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Abstract. A recent result on the continuity of midconvex functionals upper bounded on a not
null-finite set (see [2]) is extended to K -midconvex and K -midconcave set-valued maps.

1. Introduction and preliminaries

Let X and Y be topological vector spaces (real and Hausdorff in the whole paper).
Assume that D is a convex subset of X and K is a convex cone in Y (i.e. K +K ⊂ K
and tK ⊂K for all t � 0). Denote by n(Y ) , B(Y ) , BC (Y ) and CC (Y ) the families of
all nonempty, nonempty bounded, nonempty bounded convex and nonempty compact
convex subsets of Y , respectively.

A set-valued map F : D → n(Y ) is called K -convex, if

tF(x1)+ (1− t)F(x2) ⊂ F(tx1 +(1− t)x2)+K (1)

for all x1,x2 ∈ D and t ∈ [0,1] . If F satisfies

F(tx1 +(1− t)x2) ⊂ tF(x1)+ (1− t)F(x2)+K (2)

for all x1,x2 ∈ D and t ∈ [0,1] , then it is called K -concave.
A set-valued map F : D → n(Y ) is called K -midconvex (K -midconcave, resp.), if

(1) ((2)) is assumed only for t = 1
2 .

Clearly, if F is K -convex with K = {0} then it is convex, which means that its
graph is a convex subset of X ×Y . If F is single-valued and Y is endowed with the
relation �K of partial order defined by x �K y⇔ y−x∈ K, then conditions (1) and (2)
reduce to the following conditions:

F(tx1 +(1− t)x2) �K tF(x1)+ (1− t)F(x2)

Mathematics subject classification (2010): 26B25, 39B62, 54C60.
Keywords and phrases: K -midconvex set-valued map, K -midconcave set-valued map, K -continuity,

K -hemicontinuity, null-finite set, Haar-null set, Haar-meager set.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-22-74

1081

http://dx.doi.org/10.7153/mia-2019-22-74


1082 E. JABŁOŃSKA AND K. NIKODEM

and
tF(x1)+ (1− t)F(x2) �K F(tx1 +(1− t)x2),

respectively. In particular, if Y = R and K = [0,∞) , we obtain the standard definitions
of convex and concave functions.

A set-valued map F : D −→ n(Y ) is said to be K -continuous at a point x0 ∈ D if
for every neighbourhood W of zero in Y there exists a neighbourhood U of zero in X
such that

F(x0) ⊂ F(x)+W +K (3)

and
F(x) ⊂ F(x0)+W +K (4)

for every x ∈ (x0 +U)∩D . If only condition (3) (condition (4)) is fulfilled, F is called
K -lower semicontinuous (K -upper semicontinuous) at x0 .

Denote by K∗ the set of all continuous linear functionals on Y which are nonne-
gative on K , i.e.

K∗ = {y∗ ∈ Y ∗ : y∗(y) � 0 for every y ∈ K}.
We say that a set-valued map F : D →B(Y ) is K -hemicontinuous (K -lower hemicon-
tinuous, K -upper hemicontinuous) at a point x0 ∈D if for every y∗ ∈K∗ the functional
fy∗ : D → R defined by

fy∗(x) = inf y∗(F(x)), x ∈ D (5)

is continuous (lower semicontinuous, upper semicontinuous) at x0.
We say that a set-valued map F : D → n(Y ) is partially K -upper bounded on

a set A ⊂ D if there exists a bounded set B ⊂ Y such that F(x)∩ cl(B−K) �= /0 for all
x ∈ A . F is K -lower bounded on a set A if there exists a bounded set B ⊂ Y such that
F(x) ⊂ cl (B+K) for all x ∈ A .

In [2] a new concept of a null-finite set has been introduced. Let us recall, a subset
A of a metric vector space X is called null-finite if there exists a sequence (xn)n∈N

tending to zero in X such that the set {n ∈ N : x+ xn ∈ A} is finite for every x ∈ X .
The following crucial property of null-finite sets has been proved in [2].

