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OPERATOR INEQUALITIES VIA GEOMETRIC CONVEXITY

MOHAMMAD SABABHEH ∗ , HAMID REZA MORADI AND SHIGERU FURUICHI

(Communicated by I. Perić)

Abstract. The main goal of this paper is to present new generalizations of some known inequal-
ities for the numerical radius and unitarily invariant norms of Hilbert space operators. These
extensions result from a special treatment of both convex and geometrically convex functions.
In the end, we present several scalar inequalities for geometrically convex functions similar to
those inequalities known for convex functions.

1. Introduction

Let H be a Hilbert space and let B(H ) denote the C∗–algebra of all bounded
linear operators acting on H . An important class of operators in B(H ) is the cone
B(H )+ of positive semidefinite operators; where an operator A is said to be positive
semidefinite if 〈Ax,x〉 � 0 for all x ∈ H . If A ∈ B(H )+ , we simply write A � 0. If,
in addition to being positive semidefinite, A is invertible, it is said to be strictly positive,
and it is denoted as A > 0.

For decades, inequalities governing strictly positive operators have attracted re-
searchers in the field of operator theory. Among the most basic inequalities in this
field is the so called arithmetic-geometric mean inequality (operator Young inequality)
stating [1]

A�vB � A∇vB, 0 � v � 1, (1)

where A�vB = A
1
2

(
A− 1

2 BA− 1
2

)v
A

1
2 and A∇vB = (1− v)A+ v B are the geometric and

arithmetic means of the strictly positive operators A and B , respectively. For the scalars
a,b > 0, we use the same notations. A simple proof of this inequality follows from
the scalar Young inequality (i.e., a�vb � a∇vb,0 � v � 1) together with a standard
functional calculus argument.

Although this inequality looks very simple, it has attracted numerous researchers,
where several variants of this inequality have been obtained. We refer the reader to
[2, 7, 23] as a sample of recent studies of this inequality.
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Given a unitarily invariant norm ||| · ||| on B(H ) , for finite dimensional H ,
the following Hölder inequality holds [10]

|||A1−vXBv||| � |||AX |||1−v|||XB|||v, 0 � v � 1, (2)

for A,B ∈ B(H )+ and an arbitrary X ∈ B(H ).
In [16], it was shown that the function f (v) = |||A1−vXBv||| is log-convex on R.

This entails (2) and its reverse when v �∈ [0,1] .
Searching the literature, we find that convexity and log-convexity have stood be-

hind many celebrated inequalities. This includes (1), (2), the Heinz inequality and
almost all their variants. See [8, 16, 17].

In this paper, we present some applications of convex functions and geometrically
convex functions to operator inequalities. In the sequel, we use the symbol I as a sub–
interval of (0,∞) and consider the continuous function f : I → (0,∞) , unless otherwise
specified. Recall that f is called geometrically convex [14] if

f
(
a1−vbv)� f 1−v(a) f v(b), a,b ∈ I, v ∈ [0,1] . (3)

We shall prove that the function f (v) = |||AvXBv||| is geometrically convex under some
conditions on A,B. This adds a new property to the already known properties of this
function. Of course, this will imply a new set of operator inequalities.

Another interesting application that we aim to present is how convex functions,
geometrically convex functions and the numerical radius are related.

Recall that the numerical radius ω (A) and the usual operator norm ‖A‖ of an
operator A are defined, respectively, by ω (A) = sup

‖x‖=1
|〈Ax,x〉| and ‖A‖ = sup

‖x‖=1
‖Ax‖ ,

where ‖x‖ =
√〈x,x〉 . Of course, ω (A) defines a norm on B (H ) and for every

A ∈ B (H ) , we have
1
2
‖A‖ � ω (A) � ‖A‖ . (4)

The second inequality in (4) has been improved considerably by Kittaneh in [9] as
follows

ω (A) � 1
2

∥∥∥(A∗A)
1
2 +(AA∗)

1
2

∥∥∥� 1
2

(
‖A‖+

∥∥A2
∥∥ 1

2

)
� ‖A‖ . (5)

On the other hand, Dragomir extended (5) to the product of two operators to the fol-
lowing form [4],

ω(B∗A)r � 1
2
‖(A∗A)r +(B∗B)r‖ , for all r � 1 . (6)

One of main applications is to show that (6) follows as a special case of the fol-
lowing inequality

f (ω (B∗A)) � 1
2
‖ f (A∗A)+ f (B∗B)‖

valid for the convex function f , with some additional properties. Many other applica-
tions to the numerical radius will be presented too.
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Further, we prove that for 0 � α � 1,

f

(∥∥∥∥A+B
2

∥∥∥∥
)

� 1
4

(∥∥∥ f
(
|A|2α

)
+ f

(
|B|2α

)∥∥∥+
∥∥∥ f
(
|A∗|2(1−α)

