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INTEGRAL ERROR REPRESENTATION OF HERMITE

INTERPOLATING POLYNOMIALS AND RELATED

GENERALIZATIONS OF STEFFENSEN’S INEQUALITY

JOSIP PEČARIĆ, ANAMARIJA PERUŠIĆ PRIBANIĆ ∗
AND KSENIJA SMOLJAK KALAMIR

(Communicated by J. Jakšetić)

Abstract. Some representations of Steffensen’s inequality are obtained by using Hermite inter-
polating polynomials. The obtained representations are used to prove new generalizations of
Steffensen’s inequality for n−convex functions and to give some bounds for integrals in these
representations.

1. Introduction

We will first mention some results regarding Hermite interpolation polynomials
used in this paper (for details see [1]). Let −∞ < a � a1 < a2 < ... < ar � b < ∞ ,
(r � 2) be given. For f ∈Cn[a,b] there exists a unique polynomial PH of degree n−1,
called the Hermite interpolating polynomial of the function f , fulfilling the following
Hermite conditions:

P(i)
H (a j) = f (i)(a j), 0 � i � k j, 1 � j � r,

r

∑
j=1

k j + r = n.

Notice that Hermite conditions include the following particular cases:

Simple Hermite or Osculatory conditions (n = 2m, r = m, k j = 1 for all j )

PO(a j) = f (a j), P′
O(a j) = f ′(a j), 1 � j � m,

Lagrange conditions (r = n, k j = 0 for all j )

PL(a j) = f (a j), 1 � j � n,
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Type (m,n−m) conditions (r = 2, a1 = a, a2 = b, 1 � m � n− 1, k1 = m− 1, k2 =
n−m−1)

P(i)
mn(a) = f (i)(a), 0 � i � m−1,

P(i)
mn(b) = f (i)(b), 0 � i � n−m−1,

One-point Taylor conditions (r = 1,k1 = n−1)

P(i)
T (a) = f (i)(a), 0 � i � n−1,

Two-point Taylor conditions (n = 2m, r = 2, a1 = a, a2 = b, k1 = k2 = m−1)

P(i)
2T (a) = f (i)(a), P(i)

2T (b) = f (i)(b), 0 � i � m−1.

In [1] the following result is given:

THEOREM 1. Let f ∈ Cn[a,b] , and let PH be its Hermite interpolating polyno-
mial. Then

f (t) = PH(t)+ eH(t)

=
r

∑
j=1

k j

∑
i=0

Hi j(t) f (i)(a j)+
∫ b

a
GH,n(t,s) f (n)(s)ds, (1)

where Hi j are fundamental polynomials of the Hermite basis defined by

Hi j(t) =
1
i!

ω(t)
(t −a j)k j+1−i

k j−i

∑
k=0

1
k!

dk

dtk

(
(t−a j)

ω(t)

k j+1
)∣∣∣

t=a j
(t−a j)k, (2)

where

ω(t) =
r

∏
j=1

(t −a j)k j+1, (3)

and GH,n is Green’s function for Hemite interpolation given by

GH,n(t,s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

∑
j=1

k j

∑
i=0

(a j−s)n−i−1

(n−i−1)! Hi j(t), s � t,

−
r
∑

j=�+1

k j

∑
i=0

(a j−s)n−i−1

(n−i−1)! Hi j(t), s � t,

(4)

for all a� � s � a�+1, � = 0,1, . . . ,r (a0 = a, ar+1 = b) .

The following lemma describes positivity of Green’s function (4) (see Beesack [3]
and Levin [6]).

LEMMA 1. Green’s function GH,n(t,s) given by (4) has the following properties:
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(i)
GH,n(t,s)

ω(t)
> 0, for a1 � t � ar, a1 < s < ar;

(ii) GH,n(t,s) � 1
(n−1)!(b−a)

|ω(t)|;

(iii)
∫ b

a
GH,n(t,s)ds =

ω(t)
n!

.

The aim of this paper is to obtain some new generalizations of Steffensen’s in-
equality for n−convex functions using Hermite polynomials. The well-known Stef-
fensen inequality states ([10]) :

THEOREM 2. Suppose that f is nonincreasing and g is integrable on [a,b] with
0 � g � 1 and λ =

∫ b
a g(t)dt. Then we have

∫ b

b−λ
f (t)dt �

∫ b

a
f (t)g(t)dt �

∫ a+λ

a
f (t)dt. (5)

The inequalities are reversed for f nondecreasing.