THEOREM 1. [2, Theorems 5.1 and 6.1] In a complete abelian metric group each
Borel null-finite set is Haar-meager as well as each universally measurable null-finite
set is Haar-null.

Let us recall that a subset B of an abelian Polish group X is called:

• Haar-meager if there exist a Borel set A ⊃ B , a compact metric space K and
a continuous function f : K → X such that f−1(A+ x) is meager in K for each
x ∈ X (see [5]);

• Haar-null if there exists a universally measurable set A ⊃ B and a σ -additive
probability Borel measure μ on X such that μ(A+ x) = 0 for each x ∈ X (see
[4]).
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It has been proved in [4] and [5] that in each locally compact abelian Polish group
the notions of a Haar-meager set and a Haar-null set are equivalent to the notions of
a meager set and a set of Haar measure zero, respectively.

In 1983 K. Baron and R. Ger [3, p. 239] asked the following question:
Does the upper boundedness of an additive or midpoint convex function on some

universally measurable set which is not Haar-null imply the continuity of the function?
This problem has been resolved in [2] thanks to Theorem 1 and the following

important result.

THEOREM 2. [2, Theorem 11.1] If a midpoint convex function f : D→ R defined
on an open convex subset D ⊂ X of a metric vector space X with an invariant metric
is upper bounded on a set B ⊂ D which is not null-finite in X and whose closure clB
is contained in D, then f is continuous.

In the paper [6] we generalized Theorem 2 as below.

THEOREM 3. [6, Theorem 11] Let Y be a metric vector space with an invariant
metric. If a K -midconvex set-valued map F : D → B(Y ) defined on an open convex
subset D of a metric vector space X with an invariant metric is partially K -upper
bounded on a set B ⊂ D, which is not null-finite in X and satisfies clB ⊂ D, then F is
K -continuous on D.

In this paper we show that the above Theorem 3 also holds in the case where X is
a Baire topological vector space, Y is a locally convex topological vector space such
that

⋃
n∈N(Bn−K) = Y for some bounded sets Bn ⊂ Y , n ∈ N , and F : D → C C (Y ) .

But first we prove that if we weaken assumptions about Y in Theorem 3, then we get
just K -hemicontinuity of F .

2. Some connections between K -continuity and K -hemicontinuity

Assume that X and Y are topological vector spaces, D is an open subset of X
and K is a convex cone in Y . It is known (and easy to prove) that if a set-valued map
F : D → B(Y ) is K -continuous at a point x0 ∈ D , then it is K -hemicontinuous at this
point (see [9, Prop. 1]; cf. also [7, Prop. 2.1]), but the converse is not true in general (cf.
[1, p. 62]). However, under some additional regularity assumptions, K -midconvex and
K -hemicontinuous set-valued maps are K -continuous. Namely, the following result
has been proved in [9].

THEOREM 4. [9, Theorem 1] Let X be a Baire topological vector space and D
be a convex open subset of X . Assume that Y is a locally convex topological vector
space and K is a convex cone in Y. Assume also that there exist bounded sets Bn ⊂ Y ,
n ∈ N , such that ⋃

n∈N

(Bn −K) = Y. (6)

If a set-valued map F : D → CC (Y ) is K -midconvex and K -upper hemicontinuous on
D, then F is K -continuous on D.
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The next theorem shows that a similar result holds also for K -midconcave set-
valued maps.

THEOREM 5. Let X be a Baire topological vector space and D be a convex open
subset of X . Assume that Y is a locally convex topological vector space and K is
a convex cone in Y. Assume also that there exist open bounded sets Bn ⊂ Y , n ∈ N ,
such that ⋃

n∈N

(Bn +K) = Y. (7)

If a set-valued map F : D → C C (Y ) is K -midconcave and K -lower hemicontinuous
on D, then F is K -continuous on D.