)
+ f

(
|B∗|2(1−α)

)∥∥∥)
(7)

and

f

(
ω
(

A+B
2

))
� 1

4

∥∥∥ f
(
|A|2α

)
+ f

(
|A∗|2(1−α)

)
+ f

(
|B|2α

)
+ f

(
|B∗|2(1−α)

)∥∥∥ ,

(8)
for the convex function f . This provides a considerable generalization of the well
known inequality [5]

‖A+B‖r � 2r−2
(∥∥∥|A|2αr + |B|2αr

∥∥∥+
∥∥∥|A∗|2(1−α)r + |B∗|2(1−α)r

∥∥∥) , r � 1,0 � α � 1.

(9)
Many other related results that generalize well known inequalities will be pre-

sented too.
The organization of this paper will be as follows. In the second section, we present

several applications including convex and geometrically convex functions when they
are applied to the numerical radius and the operator norm of Hilbert space operators. In
the third section, we present applications of geometrically convex functions to unitarily
invariant norms of matrices and in the end we present several versions of the scalar case
(3). This includes reverses, refinements, multidimensional versions and much more.

2. Some numerical radius inequalities

In this section, we present our applications to numerical radius inequalities. We
emphasize that such an application to numerical radius inequalities is a new approach
that we hope to be useful for researchers in the field.

The results of this section present the general form of some known inequalities in
the literature, such as (6), (9) and many other inequalities appearing in [5]. This gives
a new perspective to these inequalities.

Our first result in this direction is the general form of (6).

THEOREM 1. Let A,B ∈ B (H ) and f : [0,∞) → [0,∞) be an increasing convex
function. Then

f (ω (B∗A)) � 1
2
‖ f (A∗A)+ f (B∗B)‖ . (10)

Proof. We recall the following Jensen’s type inequality [6, Theorem 1.2],

f (〈Ax,x〉) � 〈 f (A)x,x〉 , (11)

for any unit vector x ∈ H , where f is a convex function on I and A is a self-adjoint
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operator with spectrum contained in I . Now, let x ∈ H be a unit vector. We have

f (|〈B∗Ax,x〉|) = f (|〈Ax,Bx〉|)
� f (‖Ax‖‖Bx‖) (by the Cauchy–Schwarz inequality)

= f
(√

〈Ax,Ax〉〈Bx,Bx〉
)

= f
(√

〈A∗Ax,x〉 〈B∗Bx,x〉
)

� f

( 〈A∗Ax,x〉+ 〈B∗Bx,x〉
2

)
( f being increasing and AM–GM inequality)

�1
2

f (〈A∗Ax,x〉)+
1
2

f (〈B∗Bx,x〉) ( f being convex)

�1
2

(〈 f (A∗A)x,x〉+ 〈 f (B∗B)x,x〉) (by (11)).

Thus, we have shown

f (|〈B∗Ax,x〉|) � 1
2
〈 f (A∗A)+ f (B∗B)x,x〉 .

By taking supremum over x ∈ H with ‖x‖ = 1, we get

f (ω (B∗A)) = f

(
sup
‖x‖=1

|〈B∗Ax,x〉|
)

= sup
‖x‖=1

f (|〈B∗Ax,x〉|) ( f is increasing)

� 1
2

sup
‖x‖=1

〈 f (A∗A)+ f (B∗B)x,x〉 =
1
2
‖ f (A∗A)+ f (B∗B)‖ .

Therefore, (10) holds. �
One can check easily that the function f (t) = tr (t > 0,r � 1) satisfies the assumptions
in Theorem 1. So, the inequality (10) implies (6).

COROLLARY 1. Let f as in Theorem 1 and let A,B,X ∈ B(H ). Then,

f (ω (A∗XB)) � 1
2

∥∥∥ f
(
A∗ |X∗|2v A

)
+ f

(
B∗ |X |2(1−v) B

)∥∥∥ .

Proof. Let X = U |X | be the polar decomposition of X . Then,

f (ω(A∗XB)) = f (ω (A∗U |X |B)) = f
(
ω((|X |vU∗A)∗

(|X |1−vB
))

.

By substituting B = |X |vU∗A and A = |X |1−vB in Theorem 1, we get the desired in-
equality, noting that when X =U |X | , we have |X∗| =U |X |U∗ which implies |X∗|2v =
U |X |2vU∗ . �
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The function also f (t) = tr (t > 0,r � 1) satisfies the assumptions in Corollary 1.
Thus Corollary 1 recovers the inequality given in [21]:

ωr (A∗XB) � 1
2

∥∥∥(A∗|X∗|2vA
)r

+
(
B∗|X |2(1−v)B

)r∥∥∥ ,(r � 1, v ∈ [0,1]) .

