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Abstract. Let X be a Banach space. In this paper, we study the properties of w*UR modulus of
convexity of X* respect to x, 8x*(€,x), where 0 < & <2 and x € §(X), and the relationship

between the values of w*UR modulus and reflexivity, uniform non-squareness and normal struc-
ture respectively. Among other results, we proved that if §x*(e,x) > 1 — £ for all x € S(X),
and any 0 < & <2 then both X and X* have uniform normal structure.

1. Introduction and preliminaries

Let X be a normed linear space. Let B(X) ={x€ X : ||x|| < 1} and S(X) ={x €
X :||x|| = 1} be the unit ball, and the unit sphere of X, respectively. Let X* be the dual
space of X, and X** be the dual space of X™* respectively.

The concept of normal structure was defined by Brodskii and Mil’man:

DEFINITION 1.1. [1] A bounded and convex subset K of a Banach space X is
said to have normal structure if every convex subset H of K that contains more than
one point contains a point xo € H, such that sup{|jxo —y|| : y € H} < d(H), where
d(H) = sup{||x—y|| : x,y € H} denotes the diameter of H .

A Banach space X is said to have normal structure if every bounded and convex
subset of X has normal structure.

A Banach space X is said to have weak normal structure if for each weakly com-
pact convex set K of X has normal structure.

A Banach space X is said to have uniform normal structure if there exists 0 < ¢ < 1
such that for any bounded closed convex subset K of X that contains more than one
point, there exists xo € K such that sup{|jxo —y|| : y € K} < c-d(K).

For a reflexive Banach space, the normal structure and weak normal structure co-
incide.

Let D be a nonempty subset of a Banach space X . A mapping 7 : D — D is called
to be non-expensive whenever ||Tx — Ty|| < ||x—y|| for all x,y € D. A Banach space
is said to have fixed point property if for every bounded closed and convex subset D of
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X and for each non-expansive mapping 7 : D — D, there is a point x € D such that
x=Tx[11].

Kirk proved that if a Banach space X has weak normal structure then it has weak
fixed point property, that is, every non-expansive mapping from a weakly compact and
convex subset of X into itself has a fixed point [11].

DEFINITION 1.2. [9] A Banach space X is called uniformly non-square if there
exists & > 0 such that if x,y € S(X), then either Hx+yH — &8 or Hx2;yH <1-6.

DEFINITION 1.3. [3] Let X and Y be Banach spaces. We say that Y is finitely
representable in X if for any € > 0 and any finite dimensional subspace N C Y there is
an isomorphism 7 : N — X such that forany y e N, (L—¢)||y|| < [Tyl < (L+¢€)|y| -

The Banach space X is called super-reflexive if any space Y which is finitely
representable in X is reflexive.

REMARK 1.4. Itis well known that:

(a) if X is uniformly non-square then X is supper-reflexive and therefore X is re-
flexive;

(b) X is super-reflexive if and only if X* is supper-reflexive.

The concept of modulus of uniformly rotund or uniformly convex was defined by
Clarkson:

DEFINITION 1.5. [2] Let X be a Banach space, the modulus of convexity is a
function from [0, 2] to [0, 1] defined by the formula:

. 1
Ox(e) =inf{l =S llx+y:x,y € SX),[lx—yl| > €},

where 0 < € < 2.
If 8x(€) >0 forany 0 < € <2, X is called uniformly rotund or uniformly convex.
The abbreviation UR is used for this space.

Gao proved that if there exists 0 < & < 1 such that 6y (1 +¢&) > %, then X has uniform
normal structure [4].

The concept of modulus of weakly uniformly rotund or weakly uniformly convex
was defined by Smulain:

DEFINITION 1.6. [14] Let X be a Banach space and f € S(X*), the modulus of

convexity of X with respect to f, is a function from [0,2] x S(X*) to [0, 1] defined by
the formula:

B () = nf{{1} U {1~ 3 xy] 2y € S0, <x—v.f > | >},

where 0 < € < 2.
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If 6x(g,f) >0 forall fe S(X*) and 0 < e <2, X is called weakly uniformly
rotund or weakly uniformly convex. The abbreviation wUR 1is used for this space.