Over the years Steffensen’s inequality has been generalized in many ways. Exten-
sive overviews of generalizations of Steffensen’s inequality can be found in [7] and [9]
(see also [2], [8]).

2. Generalizations of Steffensen’s inequality by Hermite polynomial

Using Hermite polynomialswe obtain the following representations of Steffensen’s
inequality.

THEOREM 3. Let −∞ < a � a1 < a2 ... < ar � b < ∞ , (r � 2) be given points
and f ∈Cn [a,b] . Let g, p : [a,b] → R be integrable functions such that p is positive,
0 � g � 1 and

∫ a+λ
a p(t)dt =

∫ b
a g(t)p(t)dt . Let the function G1 be defined by

G1(x) =

{∫ x
a (1−g(t))p(t)dt, x ∈ [a,a+ λ ],∫ b
x g(t)p(t)dt, x ∈ [a+ λ ,b].

(6)

Then

∫ a+λ

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt +

r

∑
j=1

k j

∑
i=0

f (i+1)(a j)
∫ b

a
G1(x)Hi j(x)dx

=−
∫ b

a

(∫ b

a
G1(x)GH,n−1(x,s)dx

)
f (n)(s)ds

(7)

where Hi j are defined on [a,b] by (2) and GH,n−1 is Green’s function defined by (4).
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Proof. Using identity

∫ a+λ

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt =

∫ a+λ

a
f (t)(1−g(t))p(t)dt−

∫ b

a+λ
f (t)g(t)p(t)dt

and integration by parts we have

∫ a+λ

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt

=
∫ a+λ

a
[ f (t)− f (a+ λ )][1−g(t)]p(t)dt+

∫ b

a+λ
[ f (a+ λ )− f (t)]g(t)p(t)dt

=−
∫ a+λ

a

[∫ x

a
(1−g(t))p(t)dt

]
d f (x)−

∫ b

a+λ

[∫ b

x
g(t)p(t)dt

]
d f (x)

=−
∫ b

a
G1(x)d f (x) = −

∫ b

a
G1(x) f ′(x)dx.

By Theorem 1 f ′(x) can be expressed as

f ′(x) =
r

∑
j=1

k j

∑
i=0

Hi j(x) f (i+1)(a j)+
∫ b

a
GH,n(x,s) f (n+1)(s)ds. (8)

Replacing n with n−1 in (8) and using that result we obtain

∫ b

a
G1(x) f ′(x)dx =

r

∑
j=1

k j

∑
i=0

f (i+1)(a j)
∫ b

a
G1(x)Hi j(x)dx

+
∫ b

a
G1(x)

(∫ b

a
GH,n−1(x,s) f (n)(s)ds

)
dx.

(9)

After applying Fubini’s theorem on the last term in (9) we obtain ( 7). �

THEOREM 4. Let −∞ < a � a1 < a2 ... < ar � b < ∞ , (r � 2) be given points
and f ∈Cn [a,b] . Let g, p : [a,b] → R be integrable functions such that p is positive,
0 � g � 1 and

∫ b
b−λ p(t)dt =

∫ b
a g(t)p(t)dt . Let the function G2 be defined by

G2(x) =

{∫ x
a g(t)p(t)dt, x ∈ [a,b−λ ],∫ b
x (1−g(t))p(t)dt, x ∈ [b−λ ,b].

(10)

Then

∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−λ
f (t)p(t)dt +

r

∑
j=1

k j

∑
i=0

f (i+1)(a j)
∫ b

a
G2(x)Hi j(x)dx

=−
∫ b

a

(∫ b

a
G2(x)GH,n−1(x,s)dx

)
f (n)(s)ds,

(11)

where Hi j are defined on [a,b] by (2) and GH,n−1 is Green’s function defined by (4).
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Proof. Similar to the proof of Theorem 3 using identity

∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−λ
f (t)p(t)dt=

∫ b−λ

a
f (t)g(t)p(t)dt−

∫ b

b−λ
f (t)(1−g(t))p(t)dt. �

Using Theorems 3 and 4 we can obtain the following generalizations of Stef-
fensen’s inequality by Hermite polynomials.