Another interesting inequality for f (ω (B∗XA)) may be obtained as follows. First,
notice that if f is a convex function and 0 � α � 1, it follows that

f (αt) � α f (t)+ (1−α) f (0). (12)

For the coming results, we will use the term norm-contractive to mean an operator
X whose operator norm satisfies ‖X‖ � 1. Norm-expansive will mean ‖X‖ � 1.

PROPOSITION 1. Under the same assumptions as in Theorem 1, the following
inequality holds for the norm-contractive X ∈ B (H ) ,

f (ω(B∗XA)) � ||X ||
2

‖ f (A∗A)+ f (B∗B)‖+(1−‖X‖) f (0).

In particular, if f (0) = 0, then

f (ω(B∗XA)) � ||X ||
2

‖ f (A∗A)+ f (B∗B)‖.

Proof. Proceeding as in Theorem 1 and noting (12), we have

f (|〈B∗XAx,x〉|) = f (|〈XAx,Bx〉|) � f (‖XAx‖ ‖Bx‖) � f (‖X‖ ‖Ax‖ ‖Bx‖)
� ‖X‖ f (‖Ax‖ ‖Bx‖)+ (1−‖X‖) f (0).

Then an argument similar to Theorem 1 implies the desired inequality. �
In particular, if f (t) = tr, (t > 0, r � 1) we obtain the following extension of (6).

COROLLARY 2. Under the same assumptions as in Proposition 1, we have for
r � 1,

ωr (B∗XA) � ‖X‖r

2
‖(A∗A)r +(B∗B)r‖ . (13)

Proof. Notice that a direct application of Proposition 1 implies the weaker inequal-
ity ωr (B∗XA) � ‖X‖

2 ‖(A∗A)r +(B∗B)r‖ . However, noting the proof of Proposition 1
for the function f (t) = tr, (t > 0, r � 1) , we have

f (|〈B∗XAx,x〉|) = f (|〈XAx,Bx〉|) � f (‖XAx‖ ‖Bx‖) � f (‖X‖ ‖Ax‖ ‖Bx‖)
= f (‖X‖) f (‖Ax‖ ‖Bx‖) (Since f (t) = tr).

Arguing as before implies the desired inequality. �
When X = I , Corollary 2 recovers the inequality (6).
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Our next target is to show similar inequalities for geometrically convex functions
which are concave, instead of convex. For the purpose of our results, we remind the
reader of the following inequality (see, e.g., [12, Theorem 6])

f (〈Ax,x〉) � k(m,M, f )−1〈 f (A)x,x〉, (14)

valid for a continuous concave function f : [m,M]→ (0,∞) , the unit vector x ∈H and
the positive operator A satisfying m � A � M , for some positive scalars m,M . Here
k(m,M, f ) is the so called generalized Kantorovich constant and is defined by

k (m,M, f ) = min

{
1

f (t)

(
M− t
M−m

f (m)+
t−m
M−m

f (M)
)

: t ∈ [m,M]
}

. (15)

PROPOSITION 2. Let A,B ∈B (H ) be such that 0 < m � A,B � M and f be an
increasing geometrically convex function. If in addition f is concave, then

f
(

ω
(
A

1
2 XB

1
2

))
� ‖X‖

2K
‖ f (A)+ f (B)‖ , (16)

for the norm-expansive X (i.e., ‖X‖ � 1) , where K = k(m,M, f ) .

Proof. Proceeding as in Proposition 1 and noting (14) and the inequality f (αt) �
α f (t) when f is concave and α � 1, we obtain the desired inequality. �
In particular, the function f (t) = tr,(t > 0, 0 < r � 1) satisfies the conditions of Propo-
sition 2. Further, noting that f (‖X‖ ‖AX‖ ‖Bx‖) = f (‖X‖) f (‖Ax‖ ‖Bx‖) for the func-
tion f (t) = tr , we obtain the inequality

ω
(
A

1
2 XB

1
2

)
�
( ‖X‖

2K(h,r)

) 1
r

‖Ar +Br‖ 1
r ,

for the positive operators A,B satisfying 0 < m � A,B � M and the norm-expansive
X . The constant K(h,r) is well known by the following formula [6, Definition 2.2]

K(h,r) =
(h−hr)

(1− r)(h−1)

(
1− r

r
hr −1
h−hr

)r

, h =
M
m

.

Our next result is the generalization of [5, Theorem 6] and the estimate (10) in the
same reference; where the sum of two operators is treated.

