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Abstract. Let X be a Banach space. In this paper, we study the properties of w∗UR modulus of
convexity of X∗ respect to x , δX

∗(ε ,x), where 0 � ε � 2 and x ∈ S(X), and the relationship
between the values of w∗UR modulus and reflexivity, uniform non-squareness and normal struc-
ture respectively. Among other results, we proved that if δX

∗(ε ,x) > 1
2 − ε

4 for all x ∈ S(X),
and any 0 < ε < 2 then both X and X∗ have uniform normal structure.

1. Introduction and preliminaries

Let X be a normed linear space. Let B(X) = {x ∈ X : ‖x‖ � 1} and S(X) = {x ∈
X : ‖x‖= 1} be the unit ball, and the unit sphere of X , respectively. Let X∗ be the dual
space of X , and X∗∗ be the dual space of X∗ respectively.

The concept of normal structure was defined by Brodskiı̆ and Mil’man:

DEFINITION 1.1. [1] A bounded and convex subset K of a Banach space X is
said to have normal structure if every convex subset H of K that contains more than
one point contains a point x0 ∈ H , such that sup{‖x0 − y‖ : y ∈ H} < d(H) , where
d(H) = sup{‖x− y‖ : x,y ∈ H} denotes the diameter of H .

A Banach space X is said to have normal structure if every bounded and convex
subset of X has normal structure.

A Banach space X is said to have weak normal structure if for each weakly com-
pact convex set K of X has normal structure.

A Banach space X is said to have uniform normal structure if there exists 0< c < 1
such that for any bounded closed convex subset K of X that contains more than one
point, there exists x0 ∈ K such that sup{‖x0− y‖ : y ∈ K} � c ·d(K) .

For a reflexive Banach space, the normal structure and weak normal structure co-
incide.

Let D be a nonempty subset of a Banach space X . A mapping T : D→D is called
to be non-expensive whenever ‖Tx−Ty‖ � ‖x− y‖ for all x,y ∈ D . A Banach space
is said to have fixed point property if for every bounded closed and convex subset D of
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X and for each non-expansive mapping T : D → D , there is a point x ∈ D such that
x = Tx [11].

Kirk proved that if a Banach space X has weak normal structure then it has weak
fixed point property, that is, every non-expansive mapping from a weakly compact and
convex subset of X into itself has a fixed point [11].

DEFINITION 1.2. [9] A Banach space X is called uniformly non-square if there
exists δ > 0 such that if x,y ∈ S(X) , then either ‖x+y‖

2 � 1− δ or ‖x−y‖
2 � 1− δ .

DEFINITION 1.3. [3] Let X and Y be Banach spaces. We say that Y is finitely
representable in X if for any ε > 0 and any finite dimensional subspace N ⊆Y there is
an isomorphism T : N → X such that for any y ∈ N , (1− ε)‖y‖ � ‖Ty‖� (1+ ε)‖y‖ .

The Banach space X is called super-reflexive if any space Y which is finitely
representable in X is reflexive.

REMARK 1.4. It is well known that:

(a) if X is uniformly non-square then X is supper-reflexive and therefore X is re-
flexive;

(b) X is super-reflexive if and only if X∗ is supper-reflexive.

The concept of modulus of uniformly rotund or uniformly convex was defined by
Clarkson:

DEFINITION 1.5. [2] Let X be a Banach space, the modulus of convexity is a
function from [0, 2] to [0, 1] defined by the formula:

δX(ε) = inf{1− 1
2
‖x+ y‖ : x,y ∈ S(X),‖x− y‖� ε},

where 0 � ε � 2.
If δX(ε) > 0 for any 0 < ε � 2, X is called uniformly rotund or uniformly convex.

The abbreviation UR is used for this space.