THEOREM 5. Let −∞ < a � a1 < a2 ... < ar � b < ∞ , (r � 2) be given points
and f ∈Cn [a,b] . Let g, p : [a,b] → R be integrable functions such that p is positive,
0 � g � 1 and

∫ a+λ
a p(t)dt =

∫ b
a g(t)p(t)dt . Let the function G1 be defined by (6). If f

is n−convex and ∫ b

a
G1(x)GH,n−1(x,s)dx � 0, s ∈ [a,b], (12)

then

∫ b

a
f (t)g(t)p(t)dt �

∫ a+λ

a
f (t)p(t)dt +

r

∑
j=1

k j

∑
i=0

f (i+1)(a j)
∫ b

a
G1(x)Hi j(x)dx, (13)

where Hi j are defined on [a,b] by (2) and GH,n−1 is Green’s function defined by (4). If
the reverse inequality in (12) holds, then the reverse inequality in (13) holds.

Proof. If the function f is n -convex, without loss of generality we can assume
that f is n− times differentiable and f (n) � 0 see [7, p. 16 and p. 293]. Now we can
apply Theorem 3 to obtain ( 13). �

THEOREM 6. Let −∞ < a � a1 < a2 ... < ar � b < ∞ , (r � 2) be given points
and f ∈Cn [a,b] . Let g, p : [a,b] → R be integrable functions such that p is positive,
0 � g � 1 and

∫ b
b−λ p(t)dt =

∫ b
a g(t)p(t)dt . Let the function G2 be defined by (10). If

f is n−convex and

∫ b

a
G2(x)GH,n−1(x,s)dx � 0, s ∈ [a,b], (14)

then

∫ b

a
f (t)g(t)p(t)dt �

∫ b

b−λ
f (t)p(t)dt−

r

∑
j=1

k j

∑
i=0

f (i+1)(a j)
∫ b

a
G2(x)Hi j(x)dx, (15)

where Hi j are defined on [a,b] by (2) and GH,n−1 is Green’s function defined by (4). If
the reverse inequality in (14) holds, then the reverse inequality in (15) holds.

Proof. Similar to the proof of Theorem 5. �
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REMARK 1. Note that functions Gi, i = 1,2 defined by (6) and (10) are nonneg-
ative. If all k1, . . . ,kr are odd then ω(x) = ∏r

j=1(x− a j)k j+1 � 0 and according to
(i)-part of Lemma 1 GH,n (x,s) � 0. Therefore, in Theorems 5 and 6 it is enough to
assume that the function f is n−convex. For the case when only one k j is even and
others are odd we have ω(x) = ∏r

j=1(x−a j)k j+1 � 0 and by Lemma 1, GH,n (x,s) � 0.
Hence, integrals in (12) and (14) are nonpositive and the reverse inequalities in (13) and
(15) hold.

2.1. Related results for type (m,n−m) conditions

Let r = 2, a1 = a , a2 = b , 1 � m � n−1, k1 = m−1 and k2 = n−m−1. In this
case

f (x) =
m−1

∑
i=0

τi(x) f (i)(a)+
n−m−1

∑
i=0

ηi(x) f (i)(b)+
∫ b

a
Gm,n(x,s) f (n)(s)ds,

where

τi(x) =
1
i!

(x−a)i
(

x−b
a−b

)n−m m−1−i

∑
k=0

(
n−m+ k−1

k

)(
x−a
b−a

)k

, (16)

ηi(x) =
1
i!

(x−b)i
(

x−a
b−a

)m n−m−1−i

∑
k=0

(
m+ k−1

k

)(
x−b
a−b

)k

, (17)

and Green’s function Gm,n is of the form

Gm,n(x,s) =

⎧⎨
⎩∑m−1

j=0

[
∑m−1− j

p=0

(n−m+p−1
p

)(
x−a
b−a

)p
]

(x−a) j(a−s)n− j−1

j!(n− j−1)!

(
b−x
b−a

)n−m
, s � x,

−∑n−m−1
i=0

[
∑n−m−1−i

q=0

(m+q−1
q

)(
b−x
b−a

)q] (x−b)i(b−s)n−i−1

i!(n−i−1)!

(
x−a
b−a

)m
, s � x.

