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ON WEIGHTED QUASI–ARITHMETIC MEANS WHICH ARE CONVEX

JACEK CHUDZIAK, DOROTA GŁAZOWSKA, JUSTYNA JARCZYK ∗
AND WITOLD JARCZYK

(Communicated by J. Jakšetić)

Abstract. We study convexity in the class of weighted quasi-arithmetic means. It turns out that
their convexity depends only on the generator, neither on weights, nor on the number of variables.
Connections between the convexity of a mean and the convexity of its increasing generators are
considered. We prove that convex means are generated by convex strictly increasing functions.
A simple example shows that the converse is not true, so the problem arises when this is the case.
Some answers are given under regularity assumptions imposed on the generator.

1. Introduction

Fix any real interval I . Given an integer n � 2 a function M : In → I is said to be
a mean on I if

min{x1, . . . ,xn} � M (x1, . . . ,xn) � max{x1, . . . ,xn}

for all x1, . . . ,xn ∈ I . We are interested in convex means, that is means M : In → I
satisfying the condition

M (tx+(1− t)y) � tM(x)+ (1− t)M(y), x,y ∈ In, (1)

for every t ∈ (0,1) . If t is fixed then condition (1) defines a t -convex mean. 1/2-
convex means are called also Jensen convex. Replacing the inequality in (1) by the
reverse one we come to the definitions of a concave, t -concave and Jensen concave
mean, respectively.

REMARK 1. Let M be a mean on an open interval. Then the following conditions
are pairwise equivalent:

(i) M is convex,
(ii) M is t -convex for all t ∈ (0,1) ,
(iii) M is t -convex for some t ∈ (0,1) ,
(iv) M is Jensen convex.
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Proof. Let M : In → I . The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are obvious.
To prove the implication (iii) ⇒ (iv) fix a t ∈ (0,1) . First observe that via a standard
argument any real-valued function defined on a convex set is t -convex if and only if its
sections along all straight lines are t -convex: given any subset D of R

n we have

f : D → R is t -convex iff fx,e : Ix,e → R are t -convex for all x ∈ D and e ∈ R
n \ {0},

where Ix,e := {λ ∈ R : x+ λe∈ D} and fx,e(λ ) := f (x+λe) ; of course each function
fx,e is defined on a real interval which is open provided D is open. Now assume
that M is t -convex. Then, for any x ∈ In and e ∈ R

n \ {0} , the section Mx,e is t -
convex, and thus, by virtue of a theorem of Kuhn from the paper [5], it is Jensen convex.
Consequently, also the mean M is Jensen convex. Another possibility is use here the
Daróczy-Páles identity
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probably used in [2, proof of Lemma 1] for the first time:
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(
ty+(1− t)

x+y
2

))

� tM

(
t
x+y

2
+(1− t)x

)
+(1− t)M

(
ty+(1− t)
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hence

M

(
x+y

2

)
� M(x)+M(y)

2

for all x,y ∈ In .
Now observe that M(Jn)⊂ J for any interval J ⊂ I , and thus M is locally bounded

at every point. Making use of the theorem of Bernstein-Doetsch (see [1], also [4, The-
orem 6.4.2]) we see that if M is Jensen convex then it is continuous and, consequently,
convex (cf., for instance, [4, Theorem 5.3.5 and the comment following it]). This gives
the implication (iv) ⇒ (i) and completes the proof of the remark. �

Here we study the problem of convexity in the class of weighted quasi-arithmetic
means. For any integer n � 2 put Δn = {(p1, . . . , pn) ∈ (0,1)n : p1 + . . .+ pn = 1} .
Given any continuous strictly monotonic function ϕ : I →R and a point p = (p1, . . . , pn)
∈ Δn the formula

Aϕ
p (x) = ϕ−1 (p1ϕ (x1)+ . . .+ pnϕ (xn)) ,

where x = (x1, . . . ,xn) , defines a mean on I called the quasi-arithmetic mean generated
by ϕ and weighted by p . Clearly A−ϕ

p = Aϕ
p , so we may always assume that the

generator of the mean Aϕ
p is strictly increasing. In fact we know much more:
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REMARK 2. Let ϕ ,ψ : I → R be continuous strictly monotonic functions and
p,q ∈ Δn . Then Aϕ

p = Aψ
q if and only if p = q and there exist a ∈ R\ {0} and b ∈ R

such that ψ = aϕ +b .