Gao proved that if there exists 0 � ε � 1 such that δX (1+ ε) > ε
2 , then X has uniform

normal structure [4].
The concept of modulus of weakly uniformly rotund or weakly uniformly convex

was defined by Smulain:

DEFINITION 1.6. [14] Let X be a Banach space and f ∈ S(X∗), the modulus of
convexity of X with respect to f , is a function from [0,2]×S(X∗) to [0,1] defined by
the formula:

δX (ε, f ) = inf{{1}∪{1− 1
2
‖x+ y‖ : x,y ∈ S(X), |< x− y, f > | � ε}},

where 0 � ε � 2.
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If δX(ε, f ) > 0 for all f ∈ S(X∗) and 0 < ε � 2, X is called weakly uniformly
rotund or weakly uniformly convex. The abbreviation wUR is used for this space.

The reason for specifically including 1 in the set whose infimum defines the wUR
modulus is to avoid the following particular situation: when f is a non-norm attaining
functional, so there are no points x,y in S(X) such that | < x− y, f > | � 2. Therefore
δX(2, f ) would not be well defined.

The following results were proved for δX (ε, f ) by Gao [5]:

THEOREM 1.7. For a Banach space X , if δX(ε, f ) > 1−ε for all f ∈ S(X∗) and
0 < ε < 1 then X is reflexive.

THEOREM 1.8. For a Banach space X , if δX(1, f ) > 0 for all f ∈ S(X∗), then X
has weak normal structure.

THEOREM 1.9. For a Banach space X , if δX (ε, f ) > 1
2 − ε

4 for all f ∈ S(X∗) and
0 < ε < 2 then X is uniform non-square and has uniform normal structure.

THEOREM 1.10. [15] For any f ∈ X∗, δX (ε, f )
ε is an increasing function of ε in

(0,2], and δX(ε, f ) is a continuous function in 0 � ε < 2.

2. Normal structure and inequalities on w∗UR modulus

The concept of the modulus of weakly* uniformly rotund or weakly* uniformly
convex was defined by Smulian too.

DEFINITION 2.1. [14] Let X be a Banach space and x ∈ S(X), the modulus of
convexity of X∗ with respect to x , is a function from [0,2]×S(X) to [0,1] defined by
the formula:

δX∗(ε,x) = inf{1− 1
2
‖ f +g‖ : f ,g ∈ S(X∗), | < x, f −g > | � ε},

where 0 � ε � 2.
If δX∗(ε,x) > 0 for all x ∈ S(X) and 0 < ε � 2, X∗ is called weakly* uniformly

rotund or weakly* uniformly convex. The abbreviation w∗UR is used for this space.

THEOREM 2.2. [8] Let X be a Banach space. Then X is not reflexive if and only
if for any 0 < ε < 1 there are a sequence {xn} ⊆ S(X) and a sequence { fn} ⊆ S(X∗)
such that

(a) 〈xm, fn〉 = ε whenever n � m; and

(b) 〈xm, fn〉 = 0 whenever n > m.

PROPOSITION 2.3. Let X be a Banach space, then:
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(a) δ(X∗)∗(ε, f ) � δX(ε, f ), where f ∈ S(X∗) .

(b) δX∗(ε,x) is a non-decreasing function of ε for any x ∈ S(X) .

(c) For a Banach space X , if X∗ is wUR then X∗ is w∗UR.

(d) Let X∗
2 be a 2-dimensional subspace of X∗ , then δX∗(ε,x) = infX∗

2 ⊆X∗(δX∗
2
(ε,x)) .

(e) δX∗(ε,x) is a continuous function of ε ∈ [0,2) for any x ∈ S(X) .

Proof.

(a) Since S(X)⊆ S(X∗∗) .

(b) From definition of w∗UR .

(c) It is a direct result of (a).

(d) From definition of w∗UR .

