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Abstract. In this paper we present a new approach of Wilker - Cusa - Huygens inequalities using
the Fourier series method for even functions. This approach provides new proofs and refinements
of these inequalities.

1. Introduction

The starting point of our work is the following remarkable inequalities.

The Cusa - Huygens inequality asserts that for x ∈
(
0,

π
2

)
,

sinx
x

<
2+ cosx

3
.

The famous Huygens inequality for the sine and tangent functions states that for

x ∈
(
0,

π
2

)
,

2
sinx
x

+
tanx

x
> 3.

The Wilker inequality asserts that for x ∈
(
0,

π
2

)
,

(
sinx
x

)2

+
tanx

x
> 2.

Another inequality which is of interest to us is the following:

sinx
x

+
tanx

x
> 2, for every x ∈

(
0,

π
2

)
.

These inequalities were extended in different forms in the recent past. We refer to
[1] - [11] and closely related references therein. Some of the recent improvements were
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obtained using Taylor’s expansion or Padé approximation of some trigonometric func-
tions. These methods provide polynomial or rational approximations for the functions
involved.

The aim of our work is to refine these classical inequalities. The main idea is that
the functions involved in the above inequalities are even, so they can be expanded in
Fourier series, e.g.,

sinx
x

− 2+ cosx
3

= a1 +b1 cosx+ c1 cos2x+ ...,

2
sinx
x

+
tanx

x
−3 = a2 +b2 cosx+ c2 cos2x+ ...,(

sinx
x

)2

+
tanx

x
−2 = a3 +b3 cosx+ c3 cos2x+ ...,

sinx
x

+
tanx

x
−2 = a4 +b4 cosx+ c4 cos2x+ ... .

In the following we will present our algorithm for the first function.
We define the function F1 (x) by

F1 (x) = a1 +b1 cosx+ c1 cos2x.

The power series expansion of
sinx
x

− 2+ cosx
3

−F1 (x) near 0 is

(−a1−b1− c1)+ x2
(

b1

2
+2c1

)
+ x4

(
− b1

24
− 2c1

3
− 1

180

)
+O

(
x6
)

.

In order to increase the speed of the function F1 (x) approximating
sinx
x

− 2+ cosx
3

we vanish the first coefficients as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−a1−b1− c1 = 0
b1

2
+2c1 = 0

− b1

24
− 2c1

3
− 1

180
= 0

and we obtain

a1 = − 1
30

, b1 =
2
45

, c1 = − 1
90

.

Therefore we have

sinx
x

− 2+ cosx
3

− 1
30

+
2
45

cosx+
1
90

cos2x = − x6

1512
+

29x8

453600
+O

(
x10) ,

or, equivalently,

sinx
x

− 2+ cosx
3

+
1
45

(1− cosx)2 = − x6

1512
+

29x8

453600
+O

(
x10) .
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Using the same algorithm, we find

2
sinx
x

+
tanx

x
−3− 3

5
(1− cosx)2 =

11x6

140
+

x8

50
+O

(
x10) ,(

sinx
x

)2

+
tanx

x
−2− 32

45
(1− cosx)2 =

76x6

945
+

187x8

9450
+O

(
x10) ,

sinx
x

+
tanx

x
−2− 1

45
(1− cosx)(43−28cosx) =

599x6

7560
+

9043x8

453600
+O

(
x10) .

2. The results

In order to attain our aim, we first prove a lemma.

LEMMA 1. For every x ∈
(
0,

π
2

)
, one has

2sin
x
2
− xcos

x
2

cosx > 0.

Proof. The function t :
(
0,

π
2

)
→ R , t (x) = 2sin

x
2
− xcos

x
2

cosx has the deriva-

tive

t ′ (x) = sin
x
2

(
sinx+ x+

3
2
xcosx

)
.

Evidently, t ′ > 0 on
(
0,

π
2

)
. Then t is strictly increasing on

(
0,

π
2

)
. As t (0) =

0, we get t > 0 on
(
0,

π
2

)
.

This completes the proof. �
Using the Fourier series method we can establish our main theorems, which are

refined variants of the above inequalities. We also remark that our results have simple
forms.

THEOREM 1. For all x ∈
(
0,

π
2

)
, one has

sinx
x

<
2+ cosx

3
− 1

45
(1− cosx)2 .

Proof. The inequality
sinx
x

<
2+ cosx

3
− 1

45
(1− cosx)2 has the equivalent form

45sinx < 29x+17xcosx− xcos2 x.