This is an immediate consequence of Theorem 1 from [7] which implies that p = q
and the function ψ ◦ϕ−1 is affine. Then, as a continuous function, it is of the form
y �→ ay+b with some reals a,b (see, for instance, [4, Theorem 13.2.2]). Since ψ ◦ϕ−1

is not constant we get a 	= 0. Notice also that, in the case when the equality p = q is
imposed a priori, the assertion of Remark 2 was known already for Hardy, Littlewood
and Pólya (see [3]).

As an immediate consequence of Remark 2 we have what follows.

REMARK 3. If a weighted quasi-arithmetic mean is generated by a convex [con-
cave] strictly increasing function, then every its strictly increasing generator is convex
[concave].

Many classical means, for instance weighted arithmetic:

Ap (x) = p1x1 + . . .+ pnxn, x ∈ R
n,

weighted geometric:

Gp (x) = xp1
1 · . . . · xpn

n , x ∈ (0,+∞)n,

and weighted harmonic:

Hp (x) =
1

p1
x1

+ . . .+ pn
xn

, x ∈ (0,+∞)n,

are weighted quasi-arithmetic. Their increasing generators are given by

ϕA(x) = x, ϕG(x) = logx and ϕH(x) = −1
x
,

respectively.

EXAMPLE 1. (i) It is clear that the function Ap : R
n → R is affine, so it is simul-

taneously convex and concave.
(ii) To answer the question on possible convexity of the mean Gp : (0,+∞)2 →

(0,+∞) we study its Hessian matrix. Fixing x = (x1,x2) ∈ (0,+∞)2 arbitrarily we
easily get

∂1Gp (x1,x2) = p1

(
x2

x1

)p2

, ∂2Gp (x1,x2) = p2

(
x1

x2

)p1

,

∂ 2
11Gp (x1,x2) = − p1p2

x1

(
x2

x1

)p2

, ∂ 2
22Gp (x1,x2) = − p1p2

x2

(
x1

x2

)p1

,

∂ 2
12Gp (x1,x2) = ∂ 2

21Gp (x1,x2) =
p1p2

xp2
1 xp1

2
.
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Hence ∂ 2
11Gp (x1,x2) < 0 and

∂ 2
11Gp (x1,x2)∂ 2

22Gp (x1,x2)− ∂ 2
12Gp (x1,x2)∂ 2

21Gp (x1,x2)

=
p2

1p2
2

x1x2

(
x1

x2

)p1
(

x2

x1

)p2

− p2
1p2

2

x2p2
1 x2p1

2

=
p2

1p2
2

x2p2
1 x2p1

2

(
xp1+p2−1
1 xp1+p2−1

2 −1
)

= 0

for all (x1,x2) ∈ (0,+∞)2 . This means that the Hessian matrix of Gp is negatively
semidefinite at every point of (0,+∞)2 which is equivalent to the concavity of Gp :
(0,+∞)2 → (0,+∞) .

(iii) One can easily check that suitable derivatives of the function Hp : (0,+∞)2 →
(0,+∞) are as follows:

∂1Hp (x1,x2) =
p1x2

2

(p2x1 + p1x2)
2 , ∂2Hp (x1,x2) =

p2x2
1

(p2x1 + p1x2)
2 ,

∂ 2
11Hp (x1,x2) = − 2p1p2x2

2

(p2x1 + p1x2)
3 , ∂ 2

22Hp (x1,x2) = − 2p1p2x2
1

(p2x1 + p1x2)
3 ,

∂ 2
12Hp (x1,x2) = ∂ 2

21Hp (x1,x2) =
2p1p2x1x2

(p2x1 + p1x2)
3 ,

and thus ∂ 2
11Hp (x1,x2) < 0 and

∂ 2
11Hp (x1,x2)∂ 2

22Hp (x1,x2)− ∂ 2
12Hp (x1,x2)∂ 2

21Hp (x1,x2) = 0

for all x1,x2 ∈ (0,+∞) . Therefore, also the mean Hp : (0,+∞)2 → (0,+∞) is concave.

