SOME INEQUALITIES ON *w***UR* MODULUS OF CONVEXITY AND GEOMETRIC PROPERTIES OF BANACH SPACES *X* AND *X**

JI GAO

(Communicated by M. Praljak)

Abstract. Let *X* be a Banach space. In this paper, we study the properties of w^*UR modulus of convexity of X^* respect to *x*, $\delta_X^*(\varepsilon, x)$, where $0 \le \varepsilon \le 2$ and $x \in S(X)$, and the relationship between the values of w^*UR modulus and reflexivity, uniform non-squareness and normal structure respectively. Among other results, we proved that if $\delta_X^*(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{4}$ for all $x \in S(X)$, and any $0 < \varepsilon < 2$ then both *X* and *X** have uniform normal structure.

1. Introduction and preliminaries

Let *X* be a normed linear space. Let $B(X) = \{x \in X : ||x|| \le 1\}$ and $S(X) = \{x \in X : ||x|| = 1\}$ be the unit ball, and the unit sphere of *X*, respectively. Let *X*^{*} be the dual space of *X*, and *X*^{**} be the dual space of *X*^{*} respectively.

The concept of normal structure was defined by Brodskiĭ and Mil'man:

DEFINITION 1.1. [1] A bounded and convex subset *K* of a Banach space *X* is said to have normal structure if every convex subset *H* of *K* that contains more than one point contains a point $x_0 \in H$, such that $\sup\{||x_0 - y|| : y \in H\} < d(H)$, where $d(H) = \sup\{||x - y|| : x, y \in H\}$ denotes the diameter of *H*.

A Banach space X is said to have normal structure if every bounded and convex subset of X has normal structure.

A Banach space X is said to have weak normal structure if for each weakly compact convex set K of X has normal structure.

A Banach space *X* is said to have uniform normal structure if there exists 0 < c < 1 such that for any bounded closed convex subset *K* of *X* that contains more than one point, there exists $x_0 \in K$ such that $\sup\{||x_0 - y|| : y \in K\} \le c \cdot d(K)$.

For a reflexive Banach space, the normal structure and weak normal structure coincide.

Let *D* be a nonempty subset of a Banach space *X*. A mapping $T: D \to D$ is called to be non-expensive whenever $||Tx - Ty|| \le ||x - y||$ for all $x, y \in D$. A Banach space is said to have fixed point property if for every bounded closed and convex subset *D* of

© CENN, Zagreb Paper MIA-22-84

Mathematics subject classification (2010): 46B20, 47A30, 52A40.

Keywords and phrases: Normal structure, uniform convexity, wUR, w*UR.

X and for each non-expansive mapping $T: D \to D$, there is a point $x \in D$ such that x = Tx [11].

Kirk proved that if a Banach space X has weak normal structure then it has weak fixed point property, that is, every non-expansive mapping from a weakly compact and convex subset of X into itself has a fixed point [11].

DEFINITION 1.2. [9] A Banach space *X* is called uniformly non-square if there exists $\delta > 0$ such that if $x, y \in S(X)$, then either $\frac{||x+y||}{2} \leq 1 - \delta$ or $\frac{||x-y||}{2} \leq 1 - \delta$.

DEFINITION 1.3. [3] Let *X* and *Y* be Banach spaces. We say that *Y* is *finitely representable in X* if for any $\varepsilon > 0$ and any finite dimensional subspace $N \subseteq Y$ there is an isomorphism $T: N \to X$ such that for any $y \in N$, $(1 - \varepsilon) ||y|| \le ||Ty|| \le (1 + \varepsilon) ||y||$.

The Banach space X is called *super-reflexive* if any space Y which is finitely representable in X is reflexive.

REMARK 1.4. It is well known that:

- (a) if X is uniformly non-square then X is supper-reflexive and therefore X is reflexive;
- (b) X is super-reflexive if and only if X^* is supper-reflexive.