The reason for specifically including 1 in the set whose infimum defines the wUR
modulus is to avoid the following particular situation: when f is a non-norm attaining
functional, so there are no points x,y in S(X) such that | <x—y, f > | > 2. Therefore
Ox (2, f) would not be well defined.

The following results were proved for Oy (g, ) by Gao [5]:

THEOREM 1.7. For a Banach space X, if O0x(€,f) > 1 —¢ forall f € S(X*) and
0 < e <1 then X is reflexive.

THEOREM 1.8. For a Banach space X, if 0x(1,f) > 0 forall f € S(X*), then X
has weak normal structure.

THEOREM 1.9. Fora Banachspace X , if 8x(€,f) >+ — £ forall f € S(X*) and
0 < & <2 then X is uniform non-square and has uniform normal structure.

THEOREM 1.10. [15] For any f € X*, M is an increasing function of € in

(0,2], and 0x (&, f) is a continuous function in 0 < € < 2.

2. Normal structure and inequalities on w*UR modulus

The concept of the modulus of weakly* uniformly rotund or weakly* uniformly
convex was defined by Smulian too.

DEFINITION 2.1. [14] Let X be a Banach space and x € S(X), the modulus of
convexity of X* with respect to x, is a function from [0,2] x S(X) to [0, 1] defined by
the formula:

. 1 .
6X*(87x) :lnf{l_§||f+gH :fngS(X )7‘ <x7f_g> ‘ 28}7

where 0 < € < 2.
If Oy« (g,x) >0 forall x& S(X) and 0 < € <2, X* is called weakly* uniformly
rotund or weakly* uniformly convex. The abbreviation w*UR is used for this space.

THEOREM 2.2. [8] Let X be a Banach space. Then X is not reflexive if and only
if for any 0 < € < 1 there are a sequence {x,} C S(X) and a sequence {f,} C S(X*)
such that

(a) (xm,[fn) =€ whenever n < m; and

(b) (xm,fn) =0 whenever n > m.

PROPOSITION 2.3. Let X be a Banach space, then:
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(a) &x+)-(&,f) < Ox(&,f), where f € S(X*).

(b) Ox+(&,x) is a non-decreasing function of € for any x € S(X).

(c) For a Banach space X, if X* is wUR then X* is w*UR.

(d) Let X5 be a2-dimensional subspace of X*, then &x-(&,x) = infxycx+(x; (€,x)).

(e) Ox+(€,x) is a continuous function of € € [0,2) for any x € S(X).

Proof.
(a) Since S(X) C S(X*™).
(b) From definition of w*UR.
(c) Itis a direct result of (a).
(d) From definition of w*UR.

(e) First we show that: Let X, be a 2 dimensional Banach space, x € S(X;), and
u,v € S(X5) areindependent. Let f> — f1 = au, g — g1 = bu,hy —h; = cu, fl;r—fz =
dv, 858 = ¢y and 32 = fy whereall a,b,c,d,e, and f >0, andall fi, >,g1,
gk and hp € S(X*). If <x,fo—fi>+ <x,hy—h >=2<x,80—81 >
, then a + ¢ = 2b, therefore from convexity of S(X;), we have d + f < 2e.
Let 5§§V(£,x) = inf{1 — %Hf—i—gH cf,8€SX5),f—g=auf+g=Pv|<
x,f—g>|>¢€}, where 0 < € < 2. This means that for any x € S(X;) and
u,v € S(X5), 5;§V(£,x) is a convex function of €. The following proof is similar

to the proof of Lemma 5.1 in [7]: Let 0 < & < 2. For 0 < € < 2, the convexity

. o B (e.0) 3, (e1) 8 2.8 (e 9
of 5X§ (g,x) implies that: = < e <o g 8 . There-

fore, 5;%V(8,x) — 6;;(81, x) < 5=¢- . From (d) of above Proposition 2.3, we have

Ox+ (€,x) — Ox+ (€1,x) < 5=¢- . This proved that 8- (€,x) is a continuous function
of €€[0,2) forany x€ S(X). O

THEOREM 2.4. For a Banach space X, if 8x+(€,x) > 1—¢€ forall x € S(X) and
0<e< 1, then X is reflexive.

