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GENERALIZED WEIGHTED COMPOSITION
OPERATORS ON WEIGHTED BERGMAN SPACES, II

XIANGLING ZHU

(Communicated by S. Stevic)

Abstract. The boundedness, compactness, essential norm, Hilbert-Schmidt class and order bound-
edness of generalized weighted composition operators on weighted Bergman spaces are investi-
gated in this paper.

1. Introduction

Let D = {z:|z] < 1} be the unit disk of complex plane C and let JD be the
boundary of D). Denote by H(ID) the class of functions analytic in D. For a € D,
0,4(z) = £=£ is the Mobius transformation of D.

1_
For a salibarc I C 9D, let S(I) be the Carleson box based on I with

S ={zeD:1-1|< |z <1 andﬁel}.
z
If I =0D,let S(I)=D. Let u denote a positive Borel measure on ID. For 0 < & < o,
we say that u is an o -Carleson measure on D if (see [1])

sup p(S(1))/|1]* <ee.
1coD

Here and henceforth sup;-,p, indicates the supremum taken over all subarcs I of dID.
[I| = (2)~! [;|d&]| is the normalized length of the subarc I. Note that & = 1 gives the
classical Carleson measure.

For 0 < p <« and y > —1, the weighted Bergman space, denoted by A%, is the
set of all functions f € H(DD) satisfying

171 = [ 7@ Pday) <o,

where dAy(z) = (y+1)(1 — |z|*)7dA(z) and dA is the normalized Lebesgue area mea-
sure in I such that A(ID) = 1. This means that A} = H(ID)(L"(D,dAy). When p =2,

2 . .
A} is a Hilbert space.
Mathematics subject classification (2010): 30H30, 47B38.
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We denote the set of nonnegative integers by Z. Let ¢ be an analytic self-map
of D, u € H(D) and n € Z. The generalized weighted composition operator Dy, is
defined as follows (see [34, 36]).

(Dguf)@) =u(z)- f"(0(2), fe€HD), zeD.

If n =0, then Dy, is just the weighted composition operator, which is frequently
denoted by uCy in the literature. When n =0 and u(z) = 1, then Dj, , is just the
composition operator Cy , which is defined by

(Cof)(2) = f9(2), f € H(D).

See [2, 32] for more information about the theory of composition operators. When
u(z) =1, Dy, = CoD". See, for example, [4, 7, 8, 9, 12, 18, 19, 21, 25, 31] for the
study of the operator Cy,D". See, for example, [5, 6, 10, 11, 13, 20, 22, 23, 24, 26, 27,
33, 34, 35, 36, 37] and the references therein for the study of the operator D'(;,M. For
some other product-type operators see, for example [16, 28, 29].

In [19], Stevi¢ studied the operator Cp D" on weighted Bergman spaces. In [30],
Ueki studied the order boundedness of the operator uCy . VA Ag . In [34], the au-
thor studied the operator Dy, : AP — A%. Among others, we prove that, under the

assumption that u € A%, Dy A2 — A% is bounded if and only if

) (1 |a)e?
S o N g e

dA/; (Z) < oo,

Dy, : Ag — A} is compact if and only if D, : A7 — A} is bounded and
- o (1—laP)*? _
lim /D )P [y 4B () = 0

‘u‘%l

Motivated by results in [19, 30, 34], in this work we give another characterization
of the boundedness, compactness and essential norm of the operator Dy, : A — A% .
Moreover, we study the order boundedness and the Hilbert-Schmidt class of the opera-
tor Dy, : Ag, — A

Recall that the linear operator 7 : X — Y is order bounded if 7 maps the unit ball
of X into an order interval of Z, namely there exists a nonnegative element P in Z
such that |T(f)| < P for all f belongs to the unit ball of X . Here X is a quasi-Banach
space and Y a subspace of quasi-Banach Lattice Z.