The concept of modulus of uniformly rotund or uniformly convex was defined by Clarkson:

DEFINITION 1.5. [2] Let X be a Banach space, the modulus of convexity is a function from [0, 2] to [0, 1] defined by the formula:

$$\delta_X(\varepsilon) = \inf\{1 - \frac{1}{2} \|x + y\| : x, y \in S(X), \|x - y\| \ge \varepsilon\},\$$

where $0 \leq \varepsilon \leq 2$.

If $\delta_X(\varepsilon) > 0$ for any $0 < \varepsilon \leq 2$, *X* is called uniformly rotund or uniformly convex. The abbreviation *UR* is used for this space.

Gao proved that if there exists $0 \le \varepsilon \le 1$ such that $\delta_X(1+\varepsilon) > \frac{\varepsilon}{2}$, then X has uniform normal structure [4].

The concept of modulus of weakly uniformly rotund or weakly uniformly convex was defined by Smulain:

DEFINITION 1.6. [14] Let X be a Banach space and $f \in S(X^*)$, the modulus of convexity of X with respect to f, is a function from $[0,2] \times S(X^*)$ to [0,1] defined by the formula:

$$\delta_X(\varepsilon, f) = \inf\{\{1\} \cup \{1 - \frac{1}{2} ||x + y|| : x, y \in S(X), | < x - y, f > | \ge \varepsilon\}\},\$$

where $0 \leq \varepsilon \leq 2$.

If $\delta_X(\varepsilon, f) > 0$ for all $f \in S(X^*)$ and $0 < \varepsilon \leq 2$, *X* is called weakly uniformly rotund or weakly uniformly convex. The abbreviation *wUR* is used for this space.

The reason for specifically including 1 in the set whose infimum defines the wUR modulus is to avoid the following particular situation: when *f* is a non-norm attaining functional, so there are no points *x*, *y* in *S*(*X*) such that $| \langle x - y, f \rangle | \ge 2$. Therefore $\delta_X(2, f)$ would not be well defined.

The following results were proved for $\delta_X(\varepsilon, f)$ by Gao [5]:

THEOREM 1.7. For a Banach space X, if $\delta_X(\varepsilon, f) > 1 - \varepsilon$ for all $f \in S(X^*)$ and $0 < \varepsilon < 1$ then X is reflexive.

THEOREM 1.8. For a Banach space X, if $\delta_X(1, f) > 0$ for all $f \in S(X^*)$, then X has weak normal structure.

THEOREM 1.9. For a Banach space X, if $\delta_X(\varepsilon, f) > \frac{1}{2} - \frac{\varepsilon}{4}$ for all $f \in S(X^*)$ and $0 < \varepsilon < 2$ then X is uniform non-square and has uniform normal structure.

THEOREM 1.10. [15] For any $f \in X^*$, $\frac{\delta_X(\varepsilon, f)}{\varepsilon}$ is an increasing function of ε in (0,2], and $\delta_X(\varepsilon, f)$ is a continuous function in $0 \le \varepsilon < 2$.

2. Normal structure and inequalities on w^{*}UR modulus

The concept of the modulus of weakly* uniformly rotund or weakly* uniformly convex was defined by Smulian too.

DEFINITION 2.1. [14] Let X be a Banach space and $x \in S(X)$, the modulus of convexity of X^* with respect to x, is a function from $[0,2] \times S(X)$ to [0,1] defined by the formula:

$$\delta_{X^*}(\varepsilon, x) = \inf\{1 - \frac{1}{2} \| f + g \| : f, g \in S(X^*), | \langle x, f - g \rangle | \ge \varepsilon\},\$$

where $0 \leq \varepsilon \leq 2$.

If $\delta_{X^*}(\varepsilon, x) > 0$ for all $x \in S(X)$ and $0 < \varepsilon \leq 2$, X^* is called weakly* uniformly rotund or weakly* uniformly convex. The abbreviation w^*UR is used for this space.

THEOREM 2.2. [8] Let X be a Banach space. Then X is not reflexive if and only if for any $0 < \varepsilon < 1$ there are a sequence $\{x_n\} \subseteq S(X)$ and a sequence $\{f_n\} \subseteq S(X^*)$ such that

- (a) $\langle x_m, f_n \rangle = \varepsilon$ whenever $n \leq m$; and
- (b) $\langle x_m, f_n \rangle = 0$ whenever n > m.