THEOREM 2. Let A,B ∈ B (H ) and f be an increasing convex function. Then
for any α ∈ [0,1] ,

f

(∥∥∥∥A+B
2

∥∥∥∥
)

� 1
4

(∥∥∥ f
(
|A|2α

)
+ f

(
|B|2α

)∥∥∥+
∥∥∥ f
(
|A∗|2(1−α)

)
+ f

(
|B∗|2(1−α)

)∥∥∥)
(17)
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and

f

(
ω
(

A+B
2

))
� 1

4

∥∥∥ f
(
|A|2α

)
+ f

(
|A∗|2(1−α)

)
+ f

(
|B|2α

)
+ f

(
|B∗|2(1−α)

)∥∥∥ .

(18)

Proof. Before proceeding,we recall the following useful inequalitywhich is known
in the literature as the generalized mixed Schwarz inequality (see, e.g., [11]):

|〈Ax,y〉| �
√〈

|A|2αx,x
〉〈

|A∗|2(1−α)y,y
〉
, α ∈ [0,1] , (19)

where A ∈ B (H ) and for any x,y ∈H . Let x,y ∈ H be unit vectors. By the similar
way to the proof of Theorem 1, we have

f

(
1
2
|〈(A+B)x,y〉|

)
� f

(
1
2

(|〈Ax,y〉|+|〈Bx,y〉|)
)

� 1
2

( f (|〈Ax,y〉|)+ f (|〈Bx,y〉|))

�1
2

(
f

(√〈
|A|2αx,x

〉〈
|A∗|2(1−α)y,y

〉)
+ f

(√〈
|B|2αx,x

〉〈
|B∗|2(1−α)y,y

〉))

�1
2

(
f

(
1
2

(〈
|A|2αx,x

〉
+
〈
|A∗|2(1−α)y,y

〉)))

+
1
2

(
f

(
1
2

(〈
|B|2αx,x

〉
+
〈
|B∗|2(1−α)y,y

〉)))

�1
4

(〈
f
(
|A|2α

)
+ f

(
|B|2α

)
x,x
〉

+
〈

f
(
|A∗|2(1−α)

)
+ f

(
|B∗|2(1−α)

)
y,y
〉)

,

where the first inequality follows from the triangle inequality and the fact that f is
increasing, the second inequality follows from convexity of f , the third inequality fol-
lows from (19), the fourth inequality follows from the fact that f is increasing and
the arithmetic mean–geometric mean inequality and the last inequality follows from
convexity of f and (11).

Now, by taking supremum over x,y ∈ H with ‖x‖ = ‖y‖ = 1, we deduce the
desired inequality (17).

If we take x = y , and apply same procedure as above we get (18). �
The case f (t) = tr, (t > 0, r � 1) in Theorem 2 implies the known results due to

El-Hadad and Kittaneh (see [5, Theorem 6] and the estimate (10) in [5]):

‖A+B‖r � 2r−2
(∥∥∥|A|2αr + |B|2αr

∥∥∥+
∥∥∥|A∗|2(1−α)r + |B∗|2(1−α)r

∥∥∥) ,

and
ωr(A+B) � 2r−2

∥∥∥|A|2αr + |B|2αr + |A∗|2(1−α)r + |B∗|2(1−α)r
∥∥∥ .

Further, letting A = B , the above numerical radius inequality reduces to [5, Theorem
1].

Another observation led by Theorem 2 is the following extension; whose proof is
identical to that of Theorem 2.
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COROLLARY 3. Let A,B∈B (H ) and f be an increasing convex function. Then
for any α,v ∈ [0,1] ,

f (‖(1− v)A+ v B‖)
�1

2

(∥∥∥(1− v) f
(
|A|2α

)
+ v f

(
|B|2α

)∥∥∥+
∥∥∥(1− v) f

(
|A∗|2(1−α)

)
+ v f

(
|B∗|2(1−α)

)∥∥∥) .

Next, we show the concave version of Theorem 2, which then entails new inequal-
ities for 0 � r � 1. However, we will need to impose the extra condition that f is
geometrically convex.

THEOREM 3. Let A,B∈B (H ) ,α ∈ [0,1] and f be an increasing geometrically
convex function. Assume that, for positive scalars m,M,

m � |A|2α , |A∗|2(1−α), |B|2α , |B∗|2(1−α) � M.

If f is concave, then

f (‖A+B‖) � 1
2K

(∥∥∥ f
(
|A|2α

)
+ f

(
|B|2α

)∥∥∥+
∥∥∥ f
(
|A∗|2(1−α)

)
+ f

(
|B∗|2(1−α)

)∥∥∥)
(20)

and

f (ω (A+B)) � 1
2K

(∥∥∥ f
(
|A|2α

)
+ f

(
|A∗|2(1−α)

)
+ f

(
|B|2α

)
+ f

(
|B∗|2(1−α)

)∥∥∥) ,

(21)
where K = k(m,M, f ).