Throughout the paper, we denote by C a positive constant which may differ from
one occurrence to the next. In addition, we say that A < B if there exists a constant C
such that A < CB. The symbol A ~ B means that A < B S A.

2. Boundedness and essential norm of Dy, , : A2 — Af3

In this section, we give another characterization for the boundedness, compactness
and essential norm of the operator Dj , : A2 — A2 Hence, we first state some lemmas
which will be used in the proofs of the main resu{%s in this section.
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LEMMA 2.1. [14] Let U be a positive measure on D, m € Z, and —1 < o, < oo.
Then U is a bounded 2+ o+ 2m-Carleson measure if and only if there is a positive
constant C, depending only on o and m such that

L1 @ Pan) <l

forall f e A(zx. Moreover, if I is a bounded 2+ o+ 2m-Carleson measure, then C =
C1Cy, where Cy > 0 depends only on o, and m and

u(si))

G = sup |[1[2+at2m

Let 0 < s < oo. The bounded s-Carleson measure can be characterized by a global
integral condition (see [1]), namely,

sup Nsu / lo!(2)|*du(z) ()
I |I|S

LEMMA 2.2. [15] Let 0 < p < 1,1 <5< oo andlet U be a positive Borel measure

on D. Then
HSDA\A(D.p)) sup [ |op(2)]*du(z),

sup <
1 P |b|=p /D
where A(0,p) :={z:|z| <p}.

LEMMA 2.3. [2] Let g and u be positive measurable functions on D, and let ¢
be an analytic self-map of . Then

(52 0)l9' () Pu()az) = [ s(nU(p.w)dA(2)

where U(@,w) =3¢ o1 u(2) for we D\{¢(0)}.
Foran f(z) = Zkzoakz € H(D), define

J
2) =Y a, Rif(z) Z arZ".
k=0

k=j+1

LEMMA 2.4. Let m € Z and —1 < o0 < oo. For each w € D, positive integer j
and f € A2,

)

S T(k+o+2+m)
R F(w))™ ) < k
R0 ™] < 111l 2 Hraizem
where T" denotes the Gamma function.

Proof. Since f € A%, itis clear that R;f € AZ. Hence

(Ri£)w) = [ (R11)(2)Ka (. 2)dAa(2),
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W is the Bergman Kernel function. Thus, by the orthogonality
of monomials z¥ with respect to dA,,

where Ky (w,2) =

m

T(e+2+m) 3
/ij I'a+2) (1_gw)a+2+mdAa(Z)

_/f a;—i;m)Rj((I_va';HHm)dAa(z).

Using Holder’s inequality, we get
I'a+2+4+m)
‘(ij)w(w)’ oD /\f \‘R ( a+2+m)’dAa(z)

S Tlk+m+a+t2) k7k+m‘
~ e mr e dA
/ ) KT(mtot2) " © a(2)

k+l

N , ) }
<t ( /D( >, %wmm) dAa(Z))

k=j+1
- F(k+m+a+2)‘ !

< w |
171l kzsz KT(m+ o +2)

THEOREM 2.1. Let ¢ be an analytic self-map of D, —1 < o, 3 < oo,n € Z and
ue€ H(D). Then Dy :A%x —>A123 is bounded if and only if

sup |Gb( (@) u(z) PdAp (2) < oe. 2)
beD

Proof. First we assume that (2) holds. Let dpu(z) = |u(z)|*dAg(z). By (1) and
Lemma 2.3 we have

—1
Lo (S(1)) / /(N 24020 1
SUp ———————= & su o, (w duo \
Ip ‘I|2+O‘+2” beg ID)| b( )‘ Hoo ( )

= sup | |o4(@(2))[*T*" " |u(z)PdAg(2) < . 3)
beD /D

For any f 6A2 , by Lemmas 2.1 and 2.3, and (3) we have
1Dhufl3y ~ | 105t @)PdA) = [ 17 0)Pdirop™

poo '(s(1))
S u W”JCHAZ<

Thus Dy, , : Ag — Aj is bounded.
Conversely, assume that Djj, , A2 — A% is bounded. For any a € D, set