PROPOSITION 2.3. Let X be a Banach space, then:

- (a) $\delta_{(X^*)^*}(\varepsilon, f) \leq \delta_X(\varepsilon, f)$, where $f \in S(X^*)$.
- (b) $\delta_{X^*}(\varepsilon, x)$ is a non-decreasing function of ε for any $x \in S(X)$.
- (c) For a Banach space X, if X^* is wUR then X^* is w^*UR .
- (d) Let X_2^* be a 2-dimensional subspace of X^* , then $\delta_{X^*}(\varepsilon, x) = \inf_{X_2^* \subset X^*}(\delta_{X_2^*}(\varepsilon, x))$.
- (e) $\delta_{X^*}(\varepsilon, x)$ is a continuous function of $\varepsilon \in [0,2)$ for any $x \in S(X)$.

Proof.

- (a) Since $S(X) \subseteq S(X^{**})$.
- (b) From definition of w^*UR .
- (c) It is a direct result of (a).
- (d) From definition of w^*UR .
- (e) First we show that: Let X_2 be a 2 dimensional Banach space, $x \in S(X_2)$, and $u, v \in S(X_2^*)$ are independent. Let $f_2 f_1 = au, g_2 g_1 = bu, h_2 h_1 = cu, \frac{f_1 + f_2}{2} = dv, \frac{g_1 + g_2}{2} = ev$, and $\frac{h_1 + h_2}{2} = fv$, where all a, b, c, d, e, and f > 0, and all f_1, f_2, g_1, g_2, h_1 and $h_2 \in S(X^*)$. If $\langle x, f_2 f_1 \rangle + \langle x, h_2 h_1 \rangle = 2 \langle x, g_2 g_1 \rangle$, then a + c = 2b, therefore from convexity of $S(X_2^*)$, we have $d + f \leq 2e$. Let $\delta_{X_2^*}^{u,v}(\varepsilon, x) = \inf\{1 \frac{1}{2} || f + g || : f, g \in S(X_2^*), f g = \alpha u, f + g = \beta v, | < x, f g \rangle | \ge \varepsilon\}$, where $0 \le \varepsilon \le 2$. This means that for any $x \in S(X_2)$ and $u, v \in S(X_2^*), \delta_{X_2^*}^{u,v}(\varepsilon, x)$ is a convex function of ε . The following proof is similar to the proof of Lemma 5.1 in [7]: Let $0 \le \varepsilon_1 < 2$. For $0 < \varepsilon \le 2$, the convexity of $\delta_{X_2^*}^{u,v}(\varepsilon, x)$ implies that: $\frac{\delta_{X_2^*}^{u,v}(\varepsilon, x) \delta_{X_2^*}^{u,v}(\varepsilon_1, x)}{\varepsilon \varepsilon_1} \le \frac{\delta_{X_2^*}^{u,v}(z, x) \delta_{X_2^*}^{u,v}(\varepsilon_1, x)}{2 \varepsilon_1} \le \frac{1}{2 \varepsilon_1}$. Therefore, $\delta_{X_2^*}^{u,v}(\varepsilon, x) \delta_{X_2^*}^{u,v}(\varepsilon_1, x) \le \frac{\varepsilon \varepsilon_1}{2 \varepsilon_1}$. From (d) of above Proposition 2.3, we have $\delta_{X^*}(\varepsilon, x) \delta_{X^*}(\varepsilon_1, x) \le \frac{\varepsilon \varepsilon_1}{2 \varepsilon_1}$. This proved that $\delta_{X^*}(\varepsilon, x)$ is a continuous function of $\varepsilon \in [0, 2)$ for any $x \in S(X)$.

THEOREM 2.4. For a Banach space X, if $\delta_{X^*}(\varepsilon, x) > 1 - \varepsilon$ for all $x \in S(X)$ and $0 < \varepsilon < 1$, then X is reflexive.