(18)
The following corollaries are representations of Steffensen’s inequality by Hermite

polynomials for type (m,n−m) conditions.

COROLLARY 1. Let −∞ < a < b < ∞ be given points and f ∈Cn [a,b] . Let g, p :
[a,b]→R be integrable functions such that p is positive, 0 � g � 1 and

∫ a+λ
a p(t)dt =∫ b

a g(t)p(t)dt . Let the function G1 be defined by (6) and τi , ηi be defined by (16) and
(17), respectively. Then

∫ a+λ

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt +

m−1

∑
i=0

f (i+1)(a)
∫ b

a
G1(x)τi(x)dx

+
n−m−2

∑
i=0

f (i+1)(b)
∫ b

a
G1(x)ηi(x)dx = −

∫ b

a

(∫ b

a
G1(x)Gm,n−1(x,s)dx

)
f (n)(s)ds,

where Gm,n−1 is Green’s function defined by (18).
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COROLLARY 2. Let −∞ < a < b < ∞ be given points and f ∈Cn [a,b] . Let g, p :
[a,b]→R be integrable functions such that p is positive, 0 � g � 1 and

∫ b
b−λ p(t)dt =∫ b

a g(t)p(t)dt . Let the function G2 be defined by (10) and τi , ηi be defined by (16) and
(17), respectively. Then∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−λ
f (t)p(t)dt +

m−1

∑
i=0

f (i+1)(a)
∫ b

a
G2(x)τi(x)dx

+
n−m−2

∑
i=0

f (i+1)(b)
∫ b

a
G2(x)ηi(x)dx = −

∫ b

a

(∫ b

a
G2(x)Gm,n−1(x,s)dx

)
f (n)(s)ds,

where Gm,n−1 is Green’s function defined by (18).

By using type (m,n−m) conditions we obtain the following generalizations of
Steffensen’s inequality.

COROLLARY 3. Let −∞ < a < b < ∞ be given points and f ∈Cn [a,b] . Let g, p :
[a,b]→R be integrable functions such that p is positive, 0 � g � 1 and

∫ a+λ
a p(t)dt =∫ b

a g(t)p(t)dt . Let the function G1 be defined by (6) and τi , ηi be defined by (16) and
(17), respectively. If f is n−convex and∫ b

a
G1(x)Gm,n−1(x,s)dx � 0, s ∈ [a,b],

then ∫ b

a
f (t)g(t)p(t)dt �

∫ a+λ

a
f (t)p(t)dt +

m−1

∑
i=0

f (i+1)(a)
∫ b

a
G1(x)τi(x)dx

+
n−m−2

∑
i=0

f (i+1)(b)
∫ b

a
G1(x)ηi(x)dx,

where Gm,n−1 is Green’s function defined by (18).

COROLLARY 4. Let −∞ < a < b < ∞ be given points and f ∈Cn [a,b] . Let g, p :
[a,b]→R be integrable functions such that p is positive, 0 � g � 1 and

∫ b
b−λ p(t)dt =∫ b

a g(t)p(t)dt . Let the function G2 be defined by (10) and τi , ηi be defined by (16) and
(17), respectively. If f is n−convex and∫ b

a
G2(x)Gm,n−1(x,s)dx � 0, s ∈ [a,b],

then ∫ b

a
f (t)g(t)p(t)dt �

∫ b

b−λ
f (t)p(t)dt −

m−1

∑
i=0

f (i+1)(a)
∫ b

a
G2(x)τi(x)dx

−
n−m−2

∑
i=0

f (i+1)(b)
∫ b

a
G2(x)ηi(x)dx,

where Gm,n−1 is Green’s function defined by (18).
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3. Ostrowski-type inequalities

In this section we present the Ostrowski-type inequalities related to generalizations
obtained in the previous section.

Here, the symbol Lp [a,b] (1 � p < ∞) denotes the space of p -power integrable
functions on the interval [a,b] equipped with the norm

‖ f‖p =
(∫ b

a
| f (t)|p dt

) 1
p

and L∞ [a,b] denotes the space of essentially bounded functions on [a,b] with the norm

‖ f‖∞ = ess sup
t∈[a,b]

| f (t)| .

