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Abstract. A recent result on the continuity of midconvex functionals upper bounded on a not
null-finite set (see [2]) is extended to K -midconvex and K -midconcave set-valued maps.

1. Introduction and preliminaries

Let X and Y be topological vector spaces (real and Hausdorff in the whole paper).
Assume that D is a convex subset of X and K is a convex conein YV (i.e. K+ K CK
and rK C K forall 1 > 0). Denote by n(Y), #(Y), %€ (Y) and €% (Y) the families of
all nonempty, nonempty bounded, nonempty bounded convex and nonempty compact
convex subsets of Y, respectively.

A set-valued map F : D — n(Y) is called K -convex, if

tF(x))+ (1 —1)F(x) CF(tx; + (1 —1)x2) + K (1)
forall x;,x, € D and 7 € [0,1]. If F satisfies
F(tx;+(1—1)x2) CtF(x1)+ (1 —1)F(x2) + K (2)

for all xj,x; € D and ¢ € [0, 1], then it is called K -concave.

A set-valued map F : D — n(Y) is called K -midconvex (K -midconcave, resp.), if
(1) ((2)) is assumed only for r = % .

Clearly, if F is K-convex with K = {0} then it is convex, which means that its
graph is a convex subset of X x Y. If F is single-valued and Y is endowed with the
relation <g of partial order defined by x <g y < y —x € K, then conditions (1) and (2)
reduce to the following conditions:

F(tx)+ (1 —1)xp) <k tF(x1) + (1 —1)F(x2)
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and
tF(xl) + (1 —I)F(XQ) <k F(tx1 + (1 —I)XQ),

respectively. In particular, if ¥ =R and K = [0, ), we obtain the standard definitions
of convex and concave functions.
A set-valued map F : D — n(Y) is said to be K -continuous at a point xo € D if
for every neighbourhood W of zero in Y there exists a neighbourhood U of zero in X
such that
F(xo) CF(x)+W+K (3)

and
F(x) CF(xo)+W+K “)

for every x € (xo+U)ND. If only condition (3) (condition (4)) is fulfilled, F is called
K -lower semicontinuous (K -upper semicontinuous) at x .
Denote by K* the set of all continuous linear functionals on ¥ which are nonne-
gativeon K, i.e.
K'={y"eY* :y"(y) >0foreveryy € K}.

We say that a set-valued map F : D — HB(Y) is K -hemicontinuous (K -lower hemicon-
tinuous, K -upper hemicontinuous) at a point xg € D if for every y* € K* the functional
fy= : D — R defined by

fy(x) =inf y*(F(x)), x€D (5)

is continuous (lower semicontinuous, upper semicontinuous) at xy.

We say that a set-valued map F : D — n(Y) is partially K -upper bounded on
aset A C D if there exists a bounded set B C Y such that F(x)Ncl(B—K) # 0 for all
x€A. F is K-lower bounded on a set A if there exists a bounded set B C Y such that
F(x) Ccl(B+K) forall x €A.

In [2] a new concept of a null-finite set has been introduced. Let us recall, a subset
A of a metric vector space X is called null-finite if there exists a sequence (X;)nen
tending to zero in X such that the set {n € N:x+x, € A} is finite for every x € X .

The following crucial property of null-finite sets has been proved in [2].

THEOREM 1. [2, Theorems 5.1 and 6.1] In a complete abelian metric group each
Borel null-finite set is Haar-meager as well as each universally measurable null-finite
set is Haar-null.

Let us recall that a subset B of an abelian Polish group X is called:

e Haar-meager if there exist a Borel set A D B, a compact metric space K and
a continuous function f : K — X such that f~!(A +x) is meager in K for each
x € X (see [5]);

e Haar-null if there exists a universally measurable set A D B and a ¢ -additive
probability Borel measure ¢ on X such that g(A+x) =0 for each x € X (see
[4D.
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It has been proved in [4] and [5] that in each locally compact abelian Polish group
the notions of a Haar-meager set and a Haar-null set are equivalent to the notions of
a meager set and a set of Haar measure zero, respectively.

In 1983 K. Baron and R. Ger [3, p. 239] asked the following question:

Does the upper boundedness of an additive or midpoint convex function on some
universally measurable set which is not Haar-null imply the continuity of the function?