Proof. The idea of the proof is similar to the proof of Theorem 2.1 of [5]. Suppose

X is not reflexive. For any 0 < € < 1, let the sequence {x,,} C S(X) and the sequence

{fu} C S(X*) satisfy the two conditions in Theorem 2.2. Let n; < m < np, we have

< X, fn, — [y >=€. Let ny <ny <my, we have < X, fy, + fn, >= 2€, therefore
[l fny + Sy |l

i+ o | > 26,1 = FE20 < <

g+
X f —g>2 e} S1— =572

1 — . This implies Ox+(&,x,) = inf{l —
< 1—e¢, for this fixed x,, € S(X). O
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LEMMA 2.5. [12]If X is a Banach space with B(X™) is weak* sequentially com-
pact (for example, X is reflexive or separable, or has an equivalent smooth norm)

and fails to have weak normal structure, then for any € > 0 there are a sequence
{xx} € S(X) and a sequence { f,} C S(X*) such that:

(a) ||lxi—xj||—1| <&, where i # j;
(b) <xi7ﬁ> - 1, where 1 < i < oo
(c) [(xj,fi)| <€, wherei# j; and

(d) ||fi = fill >2—¢€, where i # j.

THEOREM 2.6. For a Banach space X which satisfies one of any condition in
above Lemma 2.5, if 8x+(€,x) > % — £ for all x € S(X) and 0 < & < 1 then X has
weak normal structure.

Proof. Suppose X satisfies one of any condition in above Lemma 2.5 but fails to
have weak normal structure, forany 0 < & < 1, let f = f; € S(X*),g = f; € S(X*) and
x=x; € S(X) where i # j be chosen as in above Lemma 2.5. We have ||f—g|| >2—¢,
so 1— Hf2;2H < § and <x,f+g >>1—¢. From definition of dx+(€,x) we have
Ox+(1 —€&,x) < § for this x € S(X). This implies that if &y«(1 —¢&,x) > § for all
x € S(X) and 0 < € < 1, then X has weak normal structure. It is equivalent to the
condition 8y (€,x) > —£ forall x€S(X) and 0<e<1. O

REMARK 2.7. Since 6x+(€,x) is a non-decreasing function of & for any x €
S(X), to use Theorem 2.4 and Theorem 2.6 we only need to check those € that ar-
bitrarily close to 1.

LEMMA 2.8. [6] If x1,x2 € B(X) and 0 < & < 1 are such that aniz\\ >1—g¢,
then for all 0 < ¢ <1 and z = cx1 + (1 — ¢)xz € [x1,x2], the line segment connecting
x1 and xy, it follows that ||z|| > 1 —2¢.

The following characteristic of reflexivity is given by James:

LEMMA 2.9. [8] The Banach space is reflexive if and only if each bounded linear
functional on X is norm -attaining.

THEOREM 2.10. For a Banach space X, if 8x+(€,x) > & — & for all x € S(X)

27 2
and 0 < € <2 then X" is uniform non-square.

Proof. Suppose X* is not uniform non-square. Forany 0 < € <2, let f,g € S(X*)
such that both [[f+g|| > 1+ 5 and ||f—g| > 1+ 5. So we have HJ}L&’H >1+£ and
Hf2;g“ > 1+ £. This implies l_Hf2;gH <43—£. 8x-(e,x) > L —£ forall x € S(X) and
0 < & <2 implies &+ (&,x) > 1 —¢ forall x€ S(X) and 3 < & < 1. From Remark 2.7
and Theorem 2.4, X*, hence X is reflexive, and therefore from Lemma 2.9, there exist
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x,y € S(X) such that < x, f >=<y,g >= 1. The following proof is similar to the proof
of Theorem 2.3 of [5]. Consider the 2-dimensional subspace X> of X spanned by x and
v, and x and y are clockwise located on x,y C §(X,), and the 2-dimensional subspace
X5 of X* spanned by f and g, and f and g are clockwise located on ?E CS(X3).
Since <x,f—g>>0, and <y, f—g><0, and <t, f— g > isa continuous function
fort € x;y C S(X2), there mustbe a z € x,y C S(X,), such that <f,f—g>=0. Let <
2, f>=<z,g>=I,thenforall 0< o<1, <z,of+ (1l —o)g>=1. Taking 0 < oy <