THEOREM 7. Suppose that all assumptions of Theorem 3 hold. Assume also that
(p,q) is a pair of conjugate exponents, that is 1 � p,q � ∞ , 1/p+1/q = 1 and f (n) ∈
Lp [a,b] for some n � 2 . Then we have

∣∣∣∣
∫ a+λ

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt +

r

∑
j=1

k j

∑
i=0

f (i+1)(a j)
∫ b

a
G1(x)Hi j(x)dx

∣∣∣∣∣
�
∥∥∥ f (n)

∥∥∥
p

∥∥∥∥
∫ b

a
G1(x)GH,n−1(x, ·)dx

∥∥∥∥
q
.

(19)

The constant on the right-hand side of (19) is sharp for 1 < p � ∞ and the best possible
for p = 1 .

Proof. Let’s denote

K(s) =
∫ b

a
G1(x)GH,n−1(x,s)dx.

By taking the modulus of (7) and applying Hölder’s inequality we obtain

∣∣∣∣
∫ a+λ

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt +

r

∑
j=1

k j

∑
i=0

f (i+1)(a j)
∫ b

a
G1(x)Hi j(x)dx

∣∣∣∣∣
=
∣∣∣∣
∫ b

a
K(s) f (n)(s)ds

∣∣∣∣� ∥∥∥ f (n)
∥∥∥

p
‖K‖q .

For the proof of the sharpness of the constant ‖K‖q let us find a function f for which
the equality in (19) is obtained.
For 1 < p < ∞ take f to be such that

f (n)(s) = sgnK(s) |K(s)| 1
p−1 .
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For p = 1 we prove that∣∣∣∣
∫ b

a
K(s) f (n)(s)ds

∣∣∣∣� max
s∈[a,b]

|K(s)|
(∫ b

a

∣∣∣ f (n)(s)
∣∣∣ds

)
(20)

is the best possible inequality. K (·) is a continuous function on [a,b] and so is |K(·)| .
Suppose that |K(·)| attains its maximum at s0 ∈ [a,b]. First we assume that K(s0) > 0.
For ε > 0 small enough we define fε(s) by

fε (s) =

⎧⎪⎨
⎪⎩

0, a � s � s0,
1

ε n!(s− s0)n, s0 � s � s0 + ε,
1
n!(s− s0)n−1, s0 + ε � s � b.

Then ∣∣∣∣
∫ b

a
K(s) f (n)

ε (s)ds

∣∣∣∣=
∣∣∣∣
∫ s0+ε

s0
K(s)

1
ε
ds

∣∣∣∣= 1
ε

∫ s0+ε

s0
K(s)ds.

Now from the inequality (20) we have

1
ε

∫ s0+ε

s0
K(s)ds � 1

ε
K(s0)

∫ s0+ε

s0
ds = K(s0).

Since,

lim
ε→0

1
ε

∫ s0+ε

s0
K(s)ds = K(s0)

the statement follows. In the case K(s0) < 0, we define fε (s) by

fε (s) =

⎧⎪⎨
⎪⎩

1
n!(s− s0− ε)n−1, a � s � s0,

− 1
εn!(s− s0− ε)n, s0 � s � s0 + ε,

0, s0 + ε � s � b,

and the rest of the proof is the same as above. �
Using identity (11) we obtain the following result.

THEOREM 8. Suppose that all assumptions of Theorem 4 hold. Assume also that
(p,q) is a pair of conjugate exponents, that is 1 � p,q � ∞ , 1/p + 1/q = 1 . Let
f (n) ∈ Lp [a,b] for some n � 2 . Then we have

∣∣∣∣
∫ b

a
f (t)g(t)p(t)dt −

∫ b

b−λ
f (t)p(t)dt +

r

∑
j=1

k j

∑
i=0

f (i+1)(a j)
∫ b

a
G2(x)Hi j(x)dx

∣∣∣∣∣
�
∥∥∥ f (n)

∥∥∥
p

∥∥∥∥
∫ b

a
G2(x)GH,n−1(x, ·)dx

∥∥∥∥
q
.

(21)

The constant on the right-hand side of (21) is sharp for 1 < p � ∞ and the best possible
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for p = 1 .

Proof. Similar to the proof of Theorem 7. �
By using (m,n−m) conditions we obtain the following results.