Proof.
The proof is similar to that of Theorem 2. However, we need to recall that a non–

negative concave function f is subadditive, in the sense that f (a + b) � f (a)+ f (b)
and to recall (14). These will be needed to obtain the second and fifth inequalities
below. All other inequalities follow as in Theorem 2. We have, for the unit vectors x,y,

f (|〈(A+B)x,y〉|) � f ((|〈Ax,y〉|+ |〈Bx,y〉|)) � f (|〈Ax,y〉|)+ f (|〈Bx,y〉|)

� f

(√〈
|A|2αx,x

〉〈
|A∗|2(1−α)y,y

〉)
+ f

(√〈
|B|2αx,x

〉〈
|B∗|2(1−α)y,y

〉)

�
√

f
(〈

|A|2αx,x
〉)

f
(〈

|A∗|2(1−α)y,y
〉)

+
√

f
(〈

|B|2αx,x
〉)

f
(〈

|B∗|2(1−α)y,y
〉)

�K−1

(√〈
f
(
|A|2α

)
x,x
〉〈

f
(
|A∗|2(1−α)

)
y,y
〉

+
√〈

f
(
|B|2α

)
x,x
〉〈

f
(
|B∗|2(1−α)

)
y,y
〉)

� 1
2K

(〈
f
(
|A|2α

)
+ f

(
|B|2α

)
x,x
〉

+
〈

f
(
|A∗|2(1−α)

)
+ f

(
|B∗|2(1−α)

)
y,y
〉)

.
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Now, by taking supremum over x,y ∈ H with ‖x‖ = ‖y‖ = 1, we deduce the
desired inequalities. �
In particular, if f (t) = tr, (t > 0, 0 � r � 1) , we obtain

‖A+B‖r � 1
2K(h,r)

(∥∥∥|A|2αr + |B|2αr
∥∥∥+

∥∥∥|A∗|2(1−α)r + |B∗|2(1−α)r
∥∥∥) ,

where h = M
m .

Our next result is the extension of Theorem [5, Theorem 2]. In this result, we will
use the concave-version of the inequality (11), where we have

f (〈Ax,x〉) � 〈 f (A)x,x〉 , (22)

when x∈H is a unit vector, f : I →R is a concave function and A is self adjoint with
spectrum in I .

THEOREM 4. Let A ∈B (H ) ,α ∈ [0,1] and let f be an increasing convex func-
tion. Then

f
(
ω2(A)

)
�
∥∥α f (|A|2)+ (1−α) f (|A∗|2)∥∥ .

Proof. Noting (19) and monotonicity of f , we have for any unit vector x ∈ H ,

f
(| 〈Ax,x〉 |2)� f

(〈|A|2αx,x
〉〈|A∗|2(1−α)x,x

〉)
� f

(〈|A|2x,x〉α 〈|A∗|2x,x〉1−α)
(by concavity of tα and t1−α)

� f
(
α
〈|A|2x,x〉+(1−α)

〈|A∗|2x,x〉) (by Young’s inequality)

� α f
(〈|A|2x,x〉)+(1−α) f

(〈|A∗|2x,x〉) (by convexity of f )

� α
〈
f
(|A|2)x,x〉+(1−α)

〈
f
(|A∗|2)x,x〉 (by (11))

=
〈(

α f
(|A|2)+(1−α) f

(|A∗|2))x,x〉
�
∥∥α f

(|A|2)+(1−α) f
(|A∗|2)∥∥ .

Therefore,

f
(
ω2(A)

)
= f

(
sup
‖x‖=1

| 〈Ax,x〉 |2
)

= sup
‖x‖=1

f
(| 〈Ax,x〉 |2)

�
∥∥α f

(|A|2)+(1−α) f
(|A∗|2)∥∥ ,

which completes the proof. �
Letting f (t) = tr, (t > 0, r � 1) in Theorem 4 implies

ω2r(A) �
∥∥ α |A|2r +(1−α)|A∗|2r

∥∥ ,

which is the result of Theorem [5, Theorem 2].
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3. Geometrically convex functions related to matrix norms

Let Mn denote the algebra of all n× n complex matrices. In this section, we
present some unitarily invariant norm inequalities on Mn via geometric convexity. It
is well known that the function f (t) = |||AtXBt ||| is log-convex on R, for any unitarily
invariant norm ||| · ||| and positive matrices A,B , see [17]. In this section, we show
that the above function f (t) is also geometrically convex, when A,B are expansive. In
this context, we say that a matrix A is expansive if A � I and contractive if A � I .

