CONTINUITY PROPERTIES OF *K*-MIDCONVEX AND *K*-MIDCONCAVE SET-VALUED MAPS

ELIZA JABŁOŃSKA AND KAZIMIERZ NIKODEM*

Dedicated to Professor Josip Pečarić on the occasion of his 70th birthday

(Communicated by C. P. Niculescu)

Abstract. A recent result on the continuity of midconvex functionals upper bounded on a not null-finite set (see [2]) is extended to *K*-midconvex and *K*-midconcave set-valued maps.

1. Introduction and preliminaries

Let *X* and *Y* be topological vector spaces (real and Hausdorff in the whole paper). Assume that *D* is a convex subset of *X* and *K* is a convex cone in *Y* (i.e. $K + K \subset K$ and $tK \subset K$ for all $t \ge 0$). Denote by n(Y), $\mathscr{B}(Y)$, $\mathscr{BC}(Y)$ and $\mathscr{CC}(Y)$ the families of all nonempty, nonempty bounded, nonempty bounded convex and nonempty compact convex subsets of *Y*, respectively.

A set-valued map $F: D \rightarrow n(Y)$ is called *K*-convex, if

$$tF(x_1) + (1-t)F(x_2) \subset F(tx_1 + (1-t)x_2) + K$$
(1)

for all $x_1, x_2 \in D$ and $t \in [0, 1]$. If *F* satisfies

$$F(tx_1 + (1-t)x_2) \subset tF(x_1) + (1-t)F(x_2) + K$$
(2)

for all $x_1, x_2 \in D$ and $t \in [0, 1]$, then it is called *K*-concave.

A set-valued map $F: D \to n(Y)$ is called *K*-midconvex (*K*-midconcave, resp.), if (1) ((2)) is assumed only for $t = \frac{1}{2}$.

Clearly, if *F* is *K*-convex with $K = \{0\}$ then it is convex, which means that its graph is a convex subset of $X \times Y$. If *F* is single-valued and *Y* is endowed with the relation \leq_K of partial order defined by $x \leq_K y \Leftrightarrow y - x \in K$, then conditions (1) and (2) reduce to the following conditions:

$$F(tx_1 + (1-t)x_2) \leq_K tF(x_1) + (1-t)F(x_2)$$

^{*} Corresponding author.

Mathematics subject classification (2010): 26B25, 39B62, 54C60.

Keywords and phrases: K-midconvex set-valued map, *K*-midconcave set-valued map, *K*-continuity, *K*-hemicontinuity, null-finite set, Haar-null set, Haar-meager set.

and

$$tF(x_1) + (1-t)F(x_2) \leq_K F(tx_1 + (1-t)x_2),$$

respectively. In particular, if $Y = \mathbb{R}$ and $K = [0, \infty)$, we obtain the standard definitions of convex and concave functions.

A set-valued map $F : D \longrightarrow n(Y)$ is said to be *K*-continuous at a point $x_0 \in D$ if for every neighbourhood *W* of zero in *Y* there exists a neighbourhood *U* of zero in *X* such that

$$F(x_0) \subset F(x) + W + K \tag{3}$$

and

$$F(x) \subset F(x_0) + W + K \tag{4}$$

for every $x \in (x_0 + U) \cap D$. If only condition (3) (condition (4)) is fulfilled, *F* is called *K*-lower semicontinuous (*K*-upper semicontinuous) at x_0 .

Denote by K^* the set of all continuous linear functionals on Y which are nonnegative on K, i.e.

$$K^* = \{ y^* \in Y^* : y^*(y) \ge 0 \text{ for every } y \in K \}.$$

We say that a set-valued map $F : D \to \mathscr{B}(Y)$ is *K*-hemicontinuous (*K*-lower hemicontinuous, *K*-upper hemicontinuous) at a point $x_0 \in D$ if for every $y^* \in K^*$ the functional $f_{y^*} : D \to \mathbb{R}$ defined by

$$f_{y^*}(x) = \inf y^*(F(x)), \ x \in D$$
 (5)

is continuous (lower semicontinuous, upper semicontinuous) at x_0 .