2. Posing the problem

Our main problem is as follows. Is there any connection between the convexity
of a weighted quasi-arithmetic mean and the convexity of its increasing generator?
Example 1 suggests that maybe this is the case indeed, as we have the following rough
information:

increasing generator mean
affine ϕ(x) = x affine Ap
concave ϕ(x) = logx concave Gp
concave ϕ(x) = −1/x concave Hp

However, the example below shows that in general the convexity of the increasing gen-
erator of weighted quasi-arithmetic mean does not force the convexity of the mean.
Nevertheless, in Section 5, in some classes of differentiable functions, we character-
ize convex strictly increasing functions generating convex weighted quasi-arithmetic
means.

EXAMPLE 2. Clearly, the formula

ϕ(x) =
{

x, x < 0,
2x, x � 0,
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defines a convex strictly increasing function with the inverse ϕ−1 given by

ϕ−1(y) =
{

y, y < 0,
y/2, y � 0.

Taking p = 1/2 we come to the quasi-arithmetic mean Aϕ defined by

Aϕ (x1,x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1+2x2
2 , if x1 < 0 � x2 and x1 +2x2 < 0,

x1+2x2
4 , if x1 < 0 � x2 and x1 +2x2 � 0,

x1+x2
2 , if either x1,x2 < 0, or x1,x2 � 0,

2x1+x2
2 , if x2 < 0 � x1 and 2x1 + x2 < 0,

2x1+x2
4 , if x2 < 0 � x1 and 2x1 + x2 � 0.

Putting here x2 = 1 we get the section Aϕ(·,1) of Aϕ :

Aϕ (x1,1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1+2
2 , if x1 < −2,

x1+2
4 , if −2 � x1 < 0,

x1+1
2 , if x1 � 0.

x−4 −3 −2 −1 1 2 3

y

−2

−1

1

2

Since the section Aϕ(·,1) is not convex, neither is the function Aϕ . Consequently,
the mean Aϕ is not convex but it is generated by a convex function.

We are interested also in the following converse question. Do strictly increas-
ing generators of a convex weighted quasi-arithmetic mean have to be convex? That
problem will be positively answered in Section 4.
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3. Adjoint classes of means

Given integers m,n � 2 and real intervals I and J let {Mp}p∈Δm
and {Nq}q∈Δn

be
families of means on I and J , respectively. We say that the class {Mp}p∈Δm

is adjoint
to {Nq}q∈Δn

if for all p ∈ Δm and q ∈ Δn the conditions

Mp

(
q1x(1) + . . .+qnx(n)

)
� q1Mp

(
x(1)
)

+ . . .+qnMp

(
x(n)
)

, x(1), . . . ,x(n) ∈ Im,
(2)

and

Nq

(
p1y(1) + . . .+ pmy(m)

)
� p1Nq

(
y(1)
)

+ . . .+ pmNq

(
y(m)

)
, y(1), . . . ,y(m) ∈ Jn,

(3)

are equivalent. The following result provides an important example of adjoint classes
of means.

PROPOSITION 1. Let I be a real interval, ϕ : I → R be a continuous strictly
increasing function and let m,n � 2 be integers. Then the class

{
Aϕ

p
}

p∈Δm
of ϕ -

generated weighted quasi-arithmetic means in m variables is adjoint to the class{
Aϕ−1

q

}
q∈Δn

of ϕ−1 -generated means in n-variables.