Notice that if A,B � I , then for any X ,

|||AXB||| � ‖A‖ |||X ||| ‖B‖ � |||X ||| ,

by submultiplicativity of unitarily invariant norms. Therefore, if A,B are expansive and
α � β , then for any X , ∣∣∣∣∣∣∣∣∣Aα−β XBα−β

∣∣∣∣∣∣∣∣∣� |||X |||,

which gives, upon replacing X with Aβ XBβ

|||AαXBα ||| �
∣∣∣∣∣∣∣∣∣Aβ XBβ

∣∣∣∣∣∣∣∣∣ .
In particular, if t1, t2 > 0, then

√
t1t2 � t1+t2

2 , and the above inequality implies

∣∣∣∣∣∣∣∣∣A√
t1t2XB

√
t1t2
∣∣∣∣∣∣∣∣∣� ∣∣∣∣∣∣∣∣∣At1+t2

2 XB
t1+t2

2

∣∣∣∣∣∣∣∣∣ , (23)

when A,B are expansive.

THEOREM 5. If A,B are expansive and X is arbitrary, then

f (t) =
∣∣∣∣∣∣AtXBt

∣∣∣∣∣∣
is geometrically convex on (0,∞).

Proof. Taking (23) in account, we obtain

f (
√

t1t2) =
∣∣∣∣∣∣∣∣∣A√

t1t2XB
√

t1t2
∣∣∣∣∣∣∣∣∣� ∣∣∣∣∣∣∣∣∣At1+t2

2 XB
t1+t2

2

∣∣∣∣∣∣∣∣∣� ∣∣∣∣∣∣At1XBt1
∣∣∣∣∣∣ 1

2
∣∣∣∣∣∣At2XBt2

∣∣∣∣∣∣ 1
2 ,

where the last inequality follows from the well known log-convexity of f . �

COROLLARY 4. If A is expansive and B is contractive, then the function f (t) =∣∣∣∣∣∣AtXB1−t
∣∣∣∣∣∣ is geometrically convex on (0,∞).

Proof. Notice that if B is contractive, B−1 is expansive. Therefore, applying
Theorem 5 with X replaced by XB and B replaced by B−1 , we obtain the result. �
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COROLLARY 5. Let A,B be expansive and let X ∈ Mn be arbitrary. Then

|||X ||| � |||AXB||| ,

for any unitarily invariant norm ||| ||| .

Proof. Let f (t)= |||AtXBt ||| . By Theorem5, f is geometrically convex on [0,∞).
In particular, by letting t1 = 0,t2 = 1, we obtain

f
(√

t1t2
)

�
√

f (t1) f (t2),

which implies the desired inequality. �

COROLLARY 6. Let A,B be expansive and let X ∈ Mn be arbitrary. Then

∣∣∣∣∣∣∣∣∣At1�vt2XBt1�vt2
∣∣∣∣∣∣∣∣∣� ∣∣∣∣∣∣At1XBt1

∣∣∣∣∣∣�v ∣∣∣∣∣∣At2XBt2
∣∣∣∣∣∣ ,

for t1, t2 � 0,0 � v � 1 and any unitarily invariant norm ||| ||| .

Proof. The proof follows the same guideline as in Theorem 5, where we have
t1�vt2 � t1∇vt2. Then

f (t1�vt2) � f (t1∇vt2) � f (t1)�v f (t2),

where the last inequality follows from log-convexity of f . �

COROLLARY 7. Let ai,bi � 1,t1,t2 � 0 and 0 � v � 1. Then

n

∑
i=1

(aibi)t1�vt2 �
(

n

∑
i=1

(aibi)t1
)

�v

(
n

∑
i=1

(aibi)t2
)

.

Proof. For the given parameters, define A = diag(ai) and B = diag(bi). Then
clearly A and B are expansive. Applying Corollary 6 with X being the identity matrix
implies the desired inequality. �
Notice that as a special case of Corollary 7 we obtain the Cauchy–Schwarz type in-
equality

n

∑
i=1

aibi �
(

n

∑
i=1

(aibi)t1
) 1

2
(

n

∑
i=1

(aibi)t2
) 1

2

,

for the scalars ai,bi � 1 and t1,t2 > 0 satisfying t1t2 = 1.
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4. Geometrically convex functions and scalar inequalities

In this section, we present several scalar versions of (3). The results in this section
are of independent interest. We begin by the following reverse of (3).

LEMMA 1. Let f be geometrically convex function on the interval (0,∞) and
a,b > 0 . Then for any v > 0 or v < −1 ,

f (a)1+v f (b)−v � f
(
a1+vb−v) . (24)

Equivalently,

f (a�vb) � f (a)�v f (b), v �∈ [0,1].

Proof. First assume that v > 0. We need the following useful identity

a =
(
a1+vb−v) 1

1+v b
v

v+1 .