Proof. The idea of the proof is similar to the proof of Theorem 2.1 of [5]. Suppose *X* is not reflexive. For any $0 < \varepsilon < 1$, let the sequence $\{x_m\} \subseteq S(X)$ and the sequence $\{f_n\} \subseteq S(X^*)$ satisfy the two conditions in Theorem 2.2. Let $n_1 < m < n_2$, we have $< x_m, f_{n_1} - f_{n_2} >= \varepsilon$. Let $n_1 < n_2 < m_1$, we have $< x_{m_1}, f_{n_1} + f_{n_2} >= 2\varepsilon$, therefore $||f_{n_1} + f_{n_2}|| \ge 2\varepsilon, 1 - \frac{||f_{n_1} + f_{n_2}||}{2} \le 1 - \varepsilon$. This implies $\delta_{X^*}(\varepsilon, x_m) = \inf\{1 - \frac{||f_{n_1} + f_{n_2}||}{2}, < x_m, f - g >\ge \varepsilon\} \le 1 - \frac{||f_{n_1} + f_{n_2}||}{2} \le 1 - \varepsilon$, for this fixed $x_m \in S(X)$.

LEMMA 2.5. [12] If X is a Banach space with $B(X^*)$ is weak* sequentially compact (for example, X is reflexive or separable, or has an equivalent smooth norm) and fails to have weak normal structure, then for any $\varepsilon > 0$ there are a sequence $\{x_n\} \subseteq S(X)$ and a sequence $\{f_n\} \subseteq S(X^*)$ such that:

- (a) $|||x_i x_j|| 1| < \varepsilon$, where $i \neq j$;
- (b) $\langle x_i, f_i \rangle = 1$, where $1 \leq i \leq \infty$;
- (c) $|\langle x_j, f_i \rangle| < \varepsilon$, where $i \neq j$; and
- (d) $||f_i f_j|| > 2 \varepsilon$, where $i \neq j$.

THEOREM 2.6. For a Banach space X which satisfies one of any condition in above Lemma 2.5, if $\delta_{X^*}(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{2}$ for all $x \in S(X)$ and $0 < \varepsilon < 1$ then X has weak normal structure.

Proof. Suppose *X* satisfies one of any condition in above Lemma 2.5 but fails to have weak normal structure, for any $0 < \varepsilon < 1$, let $f = f_i \in S(X^*), g = f_j \in S(X^*)$ and $x = x_i \in S(X)$ where $i \neq j$ be chosen as in above Lemma 2.5. We have $||f - g|| \ge 2 - \varepsilon$, so $1 - \frac{||f - g||}{2} \le \frac{\varepsilon}{2}$ and $< x, f + g > \ge 1 - \varepsilon$. From definition of $\delta_{X^*}(\varepsilon, x)$ we have $\delta_{X^*}(1 - \varepsilon, x) \le \frac{\varepsilon}{2}$ for this $x \in S(X)$. This implies that if $\delta_{X^*}(1 - \varepsilon, x) > \frac{\varepsilon}{2}$ for all $x \in S(X)$ and $0 < \varepsilon < 1$, then *X* has weak normal structure. It is equivalent to the condition $\delta_{X^*}(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{2}$ for all $x \in S(X)$ and $0 < \varepsilon < 1$. \Box

REMARK 2.7. Since $\delta_{X^*}(\varepsilon, x)$ is a non-decreasing function of ε for any $x \in S(X)$, to use Theorem 2.4 and Theorem 2.6 we only need to check those ε that arbitrarily close to 1.

LEMMA 2.8. [6] If $x_1, x_2 \in B(X)$ and $0 < \varepsilon < 1$ are such that $\frac{\|x_1+x_2\|}{2} > 1-\varepsilon$, then for all $0 \leq c \leq 1$ and $z = cx_1 + (1-c)x_2 \in [x_1, x_2]$, the line segment connecting x_1 and x_2 , it follows that $\|z\| > 1-2\varepsilon$.

The following characteristic of reflexivity is given by James:

LEMMA 2.9. [8] The Banach space is reflexive if and only if each bounded linear functional on X is norm -attaining.

THEOREM 2.10. For a Banach space X, if $\delta_{X^*}(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{4}$ for all $x \in S(X)$ and $0 < \varepsilon < 2$ then X^* is uniform non-square.