Proof. Fix p ∈ Δm and q ∈ Δn . Assume condition (2) for Mp = Aϕ
p , fix points

y(1) =
(
y(1)
1 , . . . ,y(1)

n

)
, . . . ,y(m) =

(
y(m)
1 , . . . ,y(m)

n

)
∈ Jn , where J := ϕ(I) , and put

x(1) :=
(

ϕ−1
(
y(1)
1

)
, . . . ,ϕ−1

(
y(m)
1

))
, . . . ,x(n) :=

(
ϕ−1

(
y(1)
n

)
, . . . ,ϕ−1

(
y(m)
n

))
.

Then x(1), . . . ,x(n) ∈ Im and

Aϕ
p

(
q1x(1) + . . .+qnx(n)

)
� q1A

ϕ
p

(
x(1)
)

+ . . .+qnA
ϕ
p

(
x(n)
)

, (4)

that is

ϕ−1
(

p1ϕ
(
q1x

(1)
1 + . . .+qnx

(n)
1

)
+ . . .+ pmϕ

(
q1x

(1)
m + . . .+qnx

(n)
m

))
� q1ϕ−1

(
p1ϕ

(
x(1)
1

)
+ . . .+ pmϕ

(
x(1)
m

))
+ . . .

+qnϕ−1
(

p1ϕ
(
x(n)
1

)
+ . . .+ pmϕ

(
x(n)
m

))
.

Since ϕ is increasing then, using the variables y(1), . . . ,y(m) , this inequality can be
rewritten in the form

p1ϕ
(
q1ϕ−1

(
y(1)
1

)
+ . . .+qnϕ−1

(
y(1)
n

))
+ . . .

+pmϕ
(
q1ϕ−1

(
y(m)
1

)
+ . . .+qnϕ−1

(
y(m)
n

))
� ϕ

(
q1ϕ−1

(
p1y

(1)
1 + . . .+ pmy(m)

1

)
+ . . .+qnϕ−1

(
p1y

(1)
n + . . .+ pmy(m)

n

))
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or, equivalently,

p1A
ϕ−1

q

(
y(1)
)

+ . . .+ pmAϕ−1

q

(
y(m)

)
� Aϕ−1

q

(
p1y

(1) + . . .+ pmy(m)
)

. (5)

Thus we come to (3) for Nq = Aϕ−1

q . The implication (3)⇒(2) for Mp = Aϕ
p and

Nq = Aϕ−1

q can be proved similarly. �

Using Proposition 1 we can prove the following main result of this section.

THEOREM 1. Let I be an open real interval and ϕ : I → R be a continuous
strictly increasing function. Then the following statements are pairwise equivalent:

(i) there exist an integer m � 2 and p ∈ Δm such that the mean Aϕ
p is convex,

(ii) the mean Aϕ
p is convex for every integer m � 2 and all p ∈ Δm ,

(iii) there exist an integer n � 2 and q ∈ Δn such that the mean Aϕ−1

q is concave,

(iv) the mean Aϕ−1

q is concave for every integer n � 2 and all q ∈ Δn .

Proof. Assume statement (i) and choose an integer m � 2 and a vector p ∈ Δm

such that the mean Aϕ
p is convex. Fix any integer n � 2 and q ∈ Δn . Using Jensen’s

inequality (see, for instance, [4, Theorem 8.1.1]) we infer that inequality (4) holds
for all x(1), . . . ,x(n) ∈ Im , and thus, by Proposition 1, inequality (5) is satisfied for all
y(1), . . . ,y(m) ∈ ϕ(I)n . Therefore, putting y(k) = y(2) for k = 2, . . . ,m in (5), we obtain

p1A
ϕ−1

q

(
y(1)
)

+(1− p1)Aϕ−1

q

(
y(2)
)

� Aϕ−1

q

(
p1y

(1) + (1− p1)y(2)
)

for all y(1),y(2) ∈ϕ(I)n , which means that Aϕ−1

q is p1 -concave. Now Remark 1 implies
that it is concave. This completes the proof of the implication (i) ⇒ (iv) . Analogously
one can prove that (iii) ⇒ (ii) . Since the implications (iv) ⇒ (iii) and (ii) ⇒ (i)
trivially hold, the proof is completed. �

Theorem 1 shows that the convexity of a weighted quasi-arithmetic mean depends
only on its generator, neither on the numbers of variables, nor the weights. Conse-
quently, studying the convexity of a mean Aϕ

p with some p ∈ Δn and n � 2 it is enough
to deal with the simplest case of the quasi-arithmetic mean Aϕ : I2 → I defined by

Aϕ (x1,x2) = ϕ−1
(

ϕ (x1)+ ϕ (x2)
2

)
.