(e) First we show that: Let X2 be a 2 dimensional Banach space, x ∈ S(X2) , and
u,v∈ S(X∗

2 ) are independent. Let f2− f1 = au,g2−g1 = bu,h2−h1 = cu, f1+ f2
2 =

dv, g1+g2
2 = ev, and h1+h2

2 = f v, where all a,b,c,d,e, and f > 0, and all f1, f2,g1,
g2,h1 and h2 ∈ S(X∗) . If < x, f2 − f1 > + < x,h2 − h1 >= 2 < x,g2 − g1 >
, then a + c = 2b , therefore from convexity of S(X∗

2 ), we have d + f � 2e .
Let δ u,v

X∗
2
(ε,x) = inf{1− 1

2‖ f + g‖ : f ,g ∈ S(X∗
2 ), f − g = αu, f + g = βv, | <

x, f − g > | � ε}, where 0 � ε � 2. This means that for any x ∈ S(X2) and
u,v ∈ S(X∗

2 ), δ u,v
X∗

2
(ε,x) is a convex function of ε. The following proof is similar

to the proof of Lemma 5.1 in [7]: Let 0 � ε1 < 2. For 0 < ε � 2, the convexity

of δ u,v
X∗

2
(ε,x) implies that:

δ u,v
X∗2

(ε,x)−δ u,v
X∗2

(ε1,x)

ε−ε1
�

δ u,v
X∗2

(2,x)−δ u,v
X∗2

(ε1,x)

2−ε1
� 1

2−ε1
. There-

fore, δ u,v
X∗

2
(ε,x)− δ u,v

X∗
2
(ε1,x) � ε−ε1

2−ε1
. From (d) of above Proposition 2.3, we have

δX∗(ε,x)−δX∗ (ε1,x) � ε−ε1
2−ε1

. This proved that δX∗(ε,x) is a continuous function
of ε ∈ [0,2) for any x ∈ S(X) . �

THEOREM 2.4. For a Banach space X , if δX∗(ε,x) > 1− ε for all x ∈ S(X) and
0 < ε < 1, then X is reflexive.

Proof. The idea of the proof is similar to the proof of Theorem 2.1 of [5]. Suppose
X is not reflexive. For any 0 < ε < 1, let the sequence {xm} ⊆ S(X) and the sequence
{ fn} ⊆ S(X∗) satisfy the two conditions in Theorem 2.2. Let n1 < m < n2, we have
< xm, fn1 − fn2 >= ε . Let n1 < n2 < m1, we have < xm1 , fn1 + fn2 >= 2ε, therefore

‖ fn1 + fn2‖ � 2ε,1− ‖ fn1+ fn2‖
2 � 1− ε . This implies δX∗(ε,xm) = inf{1− ‖ f+g‖

2 ,<

xm, f −g >� ε} � 1− ‖ fn1+ fn2‖
2 � 1− ε, for this fixed xm ∈ S(X). �
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LEMMA 2.5. [12] If X is a Banach space with B(X∗) is weak* sequentially com-
pact (for example, X is reflexive or separable, or has an equivalent smooth norm)
and fails to have weak normal structure, then for any ε > 0 there are a sequence
{xn} ⊆ S(X) and a sequence { fn} ⊆ S(X∗) such that:

(a) |‖xi− x j‖−1|< ε , where i 
= j ;

(b) 〈xi, fi〉 = 1 , where 1 � i � ∞;

(c) |〈x j, fi〉| < ε , where i 
= j ; and

(d) ‖ fi − f j‖ > 2− ε , where i 
= j .

THEOREM 2.6. For a Banach space X which satisfies one of any condition in
above Lemma 2.5, if δX∗(ε,x) > 1

2 − ε
2 for all x ∈ S(X) and 0 < ε < 1 then X has

weak normal structure.