We say that a set-valued map $F: D \to n(Y)$ is *partially K*-upper bounded on a set $A \subset D$ if there exists a bounded set $B \subset Y$ such that $F(x) \cap \operatorname{cl}(B-K) \neq \emptyset$ for all $x \in A$. *F* is *K*-lower bounded on a set *A* if there exists a bounded set $B \subset Y$ such that $F(x) \subset \operatorname{cl}(B+K)$ for all $x \in A$.

In [2] a new concept of a null-finite set has been introduced. Let us recall, a subset *A* of a metric vector space *X* is called *null-finite* if there exists a sequence $(x_n)_{n \in \mathbb{N}}$ tending to zero in *X* such that the set $\{n \in \mathbb{N} : x + x_n \in A\}$ is finite for every $x \in X$.

The following crucial property of null-finite sets has been proved in [2].

THEOREM 1. [2, Theorems 5.1 and 6.1] In a complete abelian metric group each Borel null-finite set is Haar-meager as well as each universally measurable null-finite set is Haar-null.

Let us recall that a subset *B* of an abelian Polish group *X* is called:

- *Haar-meager* if there exist a Borel set $A \supset B$, a compact metric space K and a continuous function $f: K \to X$ such that $f^{-1}(A+x)$ is meager in K for each $x \in X$ (see [5]);
- *Haar-null* if there exists a universally measurable set $A \supset B$ and a σ -additive probability Borel measure μ on X such that $\mu(A + x) = 0$ for each $x \in X$ (see [4]).

It has been proved in [4] and [5] that in each locally compact abelian Polish group the notions of a Haar-meager set and a Haar-null set are equivalent to the notions of a meager set and a set of Haar measure zero, respectively.

In 1983 K. Baron and R. Ger [3, p. 239] asked the following question:

Does the upper boundedness of an additive or midpoint convex function on some universally measurable set which is not Haar-null imply the continuity of the function?

This problem has been resolved in [2] thanks to Theorem 1 and the following important result.

THEOREM 2. [2, Theorem 11.1] If a midpoint convex function $f: D \to \mathbb{R}$ defined on an open convex subset $D \subset X$ of a metric vector space X with an invariant metric is upper bounded on a set $B \subset D$ which is not null-finite in X and whose closure clB is contained in D, then f is continuous.

In the paper [6] we generalized Theorem 2 as below.

THEOREM 3. [6, Theorem 11] Let Y be a metric vector space with an invariant metric. If a K-midconvex set-valued map $F : D \to \mathscr{B}(Y)$ defined on an open convex subset D of a metric vector space X with an invariant metric is partially K-upper bounded on a set $B \subset D$, which is not null-finite in X and satisfies $clB \subset D$, then F is K-continuous on D.

In this paper we show that the above Theorem 3 also holds in the case where X is a Baire topological vector space, Y is a locally convex topological vector space such that $\bigcup_{n \in \mathbb{N}} (B_n - K) = Y$ for some bounded sets $B_n \subset Y$, $n \in \mathbb{N}$, and $F : D \to \mathscr{CC}(Y)$. But first we prove that if we weaken assumptions about Y in Theorem 3, then we get just K-hemicontinuity of F.

2. Some connections between K-continuity and K-hemicontinuity

Assume that X and Y are topological vector spaces, D is an open subset of X and K is a convex cone in Y. It is known (and easy to prove) that if a set-valued map $F: D \rightarrow B(Y)$ is K-continuous at a point $x_0 \in D$, then it is K-hemicontinuous at this point (see [9, Prop. 1]; cf. also [7, Prop. 2.1]), but the converse is not true in general (cf. [1, p. 62]). However, under some additional regularity assumptions, K-midconvex and K-hemicontinuous set-valued maps are K-continuous. Namely, the following result has been proved in [9].

THEOREM 4. [9, Theorem 1] Let X be a Baire topological vector space and D be a convex open subset of X. Assume that Y is a locally convex topological vector space and K is a convex cone in Y. Assume also that there exist bounded sets $B_n \subset Y$, $n \in \mathbb{N}$, such that

$$\bigcup_{n\in\mathbb{N}} (B_n - K) = Y.$$
(6)

If a set-valued map $F: D \to \mathscr{CC}(Y)$ is K-midconvex and K-upper hemicontinuous on D, then F is K-continuous on D.