COROLLARY 5. Suppose that all assumptions of Corollary 1 hold. Assume also
that (p,q) is a pair of conjugate exponents, that is 1 � p,q � ∞ , 1/p+ 1/q = 1 and
f (n) ∈ Lp [a,b] for some n � 2 . Then we have∣∣∣∣∣

∫ a+λ

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt +

m−1

∑
i=0

f (i+1)(a)
∫ b

a
G1(x)τi(x)dx

+
n−m−2

∑
i=0

f (i+1)(b)
∫ b

a
G1(x)ηi(x)dx

∣∣∣∣∣�
∥∥∥ f (n)

∥∥∥
p

∥∥∥∥
∫ b

a
G1(x)Gm,n−1(x, ·)dx

∥∥∥∥
q
.

(22)

The constant on the right-hand side of (22) is sharp for 1 < p � ∞ and the best
possible for p = 1 .

COROLLARY 6. Suppose that all assumptions of Corollary 2 hold. Assume also
that (p,q) is a pair of conjugate exponents, that is 1 � p,q � ∞ , 1/p+ 1/q = 1 and
f (n) ∈ Lp [a,b] for some n � 2 . Then we have∣∣∣∣∣

∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−λ
f (t)p(t)dt +

m−1

∑
i=0

f (i+1)(a)
∫ b

a
G2(x)τi(x)dx

+
n−m−2

∑
i=0

f (i+1)(b)
∫ b

a
G2(x)ηi(x)dx

∣∣∣∣∣�
∥∥∥ f (n)

∥∥∥
p

∥∥∥∥
∫ b

a
G2(x)Gm,n−1(x, ·)dx

∥∥∥∥
q
.

(23)

The constant on the right-hand side of (23) is sharp for 1 < p � ∞ and the best
possible for p = 1 .

4. Inequalities related to the bounds for the Čebyšev functional

For two Lebesgue integrable functions f ,h : [a,b] → R we define the Čebyšev
functional T ( f ,h) by

T ( f ,h) :=
1

b−a

∫ b

a
f (t)h(t)dt − 1

b−a

∫ b

a
f (t)dt · 1

b−a

∫ b

a
h(t)dt.

In 1882, Čebyšev in proved that

|T ( f ,h)| � 1
12

∥∥ f ′
∥∥

∞

∥∥h′∥∥∞ (b−a)2 ,

provided that f ′,h′ exist and are continuous on [a,b] and ‖ f ′‖∞ = supt∈[a,b] | f ′ (t)| .
It also holds if f ,h : [a,b] → R are absolutely continuous and f ′,g′ ∈ L∞ [a,b] while
‖ f ′‖∞ = esssupt∈[a,b] | f (t)| .
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In 1934, Grüss in his paper [5] proved that

|T ( f ,h)| � 1
4

(M−m)(N−n) ,

provided that there exist real numbers m,M,n,N such that

m � f (t) � M, n � h(t) � N

for a.e. t ∈ [a,b] . The constant 1/4 is the best possible.
In [4] Cerone and Dragomir proved the following theorems:

THEOREM 9. Let f : [a,b]→R be a Lebesgue integrable function and h : [a,b]→
R be an absolutely continuous function with (·−a)(b−·)[h′]2 ∈ L1[a,b] . Then we have
the inequality

|T ( f ,h)| � 1√
2
[T ( f , f )]

1
2

1√
b−a

(∫ b

a
(x−a)(b− x)[h′(x)]2dx

) 1
2

. (24)

The constant 1√
2

in (24) is the best possible.

THEOREM 10. Assume that h : [a,b] → R is monotonic nondecreasing on [a,b]
and f : [a,b] → R is absolutely continuous with f ′ ∈ L∞[a,b] . Then we have the in-
equality

|T ( f ,h)| � 1
2(b−a)

‖ f ′‖∞

∫ b

a
(x−a)(b− x)dh(x). (25)

The constant 1
2 in (25) is the best possible.

Now, using the above theorems we obtain some new bounds for integrals on the
left hand side in the perturbed versions of identities obtained in Theorems 3 and 4.

Firstly, let us denote

Ωi(s) =
∫ b

a
Gi(x)GH,n−1(x,s)dx, i = 1,2 (26)

and

Φi(s) =
∫ b

a
Gi(x)Gm,n−1(x,s)dx, i = 1,2, (27)

for Gi defined by (6) and (10) and GH,n−1 , Gm,n−1 defined by (4) and (18), re-
spectively.