In the proof of this theorem we will use the following lemma (which is a slight im-
provement of the Bernstain-Doetsch-type theorem for K -midconcave set-valued maps
given in [8, Theorem 4.4]). Recall that if a set-valued map F : D → n(Y ) is K -
midconcave and convex-valued, then

F(qx1 +(1−q)x2) ⊂ qF(x1)+ (1−q)F(x2)+K (8)

for all x1,x2 ∈ D and all dyadic q ∈ [0,1] (see [8, Lemma 4.1]).

LEMMA 6. Let X and Y be topological vector spaces. Assume that D is an open
convex subset of X and K is a convex cone in Y . If a set-valued map F : D→ BC (Y )
is K -midconcave and K -lower bounded on a subset of D with a nonempty interior,
then F is K -continuous on D.

Proof. Let F be K -lower bounded on a set x0 +U ⊂ D , where x0 ∈ D and U is
a neighbourhood of zero in X . Then there is a bounded set B ⊂ Y such that

F(x) ⊂ cl(B+K), x ∈ x0 +U. (9)

We prove that F is K -upper semicontinuous at x0 . So, take an arbitrary neighbourhood
W of zero in Y and next choose a balanced neighbourhood V of zero such that V +
V +V ⊂ W . Since the sets B and F(x0) are bounded, there exists a dyadic number
q ∈ (0,1) such that

qB ⊂V and qF(x0) ⊂V.

Thus, by (9),

qF(x) ⊂ qcl(B+K) = cl(qB+qK)⊂ cl(V +K) ⊂V +K +V, x ∈ x0 +U. (10)

Now, fix u ∈U . Then, using (8) and (10), we obtain

F(x0 +qu) = F((1−q)x0 +q(u+ x0)) ⊂ (1−q)F(x0)+qF(u+ x0)+K

⊂ F(x0)−qF(x0)+V +V +K ⊂ F(x0)−V +V +V +K

⊂ F(x0)+W +K,
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which means that F is K -upper semicontinuous at x0 and, consequently, K -continuous
on D (see [8, Theorem 4.5]). �

Proof of Theorem 5. Let Bn , n ∈ N , be open bounded sets satisfying (7). Define
B̃n = conv(B1 ∪ . . .∪Bn) , n ∈ N . Since the convex hull of an open set is open and,
in locally convex spaces, the convex hull of a bounded set is bounded, the sets B̃n are
open and convex. Moreover, B̃n ⊂ B̃n+1 , n ∈ N . Define

An = {x ∈ D : F(x) ⊂ cl(B̃n +K)}, n ∈ N. (11)

Then
⋃

n∈N An = D. Indeed, for every fixed x ∈ D the sets B̃n + K , n ∈ N , form an
open covering of F(x) . Since F(x) is compact, there exists a finite subcovering of it:

F(x) ⊂ (
B̃n1 +K

)∪ . . .∪ (
B̃np +K

)
= B̃np +K,

and hence x ∈ Anp . By the definition of An , the set-valued map F is K -lower bounded
on every set An . We will show that F is also K -lower bounded on the sets clAn . To
this aim fix an n ∈ N and take an x0 ∈ clAn . By (11) F(x) ⊂ cl (B̃n +K) for every
x ∈ An . We will show that also F(x0) ⊂ cl(B̃n +K).

For the proof by contradiction suppose that there exists z ∈ F(x0) \ cl (B̃n +K).
Since the set cl (B̃n +K) is convex and closed, by the separation theorem (see e.g (see
[10, Theorem 3.4])) there exists a continuous linear functional y∗ ∈ Y ∗ such that

y∗(z) < infy∗
(
cl(B̃n +K)

)
. (12)

Note that y∗ ∈ K∗. Indeed, in view of (12) we have

y∗(k) � y∗(z)− y∗(b0) =: M,

for all k ∈ K and arbitrarily fixed b0 ∈ B̃n. Hence, by the homogeneity of y∗ , we get

y∗(k) =
1
m

y∗(mk) � 1
m

M, m ∈ N,

which proves that y∗(k) � 0 for all k ∈ K. Now, put

ε := infy∗
(
cl(B̃n +K)

)− y∗(z).