_ ogf+(l-o)g - _ ogf+(l-a)g  _
1 such that h = Towfr(=a)a] < S(X*) with < z,h >=<z, Tow Fr(T=ang] > = 1, then

llonf+ (1 —on)g|| =< z,0uf+ (1 —0)g >=1. Since M > %—i—%z 1—(%—%),
from Lemma 2.8, we have < z, f% >=1=|ouf+(1—on)gl| >1-2(3-%)=5.
Therefore, < z, f + g >> €. By using Hahn-Banach Theorem to extend z from X, to
X, from definition of 8x-(¢,x), we have 8x+(€,z) < 3 — £ for this z € S(X), and any
0<e<2. U

REMARK 2.11. Since Jx+(€,x) is a non-decreasing function of & for any x €
S(X), to use Theorem 2.10 we only need to check those € that arbitrarily close to 2.

THEOREM 2.12. For a Banach space X, if 8x+(€,x) > 1 — £ for all x € S(X),
and any 0 < € < 2 then X has normal structure and X* is uniform non-square.

Proof. Since 8y-(g,x) > 1 —£ forall x€ S(X), and 0 < & <2 implies 8x-(€,x) >
1—¢ forall xe S(X), and € > %, from Theorem 2.4, X is reflexive. Since Ox+(g,x) >
I —£ forall x € S(X), and 0 < & < 2 implies Sy (€,x) > 1 — £ forall x € S(X), and
0 < e < 1, from Theorem 2.6, X has weak normal structure. So the Theorem 2.12 is a

direct result of Theorem 2.4, Theorem 2.6 and Theorem 2.10. [

3. Uniform normal structure and inequalities on w*UR modulus

We consider the uniform normal structure.

Let .Z be a filter of an index set I, and let {x;};c; be a subset in a Hausdorff
topological space X, {x;}ies is said to converge to x with respect to % , denoted by
lim # x; = x, if for each neighborhood U of x, {i€I:x; €U} € Z.

A filter % on I is called an ultrafilter if it is maximal with respect to the ordering
of the set inclusion. An ultrafilter is called rrivial if it is of the form {A:A C1,ip € A}
for some iy € 1. We will use the fact that if 7%/ is an ultrafilter, then:

(1) forany AC /I ,either ACU or I -ACU,;
(ii) if {x;}ies has a cluster point x, then limg x; exists and equals to x.
Let {X;}ies be a family of Banach spaces and let /.(,X;) denote the subspace of

the product space equipped with the norm |[|(x;)|| = sup;; ||| < ee.

DEFINITION 3.1. [13]. Let % be an ultrafilter on 7 and let Ny = {(x;) € l(1,X;) :
limg, ||xi]] = 0}. The ultra-product of {X;}ic; is the quotient space l.(I,X;)/Ng
equipped with the quotient norm.
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We will use (x;)7 to denote the element of the ultra-product. It follows from
Remark (ii) above, and the definition of quotient norm that

X))oy || = lim || x;|. 3.1
e | = lm x| G0

In the following we will restrict our index set / to be N, the set of natural numbers,
and let X; = X,i € N for some Banach space X . For an ultrafilter 7 on N, we use Xy
to denote the ultra-product. Note that if %/ is nontrivial, then X can be embedded into
Xy, isometrically.