The function f1 :
(
0,

π
2

)
→ R , f1 (x) = 45sinx− 29x− 17xcosx + xcos2 x has

the derivative

f ′
1 (x) = 28(cosx−1)− sin2 x+17xsinx− xsin2x

= 2sin
x
2

(
−28sin

x
2
−2sin

x
2

cos2
x
2

+17xcos
x
2
−2xcosxcos

x
2

)
.
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We introduce the function g1 :
(
0,

π
2

)
→ R , g1 (x) = −28sin

x
2
−2sin

x
2

cos2
x
2

+17xcos
x
2
−2xcosxcos

x
2

.

Then

g ′
1 (x) = sin

x
2

(
7sin

x
2

cos
x
2
− 17x

2
+4xcos2

x
2

+ xcosx

)

= sin
x
2

(
7
2

sinx− 17x
2

+4x · 1+ cosx
2

+ xcosx

)

=
1
2

sin
x
2

(7(sinx− x)+6x(cosx−1)) .

Evidently, g ′
1 < 0 on

(
0,

π
2

)
. Then g is strictly decreasing on

(
0,

π
2

)
. As

g1 (0) = 0, we find g1 < 0 on
(
0,

π
2

)
. It follows that f ′

1 < 0 on
(
0,

π
2

)
. Using the

same arguments, we obtain that f1 < 0 on
(
0,

π
2

)
. �

THEOREM 2. For all x ∈
(
0,

π
2

)
, one has

2
sinx
x

+
tanx

x
−3 >

3
5

(1− cosx)2 .

Proof. The inequality 2
sinx
x

+
tanx

x
− 3 >

3
5

(1− cosx)2 can be rearranged as

follows:

2(sinx− x)+ (tanx− x)− 3
5
x(1− cosx)2 > 0.

We define the function f2 :
(
0,

π
2

)
→ R , f2 (x) = 2(sinx− x) + (tanx− x)−

3
5
x(1− cosx)2 . Then

f ′
2 (x) = (cosx−1)

(
13
5

− 3
5

cosx+
6
5
xsinx

)
+ tan2 x

= 2sin2 x
2

(
−13

5
+

3
5

cosx− 6
5
xsinx+

2cos2 x
2

cos2 x

)

= 2sin2 x
2
· −13cos2 x+3cos3 x−6xsinxcos2 x+5+5cosx

5cos2 x
.

We consider the function g2 :
(
0,

π
2

)
→ R , g2 (x) = −13cos2 x+3cos3 x

−6xsinxcos2 x+5+5cosx .
Then

g2 (x) = (1− cosx)
(−3cos2 x+10cosx+5

)−12xsin
x
2

cos
x
2

cos2 x

= 2sin
x
2

(
−3sin

x
2

cos2 x+10sin
x
2

cosx+5sin
x
2
−6xcos

x
2

cos2 x
)

.
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But 5sin
x
2

> 5sin
x
2

cosx on
(
0,

π
2

)
, hence we can write

g2 (x) > 6sin
x
2

cosx
(
−sin

x
2

cosx+5sin
x
2
−2xcosxcos

x
2

)
,

or equivalently,

g2 (x) > 6sin
x
2

cosx
(
sin

x
2

(1− cosx)+2
(
2sin

x
2
− xcos

x
2

cosx
))

.

Using Lemma 1 we find that g2 > 0 on
(
0,

π
2

)
, therefore f ′

2 > 0 on
(
0,

π
2

)
. As

f2 (0) = 0, we get f2 > 0 on
(
0,

π
2

)
. �

THEOREM 3. For all x ∈
(
0,

π
2

)
, one has

(
sinx
x

)2

+
tanx

x
−2 >

32
45

(1− cosx)2 .

Proof. Using the result of Theorem 2, we obtain

(
sinx
x

)2

+
tanx

x
>

(
sinx
x

)2

+3−2
sinx
x

+
3
5

(1− cosx)2 .

Then we have to prove that

(
sinx
x

)2

+3− 2sinx
x

+
3
5

(1− cosx)2 > 2+
32
45

(1− cosx)2 ,

or equivalently, (
sinx
x

−1

)2

>
1
9

(1− cosx)2 .

