sn(Aam

1 )+
m

∑
i=2

sn
(
X∗

i Aam+1−i
i Xi

)

� s2
j(X1)sn(A

am
1 )+

m

∑
i=2

s2
n(Xi)sn(A

am+1−i
i )

� min{s j(X1),sn(X2), ...,sn(Xm)}
m

∑
i=1

aam+1−i
i

� c jm
2

(1+ l2), (by Theorem 2.2)

for j = 1, ...,n. �
Applications of Theorem 3.3 can be seen in the following two results.

COROLLARY 3.4 Let Ai,Xi ∈ Mn(C), i = 1,2, ...,m, such that each Ai is positive def-
inite with 0 < ai � sn(Ai). Then

m

∑
i=1

X∗
i Aam+1−i

i Xi � cnm
2

(1+ l2)In, (3.4)

and
m

∑
i=1

Aam+1−i
i � m

2
(1+ l2)In, (3.5)

where cn = min{sn(X1),sn(X2), ...,sn(Xm)} and l = min
1�i�m

ai. In particular,

m

∑
i=1

Asn(Am+1−i)
i � m

2
(1+ min

1�i�m
s2
n(Ai))In, (3.6)

with equality if and only if Ai = In, i = 1,2, ...,m.

Proof. Since
m
∑
i=1

X∗
i Aam+1−i

i Xi is positive semidefinite, we have

m

∑
i=1

X∗
i Aam+1−i

i Xi � sn

(
m

∑
i=1

X∗
i Aam+1−i

i Xi

)
In

� cnm
2

(1+ l2)In (by the inequality (3.3)). �
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COROLLARY 3.5 Let Ai,Xi ∈ Mn(C), i = 1,2, ...,m,such that each Ai is positive defi-
nite with ai � ‖Ai‖ and l = min

1�i�m
ai. Then

s j

(
m

∑
i=1

X∗
i A

−a−1
m+1−i

i Xi

)
� c jm

2
(1+ l2), (3.7)

for j = 1, ...,n, and
m

∑
i=1

X∗
i A

−a−1
m+1−i

i Xi � cnm
2

(1+ l2)In, (3.8)

where c j = min{s j(X1),sn(X2), ...,sn(Xm)}, and

m

∑
i=1

A
−a−1

m+1−i
i � m

2
(1+ l2)In. (3.9)

In particular
m

∑
i=1

A−‖Am+1−i‖−1

i � m
2

(1+ min
1�i�m

‖Ai‖−2)In, (3.10)

with equality if and only if Ai = In, i = 1,2, ...,m.

Proof. Since Ai, i = 1,2, ...,m are positive definite, the matrices A−1
i , i = 1,2, ...,m

are positive definite matrices. Also the conditions ai � ‖Ai‖ , i = 1, ...,m are equivalent
to the conditions 0 < a−1

i � sn(A−1
i ), i = 1,2, ...,m. So the desired inequalities follow

from Theorem 3.3 and Corollary 3.4 by replacing each Ai and each ai by A−1
i and

a−1
i , respectively. �

THEOREM 3.6. Let Ai,X ∈ Mn(C), i = 1,2, ...,m, such that each Ai is positive
definite with 0 < ai � sn(Ai) and X is Hermitian. Then

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

m

∑
i=1

Aam+1−i
i

)
X +X

(
m

∑
i=1

Aai
m+1−i

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣� m(1+ l2) |||X ||| (3.11)

for every unitarily invariant norm, where l = min
1�i�m

ai.

Proof. Since X is Hermitian, it follows that there is an orthonormal basis {e j} of
Cn consisting of eigenvectors corresponding to the eigenvalues {λ j(X)} arranged in
such a way that |λ1(X)| � · · · � |λn(X)| . Since s j(X) =

∣∣λ j(X)
∣∣ for j = 1, ...,n, we
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have ∣∣∣∣∣
∣∣∣∣∣
(

m

∑
i=1
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i

)
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�
k
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m
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m
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e j

∣∣∣∣∣ (by the identity (1.3))

=
k

∑
j=1

∣∣∣∣∣e∗j
(

m

∑
i=1

Aam+1−i
i

)
Xej + e∗jX

(
m

∑
i=1

Aai
m+1−i

)
e j

∣∣∣∣∣
=

k

∑
j=1

∣∣∣∣∣e∗j
(

m

∑
i=1

Aam+1−i
i

)
Xej +(Xej)∗

(
m

∑
i=1

Aai
m+1−i

)
e j

∣∣∣∣∣
=

k

∑
j=1

∣∣∣∣∣λ j(X)e∗j

(
m

∑
i=1

Aam+1−i
i +

m

∑
i=1

Aai
m+1−i

)
e j

∣∣∣∣∣
=

k

∑
j=1

∣∣λ j(X)
∣∣ (e∗j

(
m

∑
i=1

Aam+1−i
i +

m

∑
i=1

Aai
m+1−i

)
e j

)

=
k

∑
j=1

s j(X)

(
e∗j

(
m

∑
i=1

Aam+1−i
i +

m

∑
i=1

Aai
m+1−i

)
e j

)

� m(1+ l2)
k

∑
j=1

s j(X) (by the inequality (3.5)) = m(1+ l2) ||X ||(k) ,

for k = 1, ...,n. Now the inequality (3.11) follows by the Fan Dominance Theorem (see,
e.g., [3, p. 93]). �

We close this section by the following remark.