Proof. Suppose X^* is not uniform non-square. For any $0 < \varepsilon < 2$, let $f, g \in S(X^*)$ such that both $||f+g|| \ge 1 + \frac{\varepsilon}{2}$ and $||f-g|| \ge 1 + \frac{\varepsilon}{2}$. So we have $\frac{||f+g||}{2} \ge \frac{1}{2} + \frac{\varepsilon}{4}$, and $\frac{||f-g||}{2} \ge \frac{1}{2} + \frac{\varepsilon}{4}$. This implies $1 - \frac{||f-g||}{2} \le \frac{1}{2} - \frac{\varepsilon}{4}$. $\delta_{X^*}(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{4}$ for all $x \in S(X)$ and $0 < \varepsilon < 2$ implies $\delta_{X^*}(\varepsilon, x) > 1 - \varepsilon$ for all $x \in S(X)$ and $\frac{2}{3} < \varepsilon < 1$. From Remark 2.7 and Theorem 2.4, X^* , hence X is reflexive, and therefore from Lemma 2.9, there exist

 $x, y \in S(X)$ such that $\langle x, f \rangle = \langle y, g \rangle = 1$. The following proof is similar to the proof of Theorem 2.3 of [5]. Consider the 2-dimensional subspace X_2 of X spanned by x and y, and x and y are clockwise located on $\widetilde{x, y} \subseteq S(X_2)$, and the 2-dimensional subspace X_2^* of X^* spanned by f and g, and f and g are clockwise located on $\widetilde{f,g} \subseteq S(X_2^*)$. Since $\langle x, f - g \rangle \ge 0$, and $\langle y, f - g \rangle \le 0$, and $\langle t, f - g \rangle$ is a continuous function for $t \in \widetilde{x, y} \subseteq S(X_2)$, there must be a $z \in \widetilde{x, y} \subseteq S(X_2)$, such that $\langle t, f - g \rangle = 0$. Let $\langle z, f \rangle = \langle z, g \rangle = l$, then for all $0 \le \alpha \le 1$, $\langle z, \alpha f + (1 - \alpha)g \rangle = l$. Taking $0 < \alpha_1 < l$ 1 such that $h = \frac{\alpha_1 f + (1 - \alpha_1)g}{\|\alpha_1 f + (1 - \alpha_1)g\|} \in S(X^*)$ with $\langle z, h \rangle = \langle z, \frac{\alpha_1 f + (1 - \alpha_1)g}{2} \| \ge 1$, then $\|\alpha_1 f + (1 - \alpha_1)g\| = \langle z, \alpha_1 f + (1 - \alpha_1)g \rangle = l$. Since $\frac{\|f + g\|}{2} \ge \frac{1}{2} + \frac{\varepsilon}{4} = 1 - (\frac{1}{2} - \frac{\varepsilon}{4})$, from Lemma 2.8, we have $\langle z, \frac{f + g}{2} \rangle \ge l = \|\alpha_1 f + (1 - \alpha_1)g\| \ge 1 - 2(\frac{1}{2} - \frac{\varepsilon}{4}) = \frac{\varepsilon}{2}$. Therefore, $\langle z, f + g \rangle \ge \varepsilon$. By using Hahn-Banach Theorem to extend z from X_2 to X, from definition of $\delta_{X^*}(\varepsilon, x)$, we have $\delta_{X^*}(\varepsilon, z) \le \frac{1}{2} - \frac{\varepsilon}{4}$ for this $z \in S(X)$, and any $0 < \varepsilon < 2$. \Box

REMARK 2.11. Since $\delta_{X^*}(\varepsilon, x)$ is a non-decreasing function of ε for any $x \in S(X)$, to use Theorem 2.10 we only need to check those ε that arbitrarily close to 2.

THEOREM 2.12. For a Banach space X, if $\delta_{X^*}(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{4}$ for all $x \in S(X)$, and any $0 < \varepsilon < 2$ then X has normal structure and X^* is uniform non-square.