The above inequality can be rearranged as(
sinx
x

−1− 1
3

(1− cosx)
)(

sinx
x

− 2+ cosx
3

)
> 0,

which is true according to the Cusa - Huygens inequality. �

THEOREM 4. For all x ∈
(
0,

π
2

)
, one has

sinx
x

+
tanx

x
−2 >

1
45

(1− cosx)(43−28cosx) .
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Proof. We introduce the function f3 :
(
0,

π
2

)
→R , f3 (x)= (sinx− x)+(tanx− x)

− 1
45

x(1− cosx) (43−28cosx) .
Easy computations lead us to

f ′
3 (x) =

116
45

(cosx−1)+ tan2 x− 71x sinx−56x sinxcosx−28sin2 x
45

=
90sinx+112xcos5 x−71xcos4 x−56xcos3 x−187sinxcos3 x+112sinxcos4 x

45cos3 x
.

The function g3 :
(
0,

π
2

)
→ R , g3 (x) = 90sinx+112xcos5 x−71xcos4 x

−56xcos3 x−187sinxcos3 x+112sinxcos4 x has the derivative

g ′
3 (x) =cosx(90+672cos4 x−819cos3 x−504cos2 x+561cosx−560xcos3 xsinx

+284xcos2 xsinx+168xcosxsinx).

The function g ′
3 can be rewritten as

g ′
3 (x) = cosx

[
3(1− cosx)

(−224cos3 x+49cos2 x+217cosx+30
)

−560xcos3 x ·2sin
x
2

cos
x
2

+284xcos2 x ·2sin
x
2

cos
x
2

+168xcosx ·2sin
x
2

cos
x
2

]
= sin

x
2

cosx
(
180sin

x
2

+1302sin
x
2

cosx+294sin
x
2

cos2 x−1344sin
x
2

cos3 x

−1120xcos3 xcos
x
2

+568xcos2 xcos
x
2

+336xcosxcos
x
2

)
= sin

x
2

cosx
[(

180sin
x
2
−180sin

x
2

cos3 x
)

+
(
1164sin

x
2

cosx−1164sin
x
2

cos3 x
)

+
(
138sin

x
2

+294sin
x
2

cosx−216xcos2 xcos
x
2

)
· cosx

+568xcos2 xcos
x
2

(
1− cos2 x

)
+336xcosxcos

x
2

(
1− cos2 x

)]
.

We only have to prove that

138sin
x
2

+294sin
x
2

cosx−216xcos2 xcos
x
2

> 0 on
(
0,

π
2

)
.

Using the inequality 138sin
x
2

> 138sin
x
2

cosx on
(
0,

π
2

)
, we obtain

138sin
x
2

+294sin
x
2

cosx−216xcos2 xcos
x
2

> 216cosx
(
2sin

x
2
− xcosxcos

x
2

)
> 0,

according to the Lemma 1.
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Therefore, g′3 > 0 on
(
0,

π
2

)
. As g3 (0) = 0, we get g3 > 0 on

(
0,

π
2

)
. Then

f ′
3 > 0 on

(
0,

π
2

)
. As f3 (0) = 0, we find f3 > 0 on

(
0,

π
2

)
.

The proof is completed. �

3. Improvement of Shafer’s inequality

In our version of Cusa-Huygens inequality

sinx
x

<
2+ cosx

3
− 1

45
(1− cosx)2

for all x ∈
(
0,

π
2

)
, we take x = tan t , t ∈

(
0,

π
2

)
and we obtain

arctant
t

>
45

√
t2 +1

17
√

t2 +1+29t2 +28
.

The inequality

45
√

t2 +1

17
√

t2 +1+29t2 +28
>

3

1+2
√

t2 +1

is equivalent to the following true inequality

(√
t2 +1−1

)2
> 0,

therefore we also improved on
(
0,

π
2

)
the famous Shafer’s inequality for the arctangent

function([9]):
arctanx

x
>

3

1+2
√

x2 +1
.

4. Final remarks

We are convinced that the Fourier series method will be useful to refine many
others problems concerning inequalities.
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[8] M. NENEZIĆ, B. MALEŠEVIĆ, C. MORTICI, Accurate approximations of some expressions involving

trigonometric functions, Appl. Math. Comput., 283, (2016), 299–315.
[9] R. E. SHAFER, Problem E 1867, Amer. Math. Monthly, 73, (1966), 309.

[10] J. WEI - DONG, L. QIU - MING, Q. TENG, Refinements and sharpening of some Huygens and Wilker
type inequalities, Turk. J. Anal. Number Theory, 2, 4 (2014), 134–139.

[11] S.-H. WU, H.-M. SRIVASTAVA,A further refinement of Wilker’s inequality, Integral Transforms Spec.
Funct., 19, 10 (2008), 757–765.

(Received August 10, 2018) Gabriel Bercu
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