1—\a|2 at2
fa(Z):(m) 2, zeD.
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Then HfaHA%‘ ~ 1. Let I C JD, and let € JD be the center of arc I and b = (1 —
[1|)¢ € D. Then

or+2 n

0y _ Tt atm) (1 b
b r2+a) (1 _bz)2+a+n
and
(”) 2> 1
Iy (2l R = pprrar zeS(I).
Thus, by the boundedness of D’é, A2 — A123, we get
o > D4l Ilfs 3 > 11D ufbllAz —/ 1 (0(2))P[u(z)|*dAg (2)

% iy Moo (S()
—/ £, w) Pdpo ™! ~/ ~ToD z+a+znd“ ¢ (W>NW7

forall I C dD. By (1) and Lemma 2.3 we have

sup IGb( @) u(z)PdAg (z) = Sup/ | (W) 7T P dp o @!
beD beD /D

This completes the proof of this theorem. [
THEOREM 2.2. Let ¢ be an analytic self-map of D, —1 < o, < oo,n € Z and

u € H(D). Suppose that Dy, , A2, — A% is bounded. Then

||D "||eA2 —>A% = Ta
where

T:= hETSlip . |04 (9(2)) 7" |u(2)PdAp (2)-

Proof. First we prove that HD}’MH2 2 T.Let beD. Set

e’AZ AZ ~

1> \ %>
be=<77 ) , z€D.

) (1—bz)?
We have ||f;,||A(zX ~ 1 and f, — 0 weakly in A as |[b| — 1. Thus HK(f;,)HA% — 0 as

|b| — 1 for every compact operator K : A2 — A% . Thus,

1D —KlZo sz A > limsup ||Df, ,(f») — (fh)HAz

bl —1

> limsup|| Dy (fb)llAz thUPHK(fh)llAz—thUPHD (fb)Hf%

|bl—1 [bl— |b|—1
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for every compact operator K : A%X — A%. By Lemma 2.3 we have

limsup | Dy (fb)llAz ~ limsup D\fh (w)Pduoe™

|b|—1 |b|—1

d,uo(p_1

. / 2+a+n) (1—[pP)Tb" 2
= limsup )

b —1 F2+oa) (1—bw)rrotn

Z limsup | |oj(w)*T* " dpog™! =
|p|—1 /D

Therefore, from the definition of the essential norm, we obtain

HD HEA2_>A2 —lflle)'<Z>,u—J||[2\<2X_>A[23 2T

Next, we prove that HD"‘M”?AZ 2 ST Itis clear that
ulle, 3

||D u||eA2—>A% - HD (T +R )HeAz —}AZ ||D 7"]“‘8714(214,14% + HDn(p,MRJ‘||e,A121~>A[23
= HD(p,u J'He?A(ZXHA% X ”D(p,uRJ”A(ZXHA%'
Here we used the fact that 7; is compact on A2, Hence

HD(p u”eAZHAZ 11m1nf||D jHA%‘HA%

Foran f(z) = 7 oaxz* € H(D), by Lemma 2.3 we have
1Dy < B |0 R 3, g < limint sup D (R

<1
712

~ liminf sup | [(R;f)"((2))]*[u(z)|*dAg ()
ISl <1 VP

e,AZ HAZ

= liminf sup [(R;f)™ (w)|Pduo o~ 4)
U ViR o <1/D

Let r € (0,1). For each f € A%, by Lemma 2.4 we have
[ I®n®™ ) Pdpog™!
Pwl<r

e T(k+o+2+n) 2 _
< 2/ K\ g 1
S 712, W(k%l W3 W) o™ ()

o Dlk+o+2+4n) 2 -
< 2 AT ek / d !
f"Aa<k=jZ+1 Ko+ 21 n) ’) e

By the boundedness of Dy, , : Ag, — Aj is bounded, we have u € A} . Hence by Lemma