This problem has been resolved in [2] thanks to Theorem 1 and the following
important result.

THEOREM 2. [2, Theorem 11.1] If a midpoint convex function f: D — R defined
on an open convex subset D C X of a metric vector space X with an invariant metric
is upper bounded on a set B C D which is not null-finite in X and whose closure clB
is contained in D, then f is continuous.

In the paper [6] we generalized Theorem 2 as below.

THEOREM 3. [0, Theorem 11] Let Y be a metric vector space with an invariant
metric. If a K -midconvex set-valued map F : D — PB(Y) defined on an open convex
subset D of a metric vector space X with an invariant metric is partially K -upper
bounded on a set B C D, which is not null-finite in X and satisfies c1B C D, then F is
K -continuous on D.

In this paper we show that the above Theorem 3 also holds in the case where X is
a Baire topological vector space, Y is a locally convex topological vector space such
that U,cn(Bn, — K) =Y for some bounded sets B, CY,ne€N,and F: D — €€ (Y).
But first we prove that if we weaken assumptions about Y in Theorem 3, then we get
just K-hemicontinuity of F'.

2. Some connections between K -continuity and K -hemicontinuity

Assume that X and Y are topological vector spaces, D is an open subset of X
and K is a convex cone in Y. It is known (and easy to prove) that if a set-valued map
F:D — B(Y) is K-continuous at a point xo € D, then it is K-hemicontinuous at this
point (see [9, Prop. 1]; cf. also [7, Prop. 2.1]), but the converse is not true in general (cf.
[1, p. 62]). However, under some additional regularity assumptions, K -midconvex and
K -hemicontinuous set-valued maps are K -continuous. Namely, the following result
has been proved in [9].

THEOREM 4. [9, Theorem 1] Let X be a Baire topological vector space and D
be a convex open subset of X. Assume that Y is a locally convex topological vector
space and K is a convex cone in Y. Assume also that there exist bounded sets B, C Y,
n €N, such that

UJ®B.—K) =Y. (6)
neN
If a set-valued map F : D — €€ (Y) is K-midconvex and K -upper hemicontinuous on
D, then F is K -continuous on D.
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The next theorem shows that a similar result holds also for K-midconcave set-
valued maps.

THEOREM 5. Let X be a Baire topological vector space and D be a convex open
subset of X. Assume that Y is a locally convex topological vector space and K is
a convex cone in Y. Assume also that there exist open bounded sets B, CY, n € N,
such that

UJ®B.+K) =Y. (7)
neN

If a set-valued map F : D — €€ (Y) is K-midconcave and K -lower hemicontinuous
on D, then F is K -continuous on D.

In the proof of this theorem we will use the following lemma (which is a slight im-
provement of the Bernstain-Doetsch-type theorem for K -midconcave set-valued maps
given in [8, Theorem 4.4]). Recall that if a set-valued map F : D — n(Y) is K-
midconcave and convex-valued, then

F(gx1+(1—q)x2) CqF(x1) + (1 —q)F(x2) +K (8)
for all xj,x; € D and all dyadic g € [0,1] (see [8, Lemma 4.1]).

LEMMA 6. Let X and Y be topological vector spaces. Assume that D is an open
convex subset of X and K is a convex cone in Y. If a set-valued map F : D — BE (Y)
is K-midconcave and K -lower bounded on a subset of D with a nonempty interior,
then F is K -continuous on D.

Proof. Let F be K-lower bounded on a set xo+U C D, where xo € D and U is
a neighbourhood of zero in X . Then there is a bounded set B C Y such that

F(x) Ccl(B+K), xexo+U. 9

We prove that F' is K -upper semicontinuous at xy. So, take an arbitrary neighbourhood
W of zero in Y and next choose a balanced neighbourhood V of zero such that V +
V+V C W. Since the sets B and F(xo) are bounded, there exists a dyadic number
q € (0,1) such that

gBCV and gF(xp) CV.