Proof. Suppose X satisfies one of any condition in above Lemma 2.5 but fails to
have weak normal structure, for any 0 < ε < 1, let f = fi ∈ S(X∗),g = f j ∈ S(X∗) and
x = xi ∈ S(X) where i 
= j be chosen as in above Lemma 2.5. We have ‖ f −g‖� 2−ε ,

so 1− ‖ f−g‖
2 � ε

2 and < x, f + g >� 1− ε . From definition of δX∗(ε,x) we have
δX∗(1− ε,x) � ε

2 for this x ∈ S(X) . This implies that if δX∗(1− ε,x) > ε
2 for all

x ∈ S(X) and 0 < ε < 1, then X has weak normal structure. It is equivalent to the
condition δX∗(ε,x) > 1

2 − ε
2 for all x ∈ S(X) and 0 < ε < 1. �

REMARK 2.7. Since δX∗(ε,x) is a non-decreasing function of ε for any x ∈
S(X), to use Theorem 2.4 and Theorem 2.6 we only need to check those ε that ar-
bitrarily close to 1.

LEMMA 2.8. [6] If x1,x2 ∈ B(X) and 0 < ε < 1 are such that ‖x1+x2‖
2 > 1− ε ,

then for all 0 � c � 1 and z = cx1 +(1− c)x2 ∈ [x1,x2] , the line segment connecting
x1 and x2 , it follows that ‖z‖ > 1−2ε .

The following characteristic of reflexivity is given by James:

LEMMA 2.9. [8] The Banach space is reflexive if and only if each bounded linear
functional on X is norm -attaining.

THEOREM 2.10. For a Banach space X , if δX∗(ε,x) > 1
2 − ε

4 for all x ∈ S(X)
and 0 < ε < 2 then X∗ is uniform non-square.

Proof. Suppose X∗ is not uniform non-square. For any 0 < ε < 2, let f ,g∈ S(X∗)
such that both ‖ f +g‖ � 1+ ε

2 and ‖ f −g‖ � 1+ ε
2 . So we have ‖ f+g‖

2 � 1
2 + ε

4 , and
‖ f−g‖

2 � 1
2 + ε

4 . This implies 1− ‖ f−g‖
2 � 1

2 − ε
4 . δX∗(ε,x) > 1

2 − ε
4 for all x∈ S(X) and

0 < ε < 2 implies δX∗(ε,x) > 1−ε for all x ∈ S(X) and 2
3 < ε < 1. From Remark 2.7

and Theorem 2.4, X∗ , hence X is reflexive, and therefore from Lemma 2.9, there exist
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x,y∈ S(X) such that < x, f >=< y,g >= 1. The following proof is similar to the proof
of Theorem 2.3 of [5]. Consider the 2-dimensional subspace X2 of X spanned by x and
y , and x and y are clockwise located on x̃,y ⊆ S(X2), and the 2-dimensional subspace
X∗

2 of X∗ spanned by f and g , and f and g are clockwise located on f̃ ,g ⊆ S(X∗
2 ) .

Since < x, f −g >� 0, and < y, f −g >� 0, and < t, f −g > is a continuous function
for t ∈ x̃,y⊆ S(X2), there must be a z ∈ x̃,y⊆ S(X2), such that < t, f −g >= 0. Let <
z, f >=< z,g >= l , then for all 0 � α � 1, < z,α f +(1−α)g >= l . Taking 0 < α1 <

1 such that h = α1 f+(1−α1)g
‖α1 f+(1−α1)g‖ ∈ S(X∗) with < z,h >=< z, α1 f+(1−α1)g

‖α1 f+(1−α1)g‖ >= 1, then

‖α1 f +(1−α1)g‖ =< z,α1 f +(1−α1)g >= l . Since ‖ f+g‖
2 � 1

2 + ε
4 = 1− ( 1

2 − ε
4 ),

from Lemma 2.8, we have < z, f+g
2 >= l = ‖α1 f +(1−α1)g‖ � 1− 2( 1

2 − ε
4 ) = ε

2 .
Therefore, < z, f +g >� ε . By using Hahn-Banach Theorem to extend z from X2 to
X , from definition of δX∗(ε,x), we have δX∗(ε,z) � 1

2 − ε
4 for this z ∈ S(X), and any

0 < ε < 2. �

REMARK 2.11. Since δX∗(ε,x) is a non-decreasing function of ε for any x ∈
S(X), to use Theorem 2.10 we only need to check those ε that arbitrarily close to 2.