Of course calculations for Aϕ are shorter and much more straightforward. For that
reason, in what follows we disregard both the number of the variables and the weights
of the mean Aϕ

p and refer only to the quasi-arithmetic Aϕ in two variables.
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4. Increasing generators of convex quasi-arithmetic means are convex

We start with a characterization of the convexity of weighted quasi-arithmetic
means. This is an immediate consequence of [9, Theorem 4] by Páles and Theorem 1.

THEOREM 2. Let I be an open real interval and ϕ : I → R be a continuous
strictly increasing function. Then the mean Aϕ is convex if and only if there exist
functions d1,d2 : I2 → R such that

ϕ
(

x1+x2

2

)
−ϕ
(

y1+y2

2

)
� d1 (y1,y2)(ϕ (x1)−ϕ (y1))+d2 (y1,y2) (ϕ (x2)−ϕ (y2))

(6)
for all x1,x2,y1,y2 ∈ I .

Now we can positively answer the question posed at the very end of Section 2.

THEOREM 3. Let I be an open real interval and ϕ : I → R be a continuous
strictly increasing function. If the mean Aϕ

p is convex for some p ∈ Δm and an integer
m � 2 , then the function ϕ is convex.

Proof. Assume that p ∈ Δm with an m � 2 and Aϕ
p is convex. Theorem 1 im-

plies that also Aϕ is convex. Fix an x0 ∈ I . According to Remarks 2 and 3 we may
assume without loss of generality that ϕ (x0) = 0. By Theorem 2 there exist functions
d1,d2 : I2 → R satisfying inequality (6) for all x1,x2,y1,y2 ∈ I . Setting y1 = y2 = x0 in
(6) we see that

ϕ
(

x1 + x2

2

)
� c1ϕ (x1)+ c2ϕ (x2) , x1,x2 ∈ I, (7)

where c1 : = d1 (x0,x0) and c2 : = d2 (x0,x0) . In particular,

ϕ(x) � (c1 + c2)ϕ(x), x ∈ I,

and thus, as ϕ is changing its sign in a neighbourhood of x0 , we have c1 + c2 = 1.
Now, swapping x1 and x2 in (7), and summing the obtained inequality with (7), we get
that ϕ is Jensen convex. Since ϕ is continuous, it is convex. �

5. Convexity of quasi-arithmetic means generated by regular convex functions

First notice the following result which is a direct consequence of [9, Theorem 6]
and again Theorem 1.

THEOREM 4. Let I be an open real interval and ϕ : I → R be a differentiable
function with positive first derivative. Then the mean Aϕ is convex if and only if the
function E : I2 → R, given by

E (x1,x2) =
ϕ (x1)−ϕ (x2)

ϕ ′ (x2)
,

is convex.
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Observe that Theorem 4 characterizes the convexity of the mean Aϕ in terms of
the convexity of the two-variable function E . The result below reduces the problem
to studying the convexity of another functions also built using only the generator ϕ .
Notice however, that both of them are in a single variable, so easier to study. It should
be also observed that the assumptions made in both results are different.

THEOREM 5. Let I be an open real interval and ϕ : I → R be a twice continu-
ously differentiable function with positive first derivative. Then the following statements
are pairwise equivalent:

(i) the mean Aϕ is convex [concave],
(ii) either ϕ is an affine function, or the second derivative ϕ ′′ is positive [nega-

tive] and the function
[
(ϕ ′)2/ϕ ′′]◦ϕ−1 is concave [convex],

(iii) either ϕ is an affine function, or the second derivative ϕ ′′ is positive [nega-
tive] and the function ϕ ′/ϕ ′′ is concave [convex].