By the K -lower hemicontinuity of F at x0 there exists a neighbourhood Ux0 ⊂ D such
that

fy∗(x) < fy∗(x0)+ ε, x ∈Ux0 . (13)

Since x0 ∈ clAn , there exists an x1 ∈ An ∩Ux0 . Then, by (13) and the definition of ε ,
we obtain

fy∗(x1) < fy∗(x0)+ ε � y∗(z)+ ε = infy∗
(
cl(B̃n +K)

)
� infy∗

(
F(x1)

)
= fy∗(x1).

This contradiction proves that F(x) ⊂ cl(B̃n +K) for every x ∈ clAn .
Hence, F is K -lower bounded on every clAn , n ∈ N . Since Y is a Baire space

and D ⊂ ⋃
n∈N clAn , there exists n0 ∈ N such that intclAn0 �= /0. Thus F is K -

lower bounded on a set with nonempty interior and consequently, by Lemma 6, F is
K -continuous on D . This finishes the proof. �
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3. K -continuity as a consequence of boundedness on not null-finite sets

In this section first we will show that K -midconvex set-valued maps partially
K -upper bounded on a not null-finite set, as well as K -midconcave set-valued maps
K -lower bounded on a not null-finite set, are K -hemicontinuous. Next we will use
these results and Theorems 4, 5 to prove that under some additional assumptions K -
midconvex set-valued maps partially K -upper bounded on a not null-finite set, as well
as K -midconcave set-valued maps K -lower bounded on a not null-finite set, are K -
continuous.

THEOREM 7. Let X be a metric vector space with an invariant metric, D be an
open convex subset of X and A ⊂ D be a set which is not null-finite and clA ⊂ D.
Assume that Y is a topological vector space and K is a convex cone in Y . If a set-
valued map F : D → B(Y ) is K -midconvex and partially K -upper bounded on A,
then F is K -hemicontinuous on D.

Proof. Assume that F is K -midconvex and partially K -upper bounded on A .
Then there exists a bounded set B ⊂ Y such that

F(x)∩ cl(B−K) �= /0, x ∈ A. (14)

Fix any y∗ ∈ K∗ and take the functional fy∗ defined by (12). Since F is K -midconvex
and y∗ ∈ K∗ , we have for all x1,x2 ∈ D

y∗(F(x1))+ y∗(F(x2))
2

= y∗
(F(x1)+F(x2)

2

)

⊂ y∗
(
F

(x1 + x2

2

)
+K

)

⊂ y∗
(
F

(x1 + x2

2

))
+[0,∞).

Hence

fy∗ (x1)+ fy∗(x2)
2

=
infy∗(F(x1))+ infy∗(F(x2))

2

= inf
(y∗(F(x1))+ y∗(F(x2))

2

)

� infy∗
(
F

(x1 + x2

2

))

= fy∗
(x1 + x2

2

)
,

which means that fy∗ is midconvex. By (14), for every x ∈ A we have

y∗(F(x))∩ y∗
(
cl(B−K)

) �= /0.

Since y∗ is continuous, y∗
(
cl(B−K)

)⊂ cl
(
y∗(B−K)

)
. Therefore

y∗(F(x))∩ cl
(
y∗(B−K)

) �= /0
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and hence
y∗(F(x))∩ cl

(
y∗(B)+ (−∞,0]

) �= /0. (15)

Since continuous linear functionals map bounded sets into bounded sets (see [10, The-
orem 1.32]), the set y∗(B) is bounded. Assume that y∗(B) ⊂ [m,M]. Then, by (15),

y∗(F(x))∩ (−∞,M] �= /0,

and hence
fy∗(x) � M, x ∈ A.

Consequently, in view of Theorem 2, fy∗ is continuous on D . This means that F is
K -hemicontinuous on D . �

THEOREM 8. Let X be a metric vector space with an invariant metric, D be an
open convex subset of X and A ⊂ D be a set which is not null-finite and clA ⊂ D.
Assume that Y is a topological vector space and K is a convex cone in Y . If a set-
valued map F : D → B(Y ) is K -midconcave and K -lower bounded on A, then F is
K -hemicontinuous on D.