Proof. Since $\delta_{X^*}(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{4}$, for all $x \in S(X)$, and $0 < \varepsilon < 2$ implies $\delta_{X^*}(\varepsilon, x) > 1 - \varepsilon$ for all $x \in S(X)$, and $\varepsilon > \frac{2}{3}$, from Theorem 2.4, *X* is reflexive. Since $\delta_{X^*}(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{4}$, for all $x \in S(X)$, and $0 < \varepsilon < 2$ implies $\delta_{X^*}(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{2}$ for all $x \in S(X)$, and $0 < \varepsilon < 2$ implies $\delta_{X^*}(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{2}$ for all $x \in S(X)$, and $0 < \varepsilon < 2$ implies $\delta_{X^*}(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{2}$ for all $x \in S(X)$, and $0 < \varepsilon < 1$, from Theorem 2.6, *X* has weak normal structure. So the Theorem 2.12 is a direct result of Theorem 2.4, Theorem 2.6 and Theorem 2.10. \Box

3. Uniform normal structure and inequalities on *w*^{*}*UR* modulus

We consider the uniform normal structure.

Let \mathscr{F} be a filter of an index set I, and let $\{x_i\}_{i \in I}$ be a subset in a Hausdorff topological space X, $\{x_i\}_{i \in I}$ is said to *converge to x with respect to* \mathscr{F} , denoted by $\lim_{\mathscr{F}} x_i = x$, if for each neighborhood U of x, $\{i \in I : x_i \in U\} \in \mathscr{F}$.

A filter \mathscr{U} on *I* is called an *ultrafilter* if it is maximal with respect to the ordering of the set inclusion. An ultrafilter is called *trivial* if it is of the form $\{A : A \subseteq I, i_0 \in A\}$ for some $i_0 \in I$. We will use the fact that if \mathscr{U} is an ultrafilter, then:

- (i) for any $A \subseteq I$, either $A \subseteq U$ or $I A \subseteq U$;
- (ii) if $\{x_i\}_{i \in I}$ has a cluster point x, then $\lim_{\mathcal{U}} x_i$ exists and equals to x.

Let $\{X_i\}_{i \in I}$ be a family of Banach spaces and let $l_{\infty}(I, X_i)$ denote the subspace of the product space equipped with the norm $||(x_i)|| = \sup_{i \in I} ||x_i|| < \infty$.

DEFINITION 3.1. [13]. Let \mathscr{U} be an ultrafilter on I and let $N_U = \{(x_i) \in l_{\infty}(I, X_i) : \lim_{\mathscr{U}} ||x_i|| = 0\}$. The *ultra-product* of $\{X_i\}_{i \in I}$ is the quotient space $l_{\infty}(I, X_i)/N_{\mathscr{U}}$ equipped with the quotient norm.

We will use $(x_i)_{\mathscr{U}}$ to denote the element of the ultra-product. It follows from Remark (ii) above, and the definition of quotient norm that

$$\|(x_i)_{\mathscr{U}}\| = \lim_{\mathscr{U}} \|x_i\|.$$
(3.1)

In the following we will restrict our index set I to be \mathbb{N} , the set of natural numbers, and let $X_i = X, i \in \mathbb{N}$ for some Banach space X. For an ultrafilter \mathscr{U} on \mathbb{N} , we use $X_{\mathscr{U}}$ to denote the ultra-product. Note that if \mathscr{U} is nontrivial, then X can be embedded into $X_{\mathscr{U}}$ isometrically.

LEMMA 3.2. [13]. Suppose that \mathscr{U} is an ultrafilter on \mathbb{N} and X is a Banach space. Then $(X^*)_{\mathscr{U}} \cong (X_{\mathscr{U}})^*$ if and only if X is super-reflexive; and in this case, the mapping J defined by

$$\langle (x_i)_{\mathscr{U}}, J((f_i)_{\mathscr{U}}) \rangle = \lim_{\mathscr{U}} \langle x_i, f_i \rangle, \quad for all \ (x_i)_{\mathscr{U}} \in X_{\mathscr{U}}$$

is the canonical isometric isomorphism from $(X^*)_{\mathscr{U}}$ onto $(X_{\mathscr{U}})^*$.