THEOREM 11. Let −∞ < a � a1 < a2 ... < ar � b < ∞ , (r � 2) be given points,
f ∈Cn+1 [a,b] and (·−a)(b−·)[ f (n+1)]2 ∈ L1[a,b] . Let g, p : [a,b]→ R be integrable
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functions such that p is positive, 0 � g � 1 and
∫ a+λ
a p(t)dt =

∫ b
a g(t)p(t)dt . Let G1

and Ω1 be defined by (6) and (26) , respectively. Then

∫ a+λ

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt +

r

∑
j=1

k j

∑
i=0

f (i+1)(a j)
∫ b

a
G1(x)Hi j(x)dx

+
f (n−1)(b)− f (n−1)(a)

b−a

∫ b

a
Ω1(s)ds = S1

n( f ;a,b),

(28)

where the remainder S1
n( f ;a,b) satisfies the estimation

∣∣S1
n( f ;a,b)

∣∣� √
b−a√

2
[T (Ω1,Ω1)]

1
2

(∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

) 1
2

. (29)

Proof. Applying Theorem 9 for f → Ω1 and h → f (n) we obtain

∣∣∣∣ 1
b−a

∫ b

a
Ω1(s) f (n)(s)ds− 1

b−a

∫ b

a
Ω1(s)ds · 1

b−a

∫ b

a
f (n)(s)ds

∣∣∣∣
� 1√

2
[T (Ω1,Ω1)]

1
2

1√
b−a

(∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

) 1
2

.

(30)

If we add

1
(b−a)

∫ b

a
Ω1(s)ds

∫ b

a
f (n)(s)ds =

f (n−1)(b)− f (n−1)(a)
(b−a)

∫ b

a
Ω1(s)ds

to both sides of identity (7) and use inequality (30) we obtain representation (28) and
bound (29). �

Similarly, using identity (11) we obtain the following result:

THEOREM 12. Let −∞ < a � a1 < a2 ... < ar � b < ∞ , (r � 2) be given points,
f ∈Cn+1 [a,b] and (·−a)(b−·)[ f (n+1)]2 ∈ L1[a,b] . Let g, p : [a,b]→ R be integrable
functions such that p is positive, 0 � g � 1 and

∫ b
b−λ p(t)dt =

∫ b
a g(t)p(t)dt . Let G2

and Ω2 be defined by (10) and (26), respectively. Then

∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−λ
f (t)p(t)dt +

r

∑
j=1

k j

∑
i=0

f (i+1)(a j)
∫ b

a
G2(x)Hi j(x)dx

+
f (n−1)(b)− f (n−1)(a)

b−a

∫ b

a
Ω2(s)ds = S2

n( f ;a,b),

(31)

where the remainder S2
n( f ;a,b) satisfies the estimation
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∣∣S2
n( f ;a,b)

∣∣� √
b−a√

2
[T (Ω2,Ω2)]

1
2

(∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

) 1
2

.

Proof. Similar to the proof of Theorem 11. �
Using Theorem 10 we obtain the following Grüss type inequalities.

THEOREM 13. Let −∞ < a � a1 < a2 ... < ar � b < ∞ , (r � 2) be given points,
f ∈Cn+1 [a,b] and f (n+1) � 0 on [a,b] . Let functions Ωi , i = 1,2 be defined by (26) .

(a) Let
∫ a+λ
a p(t)dt =

∫ b
a g(t)p(t)dt . Then the representation (28) holds and the

remainder S1
n( f ;a,b) satisfies the bound

∣∣S1
n( f ;a,b)

∣∣� (b−a)‖Ω′
1‖∞

{
f (n−1)(b)+ f (n−1)(a)

2
− f (n−2)(b)− f (n−2)(a)

b−a

}
.

(32)

(b) Let
∫ b
b−λ p(t)dt =

∫ b
a g(t)p(t)dt . Then the representation (31) holds and the re-

mainder S2
n( f ;a,b) satisfies the bound

∣∣S2
n( f ;a,b)

∣∣� (b−a)‖Ω′
2‖∞

{
f (n−1)(b)+ f (n−1)(a)

2
− f (n−2)(b)− f (n−2)(a)

b−a

}
.