Proof. Since F is K -lower bounded on A , there exists a bounded set B ⊂ Y such
that

F(x) ⊂ cl(B+K), x ∈ A. (16)

Fix any y∗ ∈K∗ and take the functional fy∗ defined by (12). Since F is K -midconcave
and y∗ ∈ K∗ ,

y∗
(
F

(x1 + x2

2

))
⊂ y∗

(F(x1)+F(x2)
2

+K
)

⊂ y∗
(F(x1)+F(x2)

2

)
+[0,∞)

=
y∗(F(x1))+ y∗(F(x2))

2
+[0,∞)

for x1,x2 ∈ D . Hence

fy∗
(x1 + x2

2

)
= infy∗

(
F

(x1 + x2

2

))

� inf
y∗(F(x1))+ y∗(F(x2))

2

=
fy∗(x1)+ fy∗(x2)

2

which means that fy∗ is midconcave. By (16) and the continuity of y∗ ,

y∗(F(x)) ⊂ y∗
(
cl (B+K)

)⊂ cl
(
y∗(B)+ [0,∞)

)
for each x ∈ A.

Clearly the set y∗(B) is bounded, so y∗(B) ⊂ [m,M] and then

fy∗(x) � m, x ∈ A.
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Hence, since − fy∗ is midconvex, according to Theorem 2, fy∗ is continuous on D . It
means that F is K -hemicontinuous on D . �

Now, using Theorems 4 and 7 we obtain the following result (cf. [6, Theorem 11]).

COROLLARY 9. Let X be a Baire metric vector space with an invariant metric, D
be an open convex subset of X and A⊂D be a set which is not null-finite and clA⊂D.
Assume that Y is a locally convex topological vector space and K is a convex cone in
Y . Assume also that there exist bounded sets Bn ⊂ Y , n ∈ N, satisfying (6). If a set-
valued map F : D → CC (Y ) is K -midconvex and partially K -upper bounded on A,
then F is K -continuous on D.

Analogously, by Theorems 5 and 8 we get the following result.

COROLLARY 10. Let X be a Baire metric vector space with an invariant metric,
D be an open convex subset of X and A ⊂ D be a set which is not null-finite and
clA⊂D. Assume that Y is a locally convex topological vector space and K is a convex
cone in Y . Assume also that there exist open bounded sets Bn ⊂ Y , n ∈ N, satisfying
(7). If a set-valued map F : D → CC (Y ) is K -midconcave and K -lower bounded on
A, then F is K -continuous on D.

Finally, we use Theorem 1 and the above Corollaries 9 and 10 to answer Baron’s
and Ger’s question in the case of set-valued functions.

COROLLARY 11. Let X be a complete metric vector space with an invariant met-
ric, D be an open convex subset of X and A⊂D be a universally measurable set which
is not Haar-null or a Borel set which is not Haar-meager. Let Y be a locally convex
topological vector space and K be a convex cone in Y . Assume also that there exist
bounded sets Bn ⊂ Y , n ∈ N, satisfying (6). If a set-valued map F : D → CC (Y ) is
K -midconvex and partially K -upper bounded on A, then F is K -continuous on D.

COROLLARY 12. Let X be a complete metric vector space with an invariant met-
ric, D be an open convex subset of X and A⊂D be a universally measurable set which
is not Haar-null or a Borel set which is not Haar-meager. Let Y be a locally convex
topological vector space and K be a convex cone in Y . Assume also that there exist
open bounded sets Bn ⊂Y , n ∈ N, satisfying (7). If a set-valued map F : D → CC (Y )
is K -midconcave and K -lower bounded on A, then F is K -continuous on D.
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[9] K. NIKODEM, Continuity properties of midconvex set-valued maps, Aequationes Math. 62 (2001),

175–183.
[10] W. RUDIN, Functional Analysis, McGraw-Hill, Inc., 1973.

(Received July 9, 2018) Eliza Jabłońska
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