It follows from (3) that

f (a) = f

((
a1+vb−v) 1

1+v b
v

v+1

)
� f
(
a1+vb−v) 1

v+1 f (b)
v

1+v

and this implies the desired inequality for this case. For the case v < −1, we can use
the following identity

b =
(
a1+vb−v)− 1

v a
1+v
v . �

It should be noted that Lemma 1 simulates similar behavior of convex and log-convex
functions. We refer the reader to [15, Lemma 3.11] for this similarity. In fact, Lemma 1
is needed to prove the following more general reverse and refinement of (3). We remark
that Theorem 6 below is the geometric convex version of similar results for convex and
log-convex functions; see for example [18].

THEOREM 6. Let f be a geometrically convex on the interval I and a,b ∈ I .
Then for any v ∈ [0,1] ,

⎛
⎝ f

(√
ab
)

√
f (a) f (b)

⎞
⎠

2R

f (a)1−v f (b)v � f
(
a1−vbv)�

⎛
⎝ f

(√
ab
)

√
f (a) f (b)

⎞
⎠

2r

f (a)1−v f (b)v,

(25)
where r = min{v,1− v} and R = max{v,1− v} .
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Proof. We first assume that v ∈ [0, 1
2

]
. So,

f
(
a1−vbv)= f

(
a1−2v

(√
ab
)2v
)

� f (a)1−2v f
(√

ab
)2v

(by (3))

=

⎛
⎝ f

(√
ab
)

√
f (a) f (b)

⎞
⎠

2v

f (a)1−v f (b)v.

On the other hand,

⎛
⎝ f

(√
ab
)

√
f (a) f (b)

⎞
⎠

2(1−v)

f (a)1−v f (b)v = f
(√

ab
)2−2v

f (b)−(1−2v)

= f
(√

ab
)1+(1−2v)

f (b)−(1−2v)

� f

((√
ab
)1+(1−2v)

b−(1−2v)
)

(by Lemma 1)

= f
(
a1−vbv) .

Consequently,

⎛
⎝ f

(√
ab
)

√
f (a) f (b)

⎞
⎠

2R

f (a)1−v f (b)v � f
(
a1−vbv)�

⎛
⎝ f

(√
ab
)

√
f (a) f (b)

⎞
⎠

2r

f (a)1−v f (b)v.

The same procedure also works for the case v ∈ [ 1
2 ,1
]
. This completes the proof. �

The first inequality in (25) can be regarded as a reverse of (3). Meanwhile, since
f(
√

ab)√
f (a) f (b)

� 1, the second inequality in (25) provides a refinement of (3).

We can extend (3) to the following form [14]

f

(
n

∏
i=1

xpi
i

)
�

n

∏
i=1

f (xi)
pi ,

n

∑
i=1

pi = 1. (26)

On the other hand, (24) can be extended as follows. This extension simulates
similar extensions for convex and log-convex functions [19, 20, 22].

COROLLARY 8. Let a,bi,vi � 0 and let v = ∑n
i=1 vi. If the function f : (0,∞) →

(0,∞) is geometrically convex, then

f

(
a1+v

n

∏
i=1

b−vi
i

)
� f (a)1+v

n

∏
i=1

f (b)−vi .
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Proof. Notice that, for the given parameters,

f

(
a1+v

n

∏
i=1

b−vi
i

)
= f

(
a1+v

(
n

∏
i=1

b
vi
v
i

)−v)

� f (a)1+v f

(
n

∏
i=1

b
vi
v
i

)−v

(by (24))

� f (a)1+v

(
n

∏
i=1

f (bi)
vi
v

)−v

(by (26))

= f (a)1+v
n

∏
i=1

f (b)−vi ,

which completes the proof. �
In the following, we aim to improve (26). To this end, we need the following

simple lemma which can be proved using (26).

LEMMA 2. Let f be a geometrically convex on the interval I and x1, . . . ,xn ∈ I ,
and p1, . . . , pn positive numbers with Pn = ∑n

i=1 pi , then

f

⎛
⎝
(

n

∏
i=1

xpi
i

) 1
Pn

⎞
⎠�

(
n

∏
i=1

f (xi)
pi

) 1
Pn

.

THEOREM 7. Let f be a geometrically convex function on the interval I , x1, . . . ,xn ∈
I , and p1, . . . , pn positive numbers such that ∑n

i=1 pi = 1 . Assume J � {1,2, . . . ,n} and
Jc = {1,2, . . . ,n}\J , PJ = ∑

i∈J
pi , PJc = 1− ∑

i∈J
pi . Then

f

(
n

∏
i=1

xpi
i

)
� f

⎛
⎝(∏

i∈J
xpi
i

) 1
PJ

⎞
⎠

PJ

f

⎛
⎝(∏

i∈Jc
xpi
i

) 1
PJc

⎞
⎠

PJc

�
n

∏
i=1

f (xi)
pi .