The next theorem shows that a similar result holds also for K-midconcave setvalued maps.

THEOREM 5. Let X be a Baire topological vector space and D be a convex open subset of X. Assume that Y is a locally convex topological vector space and K is a convex cone in Y. Assume also that there exist open bounded sets $B_n \subset Y$, $n \in \mathbb{N}$, such that

$$\bigcup_{n \in \mathbb{N}} (B_n + K) = Y.$$
(7)

If a set-valued map $F : D \to \mathscr{CC}(Y)$ is K-midconcave and K-lower hemicontinuous on D, then F is K-continuous on D.

In the proof of this theorem we will use the following lemma (which is a slight improvement of the Bernstain-Doetsch-type theorem for *K*-midconcave set-valued maps given in [8, Theorem 4.4]). Recall that if a set-valued map $F: D \rightarrow n(Y)$ is *K*-midconcave and convex-valued, then

$$F(qx_1 + (1-q)x_2) \subset qF(x_1) + (1-q)F(x_2) + K$$
(8)

for all $x_1, x_2 \in D$ and all dyadic $q \in [0, 1]$ (see [8, Lemma 4.1]).

LEMMA 6. Let X and Y be topological vector spaces. Assume that D is an open convex subset of X and K is a convex cone in Y. If a set-valued map $F: D \to \mathscr{BC}(Y)$ is K-midconcave and K-lower bounded on a subset of D with a nonempty interior, then F is K-continuous on D.

Proof. Let *F* be *K*-lower bounded on a set $x_0 + U \subset D$, where $x_0 \in D$ and *U* is a neighbourhood of zero in *X*. Then there is a bounded set $B \subset Y$ such that

$$F(x) \subset \operatorname{cl}(B+K), \ x \in x_0 + U.$$
(9)

We prove that *F* is *K*-upper semicontinuous at x_0 . So, take an arbitrary neighbourhood *W* of zero in *Y* and next choose a balanced neighbourhood *V* of zero such that V + V = V = W. Since the sets *B* and $F(x_0)$ are bounded, there exists a dyadic number $q \in (0, 1)$ such that

$$qB \subset V$$
 and $qF(x_0) \subset V$.

Thus, by (9),

$$qF(x) \subset q\operatorname{cl}(B+K) = \operatorname{cl}(qB+qK) \subset \operatorname{cl}(V+K) \subset V+K+V, \quad x \in x_0+U.$$
(10)

Now, fix $u \in U$. Then, using (8) and (10), we obtain

$$F(x_0 + qu) = F((1 - q)x_0 + q(u + x_0)) \subset (1 - q)F(x_0) + qF(u + x_0) + K$$

$$\subset F(x_0) - qF(x_0) + V + V + K \subset F(x_0) - V + V + K + K$$

$$\subset F(x_0) + W + K,$$

which means that *F* is *K*-upper semicontinuous at x_0 and, consequently, *K*-continuous on *D* (see [8, Theorem 4.5]). \Box

Proof of Theorem 5. Let B_n , $n \in \mathbb{N}$, be open bounded sets satisfying (7). Define $\widetilde{B}_n = \operatorname{conv}(B_1 \cup \ldots \cup B_n)$, $n \in \mathbb{N}$. Since the convex hull of an open set is open and, in locally convex spaces, the convex hull of a bounded set is bounded, the sets \widetilde{B}_n are open and convex. Moreover, $\widetilde{B}_n \subset \widetilde{B}_{n+1}$, $n \in \mathbb{N}$. Define

$$A_n = \{ x \in D : F(x) \subset \operatorname{cl}(B_n + K) \}, \ n \in \mathbb{N}.$$
(11)

Then $\bigcup_{n\in\mathbb{N}}A_n = D$. Indeed, for every fixed $x \in D$ the sets $\widetilde{B}_n + K$, $n \in \mathbb{N}$, form an open covering of F(x). Since F(x) is compact, there exists a finite subcovering of it:

$$F(x) \subset \left(\widetilde{B}_{n_1} + K\right) \cup \ldots \cup \left(\widetilde{B}_{n_p} + K\right) = \widetilde{B}_{n_p} + K,$$

and hence $x \in A_{n_p}$. By the definition of A_n , the set-valued map F is K-lower bounded on every set A_n . We will show that F is also K-lower bounded on the sets clA_n . To this aim fix an $n \in \mathbb{N}$ and take an $x_0 \in clA_n$. By (11) $F(x) \subset cl(\widetilde{B}_n + K)$ for every $x \in A_n$. We will show that also $F(x_0) \subset cl(\widetilde{B}_n + K)$.