Thus, by (9),
gF (x) Cqcl(B+K)=cl(qgB+¢gK)Ccl(V+K)CV+K+V, xexo+U. (10)
Now, fix u € U. Then, using (8) and (10), we obtain

F(xo+qu) = F((1—q)xo+q(u+x)) C (1 —q)F(x0) +qF (u+x0) + K
C F(x) —gF (x0) +V+V+KCF(xo)—V+V+V+K
C F(xo) +W+K,
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which means that F' is K -upper semicontinuous at xy and, consequently, K -continuous
on D (see [8, Theorem 4.5]). [

_ Proof of Theorem 5. Let By, n € N, be open bounded sets satisfying (7). Define
B, =conv(B;U...UB,), n € N. Since the convex hull of an open set is open and,
in locally convex spaces, the convex hull of a bounded set is bounded, the sets B, are
open and convex. Moreover, B, C B,+1, n € N. Define

A,={xeD:F(x)Ccl(B,+K)}, neN. (11)
Then (J,enAn = D. Indeed, for every fixed x € D the sets §n + K, n €N, form an
open covering of F(x). Since F(x) is compact, there exists a finite subcovering of it:

F(x) C (By, +K)U...U(By, +K) =By, +K,

and hence x € Anp . By the definition of A, the set-valued map F is K -lower bounded
on every set A,. We will show that F is also K-lower bounded on the sets clA,. To
this aim fix an n € N and take an xo € clA,. By (11) F(x) C cl(B,+K) for every
x € A,. We will show that also F(xo) C cl (B, +K). N

For the proof by contradiction suppose that there exists z € F(xo) \ cl (B, +K).
Since the set cl (B, + K) is convex and closed, by the separation theorem (see e.g (see

[10, Theorem 3.4])) there exists a continuous linear functional y* € Y* such that
¥*(z) < infy* (cl(B, +K)). (12)
Note that y* € K*. Indeed, in view of (12) we have
y(k) 2 y"(z) = y"(bo) =: M,
for all k € K and arbitrarily fixed by € B,. Hence, by the homogeneity of y*, we get
1 1
yi(k)=—y"(mk) > —M, m €N,
m m
which proves that y*(k) > 0 for all k € K. Now, put
g :=infy"(cl(B, +K)) —y*(2).

By the K-lower hemicontinuity of F at xo there exists a neighbourhood Uy, C D such
that

Sfir (X) < fir(x0) + €, x € Uy,. (13)
Since xq € clA,, there exists an x; € A, NUy,. Then, by (13) and the definition of &,
we obtain

fyr (1) < fyr(x0) +& <y (2) + & = infy* (cl (B, +K))
<infy* (F(x1)) = fy (x1).-

This contradiction proves that F(x) C cl(B,+ K) for every x € clA,.

Hence, F is K-lower bounded on every clA,, n € N. Since Y is a Baire space
and D C U,enclA,, there exists ng € N such that intclA,, # 0. Thus F is K-
lower bounded on a set with nonempty interior and consequently, by Lemma 6, F is
K -continuous on D. This finishes the proof. [J
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3. K-continuity as a consequence of boundedness on not null-finite sets

In this section first we will show that K-midconvex set-valued maps partially
K -upper bounded on a not null-finite set, as well as K-midconcave set-valued maps
K -lower bounded on a not null-finite set, are K-hemicontinuous. Next we will use
these results and Theorems 4, 5 to prove that under some additional assumptions K -
midconvex set-valued maps partially K -upper bounded on a not null-finite set, as well
as K-midconcave set-valued maps K-lower bounded on a not null-finite set, are K-
continuous.

THEOREM 7. Let X be a metric vector space with an invariant metric, D be an
open convex subset of X and A C D be a set which is not null-finite and clA C D.
Assume that Y is a topological vector space and K is a convex cone in Y. If a set-
valued map F : D — PB(Y) is K-midconvex and partially K -upper bounded on A,
then F is K -hemicontinuous on D.