Proof.

(a) Applying Theorem 10 for f → Ω1 , h → f (n) and multiplying by (b− a) we
obtain ∣∣∣∣

∫ b

a
Ω1(s) f (n)(s)ds−

∫ b

a
Ω1(s)ds · 1

b−a

∫ b

a
f (n)(s)ds

∣∣∣∣
�1

2
‖Ω′

1‖∞

∫ b

a
(s−a)(b− s) f (n+1)(s)ds.

(33)

Since
∫ b

a
(s−a)(b− s) f (n+1)(s)ds =

∫ b

a
[2s− (a+b)] f (n)(s)ds

=(b−a)
[
f (n−1)(b)+ f (n−1)(a)

]
−2
(

f (n−2)(b)− f (n−2)(a)
)

.

Using representation (7) and inequality (33) we deduce (32).

(b) Similar to the (a)-part. �

Similary, using the (m,n−m) conditions we obtain the following results.
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COROLLARY 7. Let −∞ < a < b < ∞ be given points, f ∈ Cn+1 [a,b] and (·−
a)(b−·)[ f (n+1)]2 ∈ L1[a,b] . Let g, p : [a,b]→ R be integrable functions such that p is
positive, 0 � g � 1 and

∫ a+λ
a p(t)dt =

∫ b
a g(t)p(t)dt . Let G1 , Φ1 , τi and ηi be defined

by (6) , (27) ,(16) and (17) respectively. Then

∫ a+λ

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt +

m−1

∑
i=0

f (i+1)(a)
∫ b

a
G1(x)τi(x)dx

+
n−m−2

∑
i=0

f (i+1)(b)
∫ b

a
G1(x)ηi(x)dx+

f (n−1)(b)− f (n−1)(a)
b−a

∫ b

a
Φ1(s)ds = S3

n( f ;a,b),

(34)

where the remainder S3
n( f ;a,b) satisfies the estimation

∣∣S3
n( f ;a,b)

∣∣� √
b−a√

2
[T (Φ1,Φ1)]

1
2

(∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

) 1
2

.

COROLLARY 8. Let −∞ < a < b < ∞ be given points, f ∈ Cn+1 [a,b] and (·−
a)(b−·)[ f (n+1)]2 ∈ L1[a,b] . Let g, p : [a,b]→ R be integrable functions such that p is
positive, 0 � g � 1 and

∫ b
b−λ p(t)dt =

∫ b
a g(t)p(t)dt . Let G2 , Φ2 , τi and ηi be defined

by (10), (27) ,(16) and (17) respectively. Then

∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−λ
f (t)p(t)dt +

m−1

∑
i=0

f (i+1)(a)
∫ b

a
G2(x)τi(x)dx

+
n−m−2

∑
i=0

f (i+1)(b)
∫ b

a
G2(x)ηi(x)dx+

f (n−1)(b)− f (n−1)(a)
b−a

∫ b

a
Φ2(s)ds = S4

n( f ;a,b),

(35)

where the remainder S4
n( f ;a,b) satisfies the estimation

∣∣S4
n( f ;a,b)

∣∣� √
b−a√

2
[T (Φ2,Φ2)]

1
2

(∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

) 1
2

.

COROLLARY 9. Let −∞ < a < b < ∞ be given points, f ∈Cn+1 [a,b] and f (n+1) �
0 on [a,b] . Let functions Φi , i = 1,2 be defined by (27) .

(a) Let
∫ a+λ
a p(t)dt =

∫ b
a g(t)p(t)dt . Then the representation (34) holds and the

remainder S3
n( f ;a,b) satisfies the bound

∣∣S3
n( f ;a,b)

∣∣� (b−a)‖Φ′
1‖∞

{
f (n−1)(b)+ f (n−1)(a)

2
− f (n−2)(b)− f (n−2)(a)

b−a

}
.
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(b) Let
∫ b
b−λ p(t)dt =

∫ b
a g(t)p(t)dt . Then the representation (35) holds and the re-

mainder S4
n( f ;a,b) satisfies the bound

∣∣S4
n( f ;a,b)

∣∣� (b−a)‖Φ′
2‖∞

{
f (n−1)(b)+ f (n−1)(a)

2
− f (n−2)(b)− f (n−2)(a)

b−a

}
.
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