For the proof by contradiction suppose that there exists $z \in F(x_0) \setminus cl(\widetilde{B}_n + K)$. Since the set $cl(\widetilde{B}_n + K)$ is convex and closed, by the separation theorem (see e.g (see [10, Theorem 3.4])) there exists a continuous linear functional $y^* \in Y^*$ such that

$$y^*(z) < \inf y^* \left(\operatorname{cl} \left(\widetilde{B}_n + K \right) \right). \tag{12}$$

Note that $y^* \in K^*$. Indeed, in view of (12) we have

 $\mathbf{y}^*(k) \geqslant \mathbf{y}^*(z) - \mathbf{y}^*(b_0) =: M,$

for all $k \in K$ and arbitrarily fixed $b_0 \in \widetilde{B}_n$. Hence, by the homogeneity of y^* , we get

$$y^*(k) = \frac{1}{m}y^*(mk) \ge \frac{1}{m}M, \ m \in \mathbb{N},$$

which proves that $y^*(k) \ge 0$ for all $k \in K$. Now, put

$$\varepsilon := \inf y^* \left(\operatorname{cl} \left(\overline{B}_n + K \right) \right) - y^*(z).$$

By the *K*-lower hemicontinuity of *F* at x_0 there exists a neighbourhood $U_{x_0} \subset D$ such that

$$f_{y^*}(x) < f_{y^*}(x_0) + \varepsilon, \ x \in U_{x_0}.$$
 (13)

Since $x_0 \in clA_n$, there exists an $x_1 \in A_n \cap U_{x_0}$. Then, by (13) and the definition of ε , we obtain

$$f_{y^*}(x_1) < f_{y^*}(x_0) + \varepsilon \leq y^*(z) + \varepsilon = \inf y^* \left(\operatorname{cl}(\widehat{B}_n + K) \right)$$

$$\leq \inf y^* \left(F(x_1) \right) = f_{y^*}(x_1).$$

This contradiction proves that $F(x) \subset cl(\widetilde{B}_n + K)$ for every $x \in clA_n$.

Hence, *F* is *K*-lower bounded on every clA_n , $n \in \mathbb{N}$. Since *Y* is a Baire space and $D \subset \bigcup_{n \in \mathbb{N}} clA_n$, there exists $n_0 \in \mathbb{N}$ such that $int clA_{n_0} \neq \emptyset$. Thus *F* is *K*lower bounded on a set with nonempty interior and consequently, by Lemma 6, *F* is *K*-continuous on *D*. This finishes the proof. \Box

3. *K*-continuity as a consequence of boundedness on not null-finite sets

In this section first we will show that K-midconvex set-valued maps partially K-upper bounded on a not null-finite set, as well as K-midconcave set-valued maps K-lower bounded on a not null-finite set, are K-hemicontinuous. Next we will use these results and Theorems 4, 5 to prove that under some additional assumptions K-midconvex set-valued maps partially K-upper bounded on a not null-finite set, as well as K-midconcave set-valued maps K-lower bounded on a not null-finite set, are K-continuous.

THEOREM 7. Let X be a metric vector space with an invariant metric, D be an open convex subset of X and $A \subset D$ be a set which is not null-finite and $clA \subset D$. Assume that Y is a topological vector space and K is a convex cone in Y. If a set-valued map $F : D \to \mathscr{B}(Y)$ is K-midconvex and partially K-upper bounded on A, then F is K-hemicontinuous on D.