THEOREM 2.12. For a Banach space X , if δX∗(ε,x) > 1
2 − ε

4 for all x ∈ S(X),
and any 0 < ε < 2 then X has normal structure and X∗ is uniform non-square.

Proof. Since δX∗(ε,x)> 1
2 − ε

4 , for all x∈ S(X), and 0 < ε < 2 implies δX∗(ε,x)>

1−ε for all x∈ S(X), and ε > 2
3 , from Theorem 2.4, X is reflexive. Since δX∗(ε,x) >

1
2 − ε

4 , for all x ∈ S(X), and 0 < ε < 2 implies δX∗(ε,x) > 1
2 − ε

2 for all x ∈ S(X), and
0 < ε < 1, from Theorem 2.6, X has weak normal structure. So the Theorem 2.12 is a
direct result of Theorem 2.4, Theorem 2.6 and Theorem 2.10. �

3. Uniform normal structure and inequalities on w∗UR modulus

We consider the uniform normal structure.
Let F be a filter of an index set I , and let {xi}i∈I be a subset in a Hausdorff

topological space X , {xi}i∈I is said to converge to x with respect to F , denoted by
limF xi = x , if for each neighborhood U of x , {i ∈ I : xi ∈U} ∈ F .

A filter U on I is called an ultrafilter if it is maximal with respect to the ordering
of the set inclusion. An ultrafilter is called trivial if it is of the form {A : A ⊆ I, i0 ∈ A}
for some i0 ∈ I . We will use the fact that if U is an ultrafilter, then:

(i) for any A ⊆ I , either A ⊆U or I−A ⊆U ;

(ii) if {xi}i∈I has a cluster point x , then limU xi exists and equals to x .

Let {Xi}i∈I be a family of Banach spaces and let l∞(I,Xi) denote the subspace of
the product space equipped with the norm ‖(xi)‖ = supi∈I ‖xi‖ < ∞ .

DEFINITION 3.1. [13]. Let U be an ultrafilter on I and let NU = {(xi)∈ l∞(I,Xi) :
limU ‖xi‖ = 0} . The ultra-product of {Xi}i∈I is the quotient space l∞(I,Xi)/NU

equipped with the quotient norm.
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We will use (xi)U to denote the element of the ultra-product. It follows from
Remark (ii) above, and the definition of quotient norm that

‖(xi)U ‖ = lim
U

‖xi‖. (3.1)

In the following we will restrict our index set I to be N , the set of natural numbers,
and let Xi = X , i ∈ N for some Banach space X . For an ultrafilter U on N , we use XU

to denote the ultra-product. Note that if U is nontrivial, then X can be embedded into
XU isometrically.

LEMMA 3.2. [13]. Suppose that U is an ultrafilter on N and X is a Banach
space. Then (X∗)U ∼= (XU )∗ if and only if X is super-reflexive; and in this case, the
mapping J defined by

〈(xi)U ,J(( fi)U )〉 = lim
U

〈xi, fi〉, for all (xi)U ∈ XU

is the canonical isometric isomorphism from (X∗)U onto (XU )∗ .

THEOREM 3.3. [5] Let X be a super-reflexive Banach space. Then for any non-
trivial ultrafilter U on N , and for any 0 < ε < 2 , we have δXU

(ε,( fi)U ) > a for all
( fi)U ∈ S(X∗

U ) if and only if δX(ε, f ) > a for all f ∈ S(X∗).

THEOREM 3.4. Let X be a super-reflexive Banach space. Then for any nontrivial
ultrafilter U on N , and for any 0 < ε < 2 , we have δX∗

U
(ε,(xi)U ) > a for all (xi)U ∈

S(XU ) if and only if δX∗(ε,x) > a for all x ∈ S(X).