Proof. We have

f

(
n

∏
i=1

xpi
i

)
= f

(
∏
i∈J

xpi
i ∏

i∈Jc
xpi
i

)
= f

⎛
⎜⎝
⎛
⎝
(

∏
i∈J

xpi
i

) 1
PJ

⎞
⎠

PJ⎛
⎝
(

∏
i∈Jc

xpi
i

) 1
PJc

⎞
⎠

PJc
⎞
⎟⎠

� f

⎛
⎝
(

∏
i∈J

xpi
i

) 1
PJ

⎞
⎠

PJ

f

⎛
⎝
(

∏
i∈Jc

xpi
i

) 1
PJc

⎞
⎠

PJc

(by (3))
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�

⎛
⎝(∏

i∈J
f (xi)

pi

) 1
PJ

⎞
⎠

PJ⎛
⎝(∏

i∈Jc
f (xi)

pi

) 1
PJc

⎞
⎠

PJc

(by Lemma 2)

=

(
∏
i∈J

f (xi)
pi

)(
∏
i∈Jc

f (xi)
pi

)
=

n

∏
i=1

f (xi)
pi .

This completes the proof. �
We refer the reader to [3, Theorem 1] for similar results about convex functions.

It is quite natural to consider the n -tuple version of Theorem 6. Closing this
paper, we give the extension for Theorem 6. The convex and log-convex versions of
this extension were proved first in [13].

THEOREM 8. Let f be a geometrically convex function on the interval I and
x1, . . . ,xn ∈ I , and let p1, . . . , pn be non–negative numbers with ∑n

i=1 pi = 1 . Then

⎛
⎜⎜⎜⎜⎝

f

((
n
∏
i=1

xi

) 1
n
)

(
n
∏
i=1

f (xi)
) 1

n

⎞
⎟⎟⎟⎟⎠

nRn

n

∏
i=1

f (xi)pi � f

(
n

∏
i=1

xpi
i

)
�

⎛
⎜⎜⎜⎜⎝

f

((
n
∏
i=1

xi

) 1
n
)

(
n
∏
i=1

f (xi)
) 1

n

⎞
⎟⎟⎟⎟⎠

nrn

n

∏
i=1

f (xi)pi

(27)
where rn = min{p1, . . . , pn} and Rn = max{p1, . . . , pn} .

Proof. We first prove the second inequality of (27). We may assume rn = pk

without loss of generality. For any k = 1, . . . ,n , we have

⎛
⎜⎜⎜⎜⎝

f

((
n
∏
i=1

xi

) 1
n
)

(
n
∏
i=1

f (xi)
) 1

n

⎞
⎟⎟⎟⎟⎠

nrn

n

∏
i=1

f (xi)pi

= f

⎛
⎝( n

∏
i=1

xi

) 1
n
⎞
⎠

npk(
n

∏
i=1

f (xi)
pi−pk
1−npk

)1−npk

� f

⎛
⎝( n

∏
i=1

xi

) 1
n
⎞
⎠

npk

f

(
n

∏
i=1

xi

pi−pk
1−npk

)1−npk

� f

⎛
⎝
(

n

∏
i=1

xi

) npk
n n

∏
i=1

xi

(
pi−pk
1−npk

)
(1−npk)

⎞
⎠= f

(
n

∏
i=1

xpi
i

)
.

In the above, the first inequality follows by (26) with 1− npk � 0 and the second

inequality follows by (3) with a = ∏n
i=1 x

1
n
i , b = ∏n

i=1 x
pi−pk
1−npk
i , 1− v = npk .
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We also assume Rn = pl and for any l = 1, . . . ,n , we have

⎛
⎜⎜⎝

f

(
n
∏
i=1

xpi
i

)
n
∏
i=1

f (xi)
pi

⎞
⎟⎟⎠

1
npl (

n

∏
i=1

f (xi)

) 1
n

= f

(
n

∏
i=1

xpi
i

) 1
npl
(

n

∏
i=1

f (xi)
pl−pi
npl−1

) npl−1
npl

� f

(
n

∏
i=1

xpi
i

) 1
npl

f

(
n

∏
i=1

x
pl−pi
npl−1

i

) npl−1
npl

� f

⎛
⎝
(

n

∏
i=1

xpi
i

) 1
npl n

∏
i=1

x

(
pl−pi
npl−1

)(
npl−1
npl

)
i

⎞
⎠= f

(
n

∏
i=1

x
1
n
i

)
.

In the above, the first inequality follows by (26) with npl−1
npl

� 0 and the first inequality

follows by (3) with a = ∏n
i=1 xpi

i , b = ∏n
i=1 x

pl−pi
npl−1

i , 1−v = 1
npl

. Thus the first inequality
of (27) was proven. �

We easily find that Theorem 8 recovers Theorem 6 when n = 2.
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