Proof. Assume that F' is K-midconvex and partially K-upper bounded on A.
Then there exists a bounded set B C Y such that

F(x)Ncl(B—K)#0, x€A. (14)

Fix any y* € K* and take the functional f,~ defined by (12). Since F is K-midconvex
and y* € K*, we have for all x;,x; € D

PUFw) £ () _ . (Fla) )
2 2
<y (F(57)+x)

Hence
Sy (1) + fyr(2)  infy”(F (x1)) + infy* (F (x2))

2 2
_ i (L) £y ()
2

oy ((252)

X1 +x3
:fy*< 2 )

which means that fy+ is midconvex. By (14), for every x € A we have
¥ (F(x) Ny (cl(B—K)) #0.
Since y* is continuous, y*(cl(B—K)) C cl(y*(B—K)). Therefore

Y(F(x))Nel (y'(B—K)) #0
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and hence

YH(F(x))Nel (y*(B) + (—e,0]) #0. (15)
Since continuous linear functionals map bounded sets into bounded sets (see [10, The-
orem 1.32]), the set y*(B) is bounded. Assume that y*(B) C [m,M]. Then, by (15),

Y (F(x)) N (oo, M] # 0,

and hence
fir(x) <M, xeA.

Consequently, in view of Theorem 2, f,« is continuous on D. This means that F is
K -hemicontinuouson D. [

THEOREM 8. Let X be a metric vector space with an invariant metric, D be an
open convex subset of X and A C D be a set which is not null-finite and clA C D.
Assume that Y is a topological vector space and K is a convex cone in Y. If a set-
valued map F : D — B(Y) is K-midconcave and K -lower bounded on A, then F is
K -hemicontinuous on D.

Proof. Since F is K-lower bounded on A, there exists a bounded set B C Y such
that
F(x) Ccl(B+K), x€A. (16)

Fix any y* € K* and take the functional f,+ defined by (12). Since F is K-midconcave
and y* € K*,

P (P(52)) v (PR k)
oy (F by
2 )
V) F@)

2

for x1,x, € D. Hence

B (2) <y (1 (52))
Y(F (1)) +y"(F(x2))
2
fe) )
2

which means that f,+ is midconcave. By (16) and the continuity of y*,

> inf

Y (F(x)) Cy*(cl(B+K)) Ccl(y*(B)+[0,0)) foreach x € A.
Clearly the set y*(B) is bounded, so y*(B) C [m,M] and then

fir(x) =m, xeA.
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Hence, since — f)+ is midconvex, according to Theorem 2, f,« is continuous on D. It
means that F' is K-hemicontinuouson D. [

Now, using Theorems 4 and 7 we obtain the following result (cf. [6, Theorem 11]).

COROLLARY 9. Let X be a Baire metric vector space with an invariant metric, D
be an open convex subset of X and A C D be a set which is not null-finite and clA C D.
Assume that Y is a locally convex topological vector space and K is a convex cone in
Y. Assume also that there exist bounded sets B, CY, n € N, satisfying (6). If a set-
valued map F : D — €€ (Y) is K-midconvex and partially K -upper bounded on A,
then F is K -continuous on D.

Analogously, by Theorems 5 and 8 we get the following result.

COROLLARY 10. Let X be a Baire metric vector space with an invariant metric,
D be an open convex subset of X and A C D be a set which is not null-finite and
clA C D. Assume that Y is a locally convex topological vector space and K is a convex
cone in Y. Assume also that there exist open bounded sets B,, CY, n € N, satisfying
(7). If a set-valued map F : D — €€ (Y) is K-midconcave and K -lower bounded on
A, then F is K -continuous on D.

Finally, we use Theorem 1 and the above Corollaries 9 and 10 to answer Baron’s
and Ger’s question in the case of set-valued functions.

COROLLARY 11. Let X be a complete metric vector space with an invariant met-
ric, D be an open convex subset of X and A C D be a universally measurable set which
is not Haar-null or a Borel set which is not Haar-meager. Let Y be a locally convex
topological vector space and K be a convex cone in Y. Assume also that there exist
bounded sets B, C Y, n € N, satisfying (6). If a set-valued map F : D — €€ (Y) is
K -midconvex and partially K -upper bounded on A, then F is K -continuous on D.

COROLLARY 12. Let X be a complete metric vector space with an invariant met-
ric, D be an open convex subset of X and A C D be a universally measurable set which
is not Haar-null or a Borel set which is not Haar-meager. Let Y be a locally convex
topological vector space and K be a convex cone in Y. Assume also that there exist
open bounded sets B, CY, n € N, satisfying (7). If a set-valued map F : D — €% (Y)
is K-midconcave and K -lower bounded on A, then F is K -continuous on D.
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