LEMMA 3.2. [13]. Suppose that % is an ultrafilter on N and X is a Banach
space. Then (X*)9, = (X9 )* if and only if X is super-reflexive; and in this case, the
mapping J defined by

() I () )) =l i), for all () € X
is the canonical isometric isomorphism from (X*)q, onto (X )*.

THEOREM 3.3. [5] Let X be a super-reflexive Banach space. Then for any non-
trivial ultrafilter 7% on N, and for any 0 < & < 2, we have 8, (€, (fi)% ) > a for all
(fi)w €S(X;,) ifand only if 6x (&, f) > a forall f € S(X*).

THEOREM 3.4. Let X be a super-reflexive Banach space. Then for any nontrivial
ultrafilter % on N, and for any 0 < € <2, we have 8y: (&, (xi)/) > a for all (xi)y €
S(Xw ) if and only if 6x+(€,x) > a for all x € S(X).

Proof. From Remark 1.4, X is super-reflexive if and only if X™* is super-reflexive.
So X is isomorphic and isometry to X**, therefore X is isomorphic and isometry to
X}, . The Theorem 3.4 is a direct result of Theorem 3.3. [J

LEMMA 3.5. [10] If X is a super-reflexive Banach space, then X has uniform
normal structure if and only if X4, has normal structure.

THEOREM 3.6. For a Banach space X , if 8x+(&,x) > 1 — £ forall x € S(X), and
any 0 < € <2 then X* is uniform non-square, X is super-reflexive and both X and X*
have uniform normal structure.

Proof. 8x+(g,x) > £ — £ for all x € S(X), and any 0 < & < 2 implies that X
has weak normal structure from Theorem 2.6, and X™* is uniformly non-square from
Theorem 2.10. So, X*, hence X is super-reflexive. Then the result follows directly
from Theorems 3.4 and Lemma 3.5. [J

—1,if x<O0
Let sgn(x) =40, if x=0 be the sign function of x.
1, if x>0
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EXAMPLE 3.7. Let X =1, and X" = L., then §;_(&,x) =0 forall x € S(/;) and
0<e<?.

Proof. Forany x = {x1,%2,X3,...,Xn,Xnt1, %042, ...} €S(l1), wehave Y7 | |xi| = 1.
For any § > 0 take n such that X! [x;| > 1— 6, we have |x;| < & forall j >n. Let
1= (sgn(x1),sgn(xz),sgn(x3),...sgn(x,),1,0,0,...) € S(l.), and fo =
(—sgn(x1),—sgn(xy),—sgn(x3),... — sgn(x,), 1,0,0,...) € S(l.). We have
<x,f1—fo>= Z?zlxi(ngn(xi)) = Zzyzl‘xﬂ >2—-26. But Hfl +f2H1W =
1(0,0,0,...,2,0,0,0,..)[|.. = 2, so 1 — 1Ll — 0 We have §_(e,x) = 0 for all
x€S(l) and 0 < e <2—28. Since § can be arbitrarily small we have §,_(g,x) =0
forall xe S(;) and 0<e<2. O

EXAMPLE 3.8. Let X = co, and X* =1, then &, (£,x) = 0 forall x € S(cp) and
0<e<1.

Proof. Forany x = {X|,X2,X3, ..., Xn,Xn+1,Xn+2,--- } €S(co), there exists an i, such
that |x;| = 1, and for any 1 > O there exists a j such that |x;| <1, where i < j. Let
f1 =1(0,0,0,...,sgn(x;),...,0,0,0,0,...) € S(I), where i-th position of fi is sgn(x;)
and others are 0; and f> = (0,0,0,...,0,...,0,1,0,0,...) € S(;), where j-th position
of f» is 1 and others are 0. We have <x,f] — f, >>1—n. But |fi + f2ll;, =

1(0,0,0, ..., sgn(xi), - 1,0,0,..) 1, =2, so 1 — 20— 6 We have &, (,x) =
0 for all x € S(/;) and 0 < € <1—m. Since N can be arbitrarily small we have
0, (g,x) =0 forall xe S(cp) and 0<e< 1. O
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