Proof. To prove that (i) is equivalent to (ii) assume that the quasi-arithmetic
mean Aϕ : I2 → I is convex. To find the Hessian matrix of Aϕ we need to calculate
second partial derivatives of Aϕ . Standard argument shows that for any x1,x2 ∈ I we
have

∂1A
ϕ (x1,x2) =

ϕ ′ (x1)
2ϕ ′ (Aϕ (x1,x2))

, ∂2A
ϕ (x1,x2) =

ϕ ′ (x2)
2ϕ ′ (Aϕ (x1,x2))

,

∂ 2
11A

ϕ (x1,x2) =
2ϕ ′ (Aϕ (x1,x2))

2 ϕ ′′ (x1)−ϕ ′ (x1)
2 ϕ ′′ (Aϕ (x1,x2))

4ϕ ′ (Aϕ (x1,x2))
3 ,

∂ 2
22A

ϕ (x1,x2) =
2ϕ ′ (Aϕ (x1,x2))

2 ϕ ′′ (x2)−ϕ ′ (x2)
2 ϕ ′′ (Aϕ (x1,x2))

4ϕ ′ (Aϕ (x1,x2))
3 ,

and

∂ 2
12A

ϕ (x1,x2) = ∂ 2
21A

ϕ (x1,x2) = −ϕ ′ (x1)ϕ ′ (x2)ϕ ′′ (Aϕ (x1,x2))

4ϕ ′ (Aϕ (x1,x2))
3 .

The convexity of Aϕ is equivalent to the condition

D1 (x1,x2) � 0 and D2 (x1,x2) � 0, x1,x2 ∈ I,

where
D1 = ∂ 2

11A
ϕ and D2 = ∂ 2

11A
ϕ∂ 2

22A
ϕ − ∂ 2

12A
ϕ∂ 2

21A
ϕ .

In particular, since

D1(x,x) =
ϕ ′′(x)
4ϕ ′(x)

� 0, x ∈ I,

we see that ϕ ′′ � 0. If ϕ ′′ = 0 then ϕ is affine. So we may assume that the open set
{x ∈ I : ϕ ′′(x) > 0} is nonempty. Let J be any its connected component. If x0 :=
supJ < sup I then ϕ ′′ (x0) = 0 and

0 � D1 (x0,x) = ∂ 2
11A

ϕ (x0,x) = −ϕ ′ (x0)
2 ϕ ′′ (Aϕ (x0,x))

4ϕ ′ (Aϕ (x0,x))
3 , x ∈ I,
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hence ϕ ′′ (Aϕ (x0,x)) � 0, that is ϕ ′′ (Aϕ (x0,x)) = 0 for all x ∈ I . This, however, is
impossible as Aϕ (x0,x) ∈ J , for x ∈ J sufficiently close to x0 . Therefore supJ = sup I .
Similarly, we show that infJ = inf I , and thus J = I , i.e. ϕ ′′ > 0. Put φ := (ϕ ′)2/ϕ ′′ .
Then

∂ 2
11A

ϕ (x1,x2) =
(2φ (Aϕ (x1,x2))−φ (x1))ϕ ′′ (x1)ϕ ′′ (Aϕ (x1,x2))

4ϕ ′ (Aϕ (x1,x2))
3 , (8)

and

∂ 2
22A

ϕ (x1,x2) =
(2φ (Aϕ (x1,x2))−φ (x2))ϕ ′′ (x2)ϕ ′′ (Aϕ (x1,x2))

4ϕ ′ (Aϕ (x1,x2))
3

for all x1,x2 ∈ I . Moreover,

8ϕ ′ (Aϕ (x1,x2))
6

ϕ ′′ (x1)ϕ ′′ (x2)ϕ ′′ (Aϕ (x1,x2))
2 D2 (x1,x2)

(9)

= φ (Aϕ (x1,x2)) [2φ (Aϕ (x1,x2))−φ (x1)−φ (x2)] , x1,x2 ∈ I,

and thus, since φ > 0 and D2 � 0, we have

φ (Aϕ (x1,x2)) � φ (x1)+ φ (x2)
2

, x1,x2 ∈ I, (10)

that is

(
φ ◦ϕ−1)(y1 + y2

2

)
�
(
φ ◦ϕ−1

)
(y1)+

(
φ ◦ϕ−1

)
(y2)

2
, y1,y2 ∈ ϕ(I).