REMARK 3.7 Using the inequality (2.4), other matrix-type inequalities related to the
inequalities (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10), and (3.11) can be ob-
tained.

4. Results related to concave functions

In this section we apply our results that we obtained in section three to some known
results for convex functions. First, we need the following lemma [Theorem 3.2, 4].
Other related results can be found in [5] and [6]. Also, all convex functions here are
assumed to be continuous.

LEMMA 4.1 Let Ai,Xi ∈ Mn(C), i = 1,2, ...,m,such that each Ai is Hermitian and
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m
∑
i=1

X∗
i Xi = In. If f is monotone convex function, then

s j

(
m

∑
i=1

X∗
i f (Ai)Xi

)
� s j

(
f

(
m

∑
i=1

X∗
i AiXi

))
, (4.1)

for j = 1, ...,n.

Our first main result in this section can be stated as follows.

THEOREM 4.2. Let Ai,Xi ∈ Mn(C), i = 1,2, ...,m,such that each Ai is positive

definite with 0 < ai � sn(Ai) and
m
∑
i=1

X∗
i Xi = In. If f is monotone convex function on

[0,∞) , then

s j

(
m

∑
i=1

X∗
i f (Aam+1−i

i )Xi

)
� f

(c jm

2
(1+ l2)

)
, (4.2)

for j = 1, ...,n, where c j = min{s j(X1),sn(X2), ...,sn(Xm)} and l = min
1�i�m

ai.

Proof.

s j

(
m

∑
i=1

X∗
i f (Aam+1−i

i )Xi

)
� s j

(
f

(
m

∑
i=1

X∗
i Aam+1−i

i Xi

))
(by Lemma 4.1)

= f

(
s j

(
m

∑
i=1

X∗
i Aam+1−i

i Xi

))

� f
(c jm

2
(1+ l2)

)
(by Theorem 3.3). �

Applications on Theorem 4.2 can be seen in the following results.

COROLLARY 4.3 Let Ai,Xi ∈ Mn(C), i = 1,2, ...,m,such that each Ai is positive defi-

nite with 0 < ai � sn(Ai) and
m
∑
i=1

X∗
i Xi = In. If f is monotone convex function on [0,∞) ,

then
m

∑
i=1

X∗
i f (Aam+1−i

i )Xi � f
(cnm

2
(1+ l2)

)
In, (4.3)

where cn = min{sn(X1),sn(X2), ...,sn(Xm)} and l = min
1�i�m

ai.

COROLLARY 4.4 Let Ai ∈ Mn(C), i = 1,2, ...,m,such that each Ai is positive definite
with 0 < ai � sn(Ai). If f is monotone convex function on [0,∞) , then

m

∑
i=1

f (Aam+1−i
i ) � mf

(
1+ l2

2

)
In, (4.4)

where l = min
1�i�m

ai.



INEQUALITIES FOR CERTAIN POWERS OF SEVERAL POSITIVE DEFINITE MATRICES 1035

COROLLARY 4.5 Let Ai,Xi ∈ Mn(C), i = 1,2, ...,m,such that each Ai is positive defi-

nite with 0 < ai � sn(Ai) and
m
∑
i=1

X∗
i Xi = In. Then

s j

(
m

∑
i=1

X∗
i eA

am+1−i
i Xi

)
� e

c jm
2 (1+l2), (4.5)

for j = 1, ...,n, where c j = min{s j(X1),sn(X2), ...,sn(Xm)} and l = min
1�i�m

ai.

Proof. The result follows by Theorem 4.2 by taking f (t) = et . �

COROLLARY 4.6 Let Ai,Xi ∈ Mn(C), i = 1,2, ...,m, such that each Ai is positive def-

inite with 0 < ai � sn(Ai) and
m
∑
i=1

X∗
i Xi = In. Then

m

∑
i=1

X∗
i eA

am+1−i
i Xi � e

cnm
2 (1+l2)In, (4.6)

where cn = min{sn(X1),sn(X2), ...,sn(Xm)} and l = min
1�i�m

ai.
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