2.3 we have
2
- dAp() <
/w‘<r / ﬁ
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Hence

liminf sup \(ij)(")(w)|2d,u cp '=0. Q)

T2 I fl g <1 s
We now estimate [,,,.., |(R;jf)™ (w)[?duo@~'. By Lemmas 2.1, 2.2 and 2.3 we obtain

,, _ Jsinao.r duog™!
S R )P0 9! 5 R sup =R

< IRifII%: \STP o), (w) 2T 2 dp o !

= |IR;fII%; sup ACACC )P u(2) PdAp (). (6)

* |p|>r

Using (4), (5) and (6), for any r € (0,1) we get

1D ull? 42 42 < liminf ~ sup (R;f)™ (w)Pdpop™
B 7= 1, 2 <1/wl>r
<hm1nf sup ||RJfHA2 sup/ 62 (¢(2)) 221 u(z )|2dA/3(Z)
LS

< sup [ [03(@(2)) T4 u(2)PdAp (2).

[b|>r/D

Taking the limit as » — 1, we get the desired result. The proof is complete. [
From Theorem 2.2, we immediately get the following result.

THEOREM 2.3. Let ¢ be an analytic self-map of D, —1 < o, 3 <oo,n € Z and
ue H(D). Suppose that D , :A2, —>Af3 is bounded. Then Dy, , (A2, —>Af3 is compact
if and only if

lilrgllsup . |05 (@(2)) P |u(z)PdAg (z) = 0.
-1

3. Hilbert-Schmidt operator Dj, , : Ag — A}
When o = f8 = 0, Cuckovié and Zhao [3] proved that uC,, : A — A? is a Hilbert-
Schmidt operator if and only if

w2
L g <=

In this section, we generalize the above result and study the Hilbert-Schmidt operator
Dy : A2 — A2 For the case u = 1 see also [2]. The following result was essentially
proved in [24], but since there are some minor differences and for the completeness we
present a proof of it.
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THEOREM 3.1. Let ¢ be an analytic self-map of D, —1 < o, 3 < oo,n € Z and
u € H(D). Assume that Dy, , A2 —>Af3 is bounded. Then Dy, , A2 — A% is a Hilbert-
Schmidt operator if and only if

AN
/]D) (1— |(p|(z()z|)2|)a+2+2n dAg(z) <

Proof. Let e%(z) = % Then {ef};_, is an orthonormal basis for
A% We have

:A2 —>A,23 is Hilbert-Schmidt

A 2 HD ||A2 <o
o 3 [ @RI o) Pap(e) <=

= [P s m'T?Taaff))(H( - 1)) lo@) P dag(o) <=
m=n j=o0

ju(z)?
& dA <o, [
/D (1— [@(z)P)=+2r2n p(2)
From the last theorem, we easily get the following result.

COROLLARY 3.1. Let ¢ be an analytic self-map of D such that ||| <1, —1 <
o, <ooand n € Z. Then for any u € A%, D, :A%x — A% is a Hilbert-Schmidt

operator.

THEOREM 3.2. Let ¢ be an analytic self-map of D and u € H(D). Let —1 <
o, <o, n€Z such that B >2n—1+a. If

[ @R PP 2 aa ) < o
then D, , 1A2 — Alz3 is a Hilbert-Schmidt operator.

Proof. From page 41 of [2], we have

=P 1+]p(0)
=lplP S T=Je(O)"

which implies that

/(IM(Z)I2(1—IZI2)ﬁ dA(2)

D (1— ‘¢(Z)‘2)a+2+2"

2(1—|z*)B /14 |@(0)]\ &+2+2n
< usaenn [ QP =[PP (140
e (o)) 40

S [ @R 2P A ) <
D
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1+]9(0)]
1-[o(0)]
A2 — Af3 is a Hilbert-Schmidt operator. [J

The above theorem gives a sufficient condition for Df , : A2 — Af3 to be a Hilbert-
Schmidt operator for any ¢. However, when ¢ is an automorphism of D, we prove
that this condition is also a necessary condition.