This means that the function φ ◦ϕ−1 is Jensen concave and according to its continuity,
concave. In such a way we have proved statement (ii) .

If the function ϕ is affine, then Aϕ is the arithmetic mean which is clearly convex.
So to prove implication (ii)⇒ (i) we may assume that ϕ ′′ > 0 and the function φ ◦ϕ−1

is concave. This gives (10) and, using (9), we infer that D2 � 0. Condition (10) and the
positivity of φ imply also that

2φ (Aϕ (x1,x2)) � φ (x1) , x1,x2 ∈ I,

which, in view of (8), shows that D1 � 0 as well. Therefore, the Hessian matrix of Aϕ

is positively semidefinite at every point of I2 which forces the convexity of Aϕ .
Finally we prove the equivalence of statements (ii) and (iii) . Of course we may

consider only the case when ϕ ′′ > 0. Assume that the function
[
(ϕ ′)2/ϕ ′′] ◦ϕ−1 is

concave. Then Aϕ is convex and, by Theorem 1, the mean Aψ , where ψ := ϕ−1 , is
concave. Thus the function

[
(ψ ′)2/ψ ′′]◦ψ−1 is convex. We have ψ−1 = ϕ ,

ψ ′ =
1

ϕ ′ ◦ϕ−1 and ψ ′′ = − ϕ ′′ ◦ϕ−1

(ϕ ′ ◦ϕ−1)3 ,
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and thus

(ψ ′)2

ψ ′′ ◦ψ−1 =

(
− 1

(ϕ ′ ◦ϕ−1)2

(
ϕ ′ ◦ϕ−1

)3
ϕ ′′ ◦ϕ−1

)
◦ϕ = − ϕ ′

ϕ ′′ .

Consequently, the function ϕ ′/ϕ ′′ is concave and the implication (ii) ⇒ (iii) has been
proved. Reversing this reasoning we see that also the implication (iii) ⇒ (ii) holds.
This completes the proof. �

As a consequence we obtain the following simple necessary condition of the con-
vexity of the mean Aϕ .

COROLLARY 1. Let I be an open real interval and ϕ : I → R be a twice contin-
uously differentiable function with positive first derivative. If the mean Aϕ is convex
[concave], then either ϕ is an affine function, or it is strictly convex [strictly concave].

Recently, in the paper [10], Páles and Pasteczka have proved that statement (iii)
is equivalent to the convexity [concavity] of the quasi-arithmetic mean Aϕ : Im → I for
all integers m � 2.

6. Simple applications

The function ϕ : I → R , described in Example 2, is convex and strictly increasing
but the mean Aϕ is neither convex, nor concave. However, ϕ is not differentiable at 0.
Just recently, Małolepszy [8] has asked about a similar example with a generator which
is continuously differentiable. He proposed to consider ϕ : I → R defined by

ϕ(x) =
{

x, if x < 0,
x2 + x, if x � 0.

In fact, it is a convex, strictly increasing and continuously differentiable function, and
the section Aϕ(·,1) of the mean Aϕ is given by

Aϕ (x1,1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1+2
2 , if x1 < −2,

√
2x1+5−1

2 , if −2 � x1 < 0,

√
2x2

1+2x1+5−1
2 , if x1 � 0.