Proof. From Remark 1.4, X is super-reflexive if and only if X∗ is super-reflexive.
So X is isomorphic and isometry to X∗∗, therefore XU is isomorphic and isometry to
X∗∗

U . The Theorem 3.4 is a direct result of Theorem 3.3. �

LEMMA 3.5. [10] If X is a super-reflexive Banach space, then X has uniform
normal structure if and only if XU has normal structure.

THEOREM 3.6. For a Banach space X , if δX∗(ε,x) > 1
2 − ε

4 for all x∈ S(X), and
any 0 < ε < 2 then X∗ is uniform non-square, X is super-reflexive and both X and X∗
have uniform normal structure.

Proof. δX∗(ε,x) > 1
2 − ε

4 for all x ∈ S(X), and any 0 < ε < 2 implies that X
has weak normal structure from Theorem 2.6, and X∗ is uniformly non-square from
Theorem 2.10. So, X∗ , hence X is super-reflexive. Then the result follows directly
from Theorems 3.4 and Lemma 3.5. �

Let sgn(x) =

⎧⎪⎨
⎪⎩
−1, i f x < 0

0, i f x = 0

1, i f x > 0

be the sign function of x .
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EXAMPLE 3.7. Let X = l1, and X∗ = l∞ , then δl∞(ε,x) = 0 for all x ∈ S(l1) and
0 � ε < 2.

Proof. For any x = {x1,x2,x3, ...,xn,xn+1,xn+2, ...}∈ S(l1), we have ∑∞
i=1 |xi|= 1.

For any δ > 0 take n such that Σn
i=1|xi| > 1− δ , we have |x j| < δ for all j > n . Let

f1 = (sgn(x1),sgn(x2),sgn(x3), ...sgn(xn),1,0,0, ...) ∈ S(l∞), and f2 =
(−sgn(x1),−sgn(x2),−sgn(x3), ...− sgn(xn),1,0,0, ...) ∈ S(l∞) . We have
< x, f1 − f2 >= Σn

i=1xi(2sgn(xi)) = 2Σn
i=1|xi| > 2−2δ . But ‖ f1 + f2‖l∞ =

‖(0,0,0, ...,2,0,0,0, ...)‖l∞ = 2, so 1− ‖ f1+ f2‖l∞
2 = 0. We have δl∞(ε,x) = 0 for all

x ∈ S(l1) and 0 � ε < 2−2δ . Since δ can be arbitrarily small we have δl∞(ε,x) = 0
for all x ∈ S(l1) and 0 � ε < 2. �

EXAMPLE 3.8. Let X = c0, and X∗ = l1 , then δl1(ε,x) = 0 for all x ∈ S(c0) and
0 � ε < 1.

Proof. For any x = {x1,x2,x3, ...,xn,xn+1,xn+2, ...} ∈ S(c0), there exists an i , such
that |xi| = 1, and for any η > 0 there exists a j such that |x j| < η , where i < j . Let
f1 = (0,0,0, ...,sgn(xi), ...,0,0,0,0, ...) ∈ S(l1), where i-th position of f1 is sgn(xi)
and others are 0; and f2 = (0,0,0, ...,0, ...,0,1,0,0, ...) ∈ S(l1), where j -th position
of f2 is 1 and others are 0. We have < x, f1 − f2 >> 1− η . But ‖ f1 + f2‖l1 =

‖(0,0,0, ...,sgn(xi), ...,1,0,0, ...)‖l1 = 2, so 1− ‖ f1+ f2‖l1
2 = 0. We have δl1(ε,x) =

0 for all x ∈ S(l1) and 0 � ε < 1− η . Since η can be arbitrarily small we have
δl1(ε,x) = 0 for all x ∈ S(c0) and 0 � ε < 1. �
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