Here we use the fact that is a constant. By Theorem 3.1, we see that Dy, :

THEOREM 3.3. Let u € H(D), —1 < o, < oo and n be a nonnegative integer
such that > 2n—1+ o.. Assume that ¢ is an automorphism of D. Then Dy, (A2, —

Alz3 is a Hilbert-Schmidt operator if and only if
[ @R P22 aa ) < o

Proof. We only need to prove the necessary part. Suppose that Dj , A2 — Af3 is

a Hilbert-Schmidt operator. For a € D, let ¢(z) = A {=. where |A| = 1. After some
calculation, we have

1—lq|
1—z2) >
(I—1z%) T a

(1=[p@)).

Hence by Theorem 3.1 and the fact that if—{j{ is a constant, we get

Lty Ju(o)P(1—[2f)?
Lw@Pa kPP maa) 5 (Ta) T e Al

<o, O

4. Order boundedness of Dj, , : A7, — A}

In this section, we investigate the order boundedness of Dy, , A2 — A% .

THEOREM 4.1. Let ¢ be an analytic self-map of D, —1 < o, < o0, n € Z and
u € H(D). The operator Dy, , A2, — A% is order bounded if and only if

juz)?
/]D (1— |@(z)2)2rot2 dAp(z) <. 7
Proof. First we assume that Djj, , (A2 - A% is order bounded. Then, for any

f € A2 with || f]| 42, <1, there exists a nonnegative function g € Lz(ID,dAﬁ) such that

1D f(2)] < 8(2)

for almost every z € D. For any z € D, set

a+2

h(a) = (M)z, aeD.
(1-ag(z))?
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A simple computation shows that i, € A2, with ||A,| 4, <1. 80

@(2)]"|u(z)]
(a+2)

(1-lo@E)?) 2™

Since g € Lz(ID,dA,;), the above inequality implies

S D uhz(2)] < g(2).

lu(z)? / 2
dA < dA < oo, 8
/|w<z)\>1/z(1—\<p(z)\2)°‘+2+2" plA)% J, sl dAs() ®
On the other hand, set
k(z) = ———, zeD.
12752,

Here

A e+ DT+ DT (a+1)
12"l = Tnt+2+a)

Itis clear that k € A7, with [[k[|3, = 1. So,
u(z)| < Dy k(z)| <8(2), z€D.

Since g € Lz(ID,dA,;), the above inequality implies u € Alz3 . Hence

lu(z)|? - )
/|w<z)\<1/z(1—\<p(z)\2>°‘+2+2"dA’3(Z)’“/lw(z)\@/z'u(z)l dAp(e) <= )

From (8) and (9), we get

u(2) 2
/]D (1- |(P(Z()Z|)2|)a+2+2n dAp(z) <o

Conversely, assume that (7) holds. By a classical estimate (see, e.g., a general
point-value estimation in Lemma 5 of [17]), for any f € A%(, we have

. (;?:;lga%zﬂ £l z€D. (10)

1D uf @) = [u(@)] - |f" (@(2))] < cna

and so

1012 < na | g (@) U1y < =
ol a3  Jp (1= |@(z)2)2rot2n A2

Here ¢, o is a constant depending only on n and c. Therefore D}, , : A7 — A% is
bounded.
Now take a function f € Ag with || f]|,2 < 1. From (10),

eralu@]
(1-lp(z)2) 3"+

Dip . f(2)| <
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forany z € ID. Set

a;z —n

8= cualul(1 o)

Then the assumed condition implies g € L*(ID,dAg) and g > 0. Moreover, DG f| <
g- Thatis, Dy , A2 — A% is order bounded. This completes the proof. [
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