Simple calculations show that its right-hand side derivative at −2,0 and 1 equals
1/2,1/2

√
5 and 1/2, respectively, so this derivative is not monotonic. Therefore

Aϕ(·,1) and, consequently, also Aϕ are neither convex, nor concave.
Encouraged by Małolepszy’s question we were looking for similar examples where

the regularity of the generator is of higher order.
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EXAMPLE 3. For each n ∈ N the function ϕ [n] : R → R , defined by

ϕ [n](x) =
{

x, if x < 0,
xn + x, if x � 0,

is convex, strictly increasing and (n− 1)-times continuously differentiable. Observe
that ϕ [1] is the function discussed in Example 2 and ϕ [2] is that one presented at the

very beginning of this section. In general, examining the convexity of the mean Aϕ [n]
,

we cannot follow the arguments used for n = 1 or n = 2. For n � 3 it is usually hard

even to determine the form of the inverse
(

ϕ [n]
)−1

. However, making use of Corollary

1 we see that the mean Aϕ [n]
is neither convex, nor concave for all n ∈ N .

It turns out that even the analyticity of a convex generator ϕ does not guarantee
the convexity of the mean Aϕ .

EXAMPLE 4. The formula ϕ(x)= ex+x defines a convex strictly increasing func-
tion ϕ : R → R which is analytic. Moreover,

ϕ ′(x) = ex +1 > 0 and ϕ ′′(x) = ex > 0,

hence
ϕ ′(x)
ϕ ′′(x)

=
ex +1

ex = 1+ e−x

for all x ∈ R , and thus the function ϕ ′/ϕ ′′ is convex. Therefore, using Theorem 5, we
infer that the mean Aϕ is neither convex, nor concave.

In the last example we apply Theorem 5 to examine the convexity of the power
means. The result is known due to Losonczi [6].

EXAMPLE 5. Fix an integer n � 2, a vector p ∈ Δn and a number t ∈ R . The
formula

ϕt(x) =

⎧⎨
⎩

−xt , if t ∈ (−∞,0),
logx, if t = 0,
xt , if t ∈ (0,+∞),

defines a continuous strictly increasing function ϕt : (0,+∞) → R . It generates the
weighted Hölder mean Ht

p := Aϕt
p on the half-line (0,+∞) . Clearly H0

p = Gp is the
p-weighted geometric mean. Since

ϕ ′
0(x) =

1
x

and ϕ ′′
0 (x) = − 1

x2 , x ∈ (0,+∞),

we have

(ϕ ′
0)

2

ϕ ′′
0

(
ϕ−1

0 (y)
)

= −1, y ∈ R, and
ϕ ′

0(x)
ϕ ′′

0 (x)
= −x, x ∈ (0,+∞),
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and thus Theorem 5 (cf. statement (ii) and/or (iii)) implies the concavity of the mean
H0

p . Taking t = 1 we come to the p-weighted arithmetic mean Ap which is affine, so
simultaneously convex and concave.

Now assume that t ∈ R\ {0,1} . Then

Ht
p (x) =

(
p1x

t
1 + . . .+ pnx

t
n

) 1
t , x ∈ (0,+∞)n.

Since

ϕ ′
t (x) =

{−txt−1, if t ∈ (−∞,0),
txt−1, if t ∈ (0,1)∪ (1,+∞),

and

ϕ ′′
t (x) =

{−t(t−1)xt−2, if t ∈ (−∞,0),
t(t−1)xt−2, if t ∈ (0,1)∪ (1,+∞),

for each x ∈ (0,+∞) , it follows that ϕ ′′
t is positive for t ∈ (1,+∞) and negative for

t ∈ (−∞,0)∪ (0,1) . Moreover,

(ϕ ′
t )

2

ϕ ′′
t

(
ϕ−1

t (y)
)

=
t

t−1
y

for each y ∈ ϕt ((0,+∞)) and

ϕ ′
t (x)

ϕ ′′
t (x)

=
1

t −1
x

for all x ∈ (0,+∞) . Therefore, by Theorem 5, the mean Ht
p is convex for t ∈ (1,+∞)

and concave for t ∈ (−∞,0)∪ (0,1) . Reasumming, if t ∈ (−∞,1] then Ht
p is concave

and if t ∈ [1,+∞) then the mean Ht
p is convex.
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[2] Z. DARÓCZY, ZS. PÁLES, Convexity with given infinite weight sequences, Stochastica 11 (1987),
5–12.
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