Proof. Assume that *F* is *K*-midconvex and partially *K*-upper bounded on *A*. Then there exists a bounded set $B \subset Y$ such that

$$F(x) \cap \operatorname{cl}(B - K) \neq \emptyset, \ x \in A.$$
(14)

Fix any $y^* \in K^*$ and take the functional f_{y^*} defined by (12). Since F is K-midconvex and $y^* \in K^*$, we have for all $x_1, x_2 \in D$

$$\frac{y^*(F(x_1)) + y^*(F(x_2))}{2} = y^*\left(\frac{F(x_1) + F(x_2)}{2}\right)$$
$$\subset y^*\left(F\left(\frac{x_1 + x_2}{2}\right) + K\right)$$
$$\subset y^*\left(F\left(\frac{x_1 + x_2}{2}\right)\right) + [0, \infty)$$

Hence

$$\begin{aligned} \frac{f_{y^*}(x_1) + f_{y^*}(x_2)}{2} &= \frac{\inf y^*(F(x_1)) + \inf y^*(F(x_2))}{2} \\ &= \inf \left(\frac{y^*(F(x_1)) + y^*(F(x_2))}{2}\right) \\ &\geq \inf y^*\left(F\left(\frac{x_1 + x_2}{2}\right)\right) \\ &= f_{y^*}\left(\frac{x_1 + x_2}{2}\right), \end{aligned}$$

which means that f_{y^*} is midconvex. By (14), for every $x \in A$ we have

$$y^*(F(x)) \cap y^*(\operatorname{cl}(B-K)) \neq \emptyset.$$

Since y^* is continuous, $y^*(cl(B-K)) \subset cl(y^*(B-K))$. Therefore

$$y^*(F(x)) \cap \operatorname{cl}(y^*(B-K)) \neq \emptyset$$

and hence

$$y^{*}(F(x)) \cap cl(y^{*}(B) + (-\infty, 0]) \neq \emptyset.$$
 (15)

Since continuous linear functionals map bounded sets into bounded sets (see [10, Theorem 1.32]), the set $y^*(B)$ is bounded. Assume that $y^*(B) \subset [m, M]$. Then, by (15),

$$y^*(F(x)) \cap (-\infty, M] \neq \emptyset$$

and hence

$$f_{y^*}(x) \leqslant M, x \in A$$

Consequently, in view of Theorem 2, f_{y^*} is continuous on *D*. This means that *F* is *K*-hemicontinuous on *D*. \Box

THEOREM 8. Let X be a metric vector space with an invariant metric, D be an open convex subset of X and $A \subset D$ be a set which is not null-finite and $clA \subset D$. Assume that Y is a topological vector space and K is a convex cone in Y. If a set-valued map $F: D \to \mathscr{B}(Y)$ is K-midconcave and K-lower bounded on A, then F is K-hemicontinuous on D.

Proof. Since F is K-lower bounded on A, there exists a bounded set $B \subset Y$ such that

$$F(x) \subset \operatorname{cl}(B+K), \ x \in A.$$
(16)

Fix any $y^* \in K^*$ and take the functional f_{y^*} defined by (12). Since *F* is *K*-midconcave and $y^* \in K^*$,

$$y^* \left(F\left(\frac{x_1 + x_2}{2}\right) \right) \subset y^* \left(\frac{F(x_1) + F(x_2)}{2} + K\right)$$
$$\subset y^* \left(\frac{F(x_1) + F(x_2)}{2}\right) + [0, \infty)$$
$$= \frac{y^* (F(x_1)) + y^* (F(x_2))}{2} + [0, \infty)$$

for $x_1, x_2 \in D$. Hence

$$f_{y^*}\left(\frac{x_1+x_2}{2}\right) = \inf y^*\left(F\left(\frac{x_1+x_2}{2}\right)\right)$$

$$\geqslant \inf \frac{y^*(F(x_1)) + y^*(F(x_2))}{2}$$

$$= \frac{f_{y^*}(x_1) + f_{y^*}(x_2)}{2}$$

which means that f_{y^*} is midconcave. By (16) and the continuity of y^* ,

$$y^*(F(x)) \subset y^*(\operatorname{cl}(B+K)) \subset \operatorname{cl}(y^*(B) + [0,\infty))$$
 for each $x \in A$.

Clearly the set $y^*(B)$ is bounded, so $y^*(B) \subset [m, M]$ and then

$$f_{y^*}(x) \ge m, \ x \in A.$$

Hence, since $-f_{y^*}$ is midconvex, according to Theorem 2, f_{y^*} is continuous on D. It means that F is K-hemicontinuous on D. \Box

Now, using Theorems 4 and 7 we obtain the following result (cf. [6, Theorem 11]).