THEOREM 3.3. [5] Let X be a super-reflexive Banach space. Then for any nontrivial ultrafilter \mathscr{U} on \mathbb{N} , and for any $0 < \varepsilon < 2$, we have $\delta_{X_{\mathscr{U}}}(\varepsilon, (f_i)_{\mathscr{U}}) > a$ for all $(f_i)_{\mathscr{U}} \in S(X_{\mathscr{U}}^*)$ if and only if $\delta_X(\varepsilon, f) > a$ for all $f \in S(X^*)$.

THEOREM 3.4. Let X be a super-reflexive Banach space. Then for any nontrivial ultrafilter \mathscr{U} on \mathbb{N} , and for any $0 < \varepsilon < 2$, we have $\delta_{X^*_{\mathscr{U}}}(\varepsilon, (x_i)_{\mathscr{U}}) > a$ for all $(x_i)_{\mathscr{U}} \in S(X_{\mathscr{U}})$ if and only if $\delta_{X^*}(\varepsilon, x) > a$ for all $x \in S(X)$.

Proof. From Remark 1.4, X is super-reflexive if and only if X^* is super-reflexive. So X is isomorphic and isometry to X^{**} , therefore $X_{\mathscr{U}}$ is isomorphic and isometry to $X_{\mathscr{U}}^{**}$. The Theorem 3.4 is a direct result of Theorem 3.3. \Box

LEMMA 3.5. [10] If X is a super-reflexive Banach space, then X has uniform normal structure if and only if $X_{\mathcal{U}}$ has normal structure.

THEOREM 3.6. For a Banach space X, if $\delta_{X^*}(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{4}$ for all $x \in S(X)$, and any $0 < \varepsilon < 2$ then X^* is uniform non-square, X is super-reflexive and both X and X^* have uniform normal structure.

Proof. $\delta_{X^*}(\varepsilon, x) > \frac{1}{2} - \frac{\varepsilon}{4}$ for all $x \in S(X)$, and any $0 < \varepsilon < 2$ implies that X has weak normal structure from Theorem 2.6, and X^* is uniformly non-square from Theorem 2.10. So, X^* , hence X is super-reflexive. Then the result follows directly from Theorems 3.4 and Lemma 3.5. \Box

Let $sgn(x) = \begin{cases} -1, & if \ x < 0 \\ 0, & if \ x = 0 \\ 1, & if \ x > 0 \end{cases}$ be the sign function of x.

EXAMPLE 3.7. Let $X = l_1$, and $X^* = l_{\infty}$, then $\delta_{l_{\infty}}(\varepsilon, x) = 0$ for all $x \in S(l_1)$ and $0 \leq \varepsilon < 2$.

Proof. For any $x = \{x_1, x_2, x_3, ..., x_n, x_{n+1}, x_{n+2}, ...\} \in S(l_1)$, we have $\sum_{i=1}^{\infty} |x_i| = 1$. For any δ > 0 take *n* such that $\sum_{i=1}^{n} |x_i| > 1 - \delta$, we have $|x_j| < \delta$ for all *j* > *n*. Let $f_1 = (sgn(x_1), sgn(x_2), sgn(x_3), ... sgn(x_n), 1, 0, 0, ...) \in S(l_{\infty})$, and $f_2 = (-sgn(x_1), -sgn(x_2), -sgn(x_3), ... -sgn(x_n), 1, 0, 0, ...) \in S(l_{\infty})$. We have $< x, f_1 - f_2 > = \sum_{i=1}^{n} x_i (2sgn(x_i)) = 2\sum_{i=1}^{n} |x_i| > 2 - 2\delta$. But $||f_1 + f_2||_{l_{\infty}} = ||(0, 0, 0, ..., 2, 0, 0, 0, ...)||_{l_{\infty}} = 2$, so $1 - \frac{||f_1 + f_2||_{l_{\infty}}}{2} = 0$. We have $\delta_{l_{\infty}}(\varepsilon, x) = 0$ for all $x \in S(l_1)$ and $0 \le \varepsilon < 2 - 2\delta$. Since δ can be arbitrarily small we have $\delta_{l_{\infty}}(\varepsilon, x) = 0$

EXAMPLE 3.8. Let $X = c_0$, and $X^* = l_1$, then $\delta_{l_1}(\varepsilon, x) = 0$ for all $x \in S(c_0)$ and $0 \leq \varepsilon < 1$.