COROLLARY 9. Let X be a Baire metric vector space with an invariant metric, D be an open convex subset of X and $A \subset D$ be a set which is not null-finite and $clA \subset D$. Assume that Y is a locally convex topological vector space and K is a convex cone in Y. Assume also that there exist bounded sets $B_n \subset Y$, $n \in \mathbb{N}$, satisfying (6). If a set-valued map $F : D \to CC(Y)$ is K-midconvex and partially K-upper bounded on A, then F is K-continuous on D.

Analogously, by Theorems 5 and 8 we get the following result.

COROLLARY 10. Let X be a Baire metric vector space with an invariant metric, D be an open convex subset of X and $A \subset D$ be a set which is not null-finite and $clA \subset D$. Assume that Y is a locally convex topological vector space and K is a convex cone in Y. Assume also that there exist open bounded sets $B_n \subset Y$, $n \in \mathbb{N}$, satisfying (7). If a set-valued map $F : D \to \mathscr{CC}(Y)$ is K-midconcave and K-lower bounded on A, then F is K-continuous on D.

Finally, we use Theorem 1 and the above Corollaries 9 and 10 to answer Baron's and Ger's question in the case of set-valued functions.

COROLLARY 11. Let X be a complete metric vector space with an invariant metric, D be an open convex subset of X and $A \subset D$ be a universally measurable set which is not Haar-null or a Borel set which is not Haar-meager. Let Y be a locally convex topological vector space and K be a convex cone in Y. Assume also that there exist bounded sets $B_n \subset Y$, $n \in \mathbb{N}$, satisfying (6). If a set-valued map $F : D \to \mathscr{CC}(Y)$ is K-midconvex and partially K-upper bounded on A, then F is K-continuous on D.

COROLLARY 12. Let X be a complete metric vector space with an invariant metric, D be an open convex subset of X and $A \subset D$ be a universally measurable set which is not Haar-null or a Borel set which is not Haar-meager. Let Y be a locally convex topological vector space and K be a convex cone in Y. Assume also that there exist open bounded sets $B_n \subset Y$, $n \in \mathbb{N}$, satisfying (7). If a set-valued map $F : D \to \mathscr{CC}(Y)$ is K-midconcave and K-lower bounded on A, then F is K-continuous on D.

REFERENCES

- J. P. AUBIN, A. CELLINA, *Differential Inclusions*, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984.
- [2] T. BANAKH, E. JABŁOŃSKA, Null-finite sets in metric groups and their applications, Israel J. Math. (in press); arXiv:1706.08155v2 [math.GN] 27 Jun 2017.
- [3] K. BARON, R. GER, Problem (P239), in: The 21st International Symposium on Functional Equations, August 6–13, 1983, Konolfingen, Switzerland, Aequationes Math. 26 (1984), 225–294.
- [4] J. P. R. CHRISTENSEN, On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972), 255–260.

- [5] U. B. DARJI, On Haar meager sets, Topology Appl. 160 (2013), 2396-2400.
- [6] E. JABŁOŃSKA, K. NIKODEM, K-midconvex and K-midconcave set-valued maps bounded on "large" sets, J. Convex Anal. (in press).
- [7] D. T. LUC, Continuity properties of cone-convex functions, Acta Math. Hung. 55 (1990) 57-61.
- [8] K. NIKODEM, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politechniki Łódzkiej Mat. 559; Rozprawy Mat. 114, Łódź 1989.
- [9] K. NIKODEM, Continuity properties of midconvex set-valued maps, Aequationes Math. 62 (2001), 175–183.
- [10] W. RUDIN, Functional Analysis, McGraw-Hill, Inc., 1973.

(Received July 9, 2018)

Eliza Jabłońska Institute of Mathematics Pedagogical University of Cracow Podchorążych 2, 30–084 Kraków, Poland e-mail: eliza.jablonska@up.krakow.pl

Kazimierz Nikodem Department of Mathematics University of Bielsko-Biała ul. Willowa 2, 43–309 Bielsko-Biała, Poland e-mail: knikodem@ath.bielsko.pl