Proof. For any $x = \{x_1, x_2, x_3, ..., x_n, x_{n+1}, x_{n+2}, ...\} \in S(c_0)$, there exists an *i*, such that $|x_i| = 1$, and for any $\eta > 0$ there exists a *j* such that $|x_j| < \eta$, where *i* < *j*. Let $f_1 = (0, 0, 0, ..., sgn(x_i), ..., 0, 0, 0, 0, ...) \in S(l_1)$, where *i*-th position of f_1 is $sgn(x_i)$ and others are 0; and $f_2 = (0, 0, 0, ..., 0, 1, 0, 0, ...) \in S(l_1)$, where *j*-th position of f_2 is 1 and others are 0. We have $< x, f_1 - f_2 >> 1 - \eta$. But $||f_1 + f_2||_{l_1} = ||(0, 0, 0, ..., sgn(x_i), ..., 1, 0, 0, ...)||_{l_1} = 2$, so $1 - \frac{||f_1 + f_2||_{l_1}}{2} = 0$. We have $\delta_{l_1}(\varepsilon, x) = 0$ for all $x \in S(l_1)$ and $0 \le \varepsilon < 1 - \eta$. Since η can be arbitrarily small we have $\delta_{l_1}(\varepsilon, x) = 0$ for all $x \in S(c_0)$ and $0 \le \varepsilon < 1$. □

Acknowledgement. The author would like to thank the referee for many valuable recommendations and suggestions.

REFERENCES

- M.S. Brodskiĭ and D.P. Mil'man, On the center of a convex set. (Russian) Doklady Akad. Nauk SSSR (N.S.) 59 (1948) 837–840.
- [2] J. A. Clarkson, Unifom convex spaces, Transaction of the American Mathematical Society 40(1936), no.3, 396-414.
- [3] J. Diestel, The Geometry of Banach Spaces Selected Topics Lecture Notes in Math., Vol. 485, Spring - Verlag, Berlin and New York(1975).
- [4] J. Gao, Modulus of Convexity in Banach Spaces, Applied Math. Letters 16 (2003) 273-278.
- [5] J. Gao, wUR Modulus and Normal Structure in Banach Spaces, Advances in Operation Theory, Vol. 3, 3(2018), 639-646.
- [6] J. Gao and K.S. Lau, On Two Classes of Banach Spaces with Normal Structure, *Studia Mathematica*, 99(1) 1991, 41-56.
- [7] S. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics 28, 1990.
- [8] R.C. James, Characterizations and Reflexivity, Studia Math. 23(1964), 205-216.
- [9] R.C. James, Uniformly Nonsquare Banach Spaces, Annals of Math. 80(1964), 542-550.
- [10] M.A. Khamsi, Uniform smoothness implies super-normal structure property. Nonlinear Anal. 19 (1992), no. 11, 1063–1069.
- [11] W.A. Kirk, A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72 (1965) 1004–1006.

- [12] S. Saejung and J. Gao, On Semi-Uniform Kadec-Klee Banach spaces, Abstract and Applied Analysis, Vol. 2010, Article ID 652521.
- [13] B. Sims, "Ultra"-techniques in Banach space theory. Queen's Papers in Pure and Applied Mathematics, 60. Queen's University, Kingston, ON, 1982.
- [14] V.L. Smulian, On the principle of inclusion in the space of the type (B), Rec. Math. [Mat. Sbornik] N. S. 5(47) (1939), 317-328 (Russian, English summary).
- [15] Ullan de Celis, Modulos de Convexidad y de lisura en Espacios Normados, Ph.D. Dissertation, Univ. of Extremadura, (Spain), 1990.

(Received September 25, 2018)

Ji Gao Department of Mathematics Community College of Philadelphia PA 19130-3991, USA e-mail: jgao@ccp.edu